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Abstract
Background Diagnostic codes are commonly used as inputs for clinical prediction models, to create labels for 
prediction tasks, and to identify cohorts for multicenter network studies. However, the coverage rates of diagnostic 
codes and their variability across institutions are underexplored. The primary objective was to describe lab- and 
diagnosis-based labels for 7 selected outcomes at three institutions. Secondary objectives were to describe 
agreement, sensitivity, and specificity of diagnosis-based labels against lab-based labels.

Methods This study included three cohorts: SickKids from The Hospital for Sick Children, and StanfordPeds and 
StanfordAdults from Stanford Medicine. We included seven clinical outcomes with lab-based definitions: acute kidney 
injury, hyperkalemia, hypoglycemia, hyponatremia, anemia, neutropenia and thrombocytopenia. For each outcome, 
we created four lab-based labels (abnormal, mild, moderate and severe) based on test result and one diagnosis-based 
label. Proportion of admissions with a positive label were presented for each outcome stratified by cohort. Using lab-
based labels as the gold standard, agreement using Cohen’s Kappa, sensitivity and specificity were calculated for each 
lab-based severity level.

Results The number of admissions included were: SickKids (n = 59,298), StanfordPeds (n = 24,639) and StanfordAdults 
(n = 159,985). The proportion of admissions with a positive diagnosis-based label was significantly higher for 
StanfordPeds compared to SickKids across all outcomes, with odds ratio (99.9% confidence interval) for abnormal 
diagnosis-based label ranging from 2.2 (1.7–2.7) for neutropenia to 18.4 (10.1–33.4) for hyperkalemia. Lab-based labels 
were more similar by institution. When using lab-based labels as the gold standard, Cohen’s Kappa and sensitivity 
were lower at SickKids for all severity levels compared to StanfordPeds.

Conclusions Across multiple outcomes, diagnosis codes were consistently different between the two pediatric 
institutions. This difference was not explained by differences in test results. These results may have implications for 
machine learning model development and deployment.
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Background
Machine learning models based on electronic health 
records (EHRs) are increasingly being developed and 
implemented into routine care. They have improved out-
comes related to reducing acute care visits among ambu-
latory cancer patients [1], decreasing in-hospital clinical 
deterioration [2], increasing serious illness conversations 
[3], improving platelet utilization [4] and refining antibi-
otic choice [5] as examples.

To develop models, inputs or features are extracted 
from EHRs; these reflect different aspects of care such as 
diagnostic codes, laboratory tests, microbiology results, 
medication administrations, blood product adminis-
tration, and procedures. Diagnostic codes are also fre-
quently used to define the outcome of interest or label. 
How well each institution generates accurate diagnostic 
codes may vary depending on the coding process specific 
to the institution [6] and clinical diagnostic practice spe-
cific to the hospital unit or physician [6–8]. This variabil-
ity might influence the performance and generalizability 
of machine learning models developed at institutions 
with different diagnostic coverage rates. In pediatric pop-
ulations, the coverage rates of diagnostic codes and their 
variability across institutions are underexplored [9, 10].

A challenge to studying the question of diagnostic code 
coverage is the creation of gold standard labels as the 
diagnostic codes themselves are often used to develop 
these labels. One type of clinical data in which the label 
is inherent within the result itself is laboratory-based 
outcomes. Abnormal lab tests can be defined using 
institution-specific reference ranges. In addition, levels 
of severity (mild, moderate, and severe) for each abnor-
mal lab test can be defined based upon widely accepted 
thresholds. Thus, evaluating diagnostic code coverage 
against lab-based definitions provides a pragmatic set-
ting in which to evaluate this question. Consequently, 
the primary objective was to describe lab- and diagnosis-
based labels for selected outcomes at three institutions. 
Secondary objectives were to describe agreement, sen-
sitivity, and specificity of diagnosis-based labels against 
lab-based labels.

Methods
Design
This study used data derived from EHRs at three institu-
tions, namely The Hospital for Sick Children (SickKids) 
in Toronto, Ontario; Lucile Packard Children’s Hospital 
(primarily pediatric-directed care) in Palo Alto, Califor-
nia and Stanford Health Care (primarily adult-directed 
care) in Palo Alto, California. The overall goal was to 
compare lab- and diagnosis-based labels for pediatric 
patients at SickKids vs. Stanford. We included a Stanford 
adult cohort for descriptive purposes.

Data sources
SEDAR The data source at SickKids was the SickKids 
Enterprise-wide Data in Azure Repository (SEDAR) [11, 
12]. SEDAR contains a curated version of Epic Clarity data 
that is being used for operational, quality improvement 
and research purposes. This study was approved as a qual-
ity improvement project at The Hospital for Sick Children 
and consequently, the requirement for Research Ethics 
Board approval and informed consent were waived by The 
Hospital for Sick Children.

STARR The Stanford medicine research data repository 
(STARR) [13] is the clinical data warehouse that contains 
records routinely collected in the EHR of Stanford Medi-
cine, which is comprised of Lucile Packard Children’s 
Hospital and Stanford Health Care. The data have been 
mapped to the standard concept identifiers and struc-
ture of the Observational Medical Outcomes Partnership 
Common Data Model (OMOP-CDM) [14], resulting in a 
dataset named STARR-OMOP. This study used a de-iden-
tified version of STARR-OMOP [13] in which protected 
health information has been redacted. Because of de-
identification, the requirement for Institutional Review 
Board approval and informed consent were waived by 
Stanford Medicine.

Cohorts
We defined three cohorts. SickKids was obtained using 
SEDAR while StanfordPeds and StanfordAdults were 
obtained using STARR-OMOP and applying age-specific 
restrictions. Table 1 summarizes the inclusion criteria for 
each cohort. Across all three cohorts, inpatient admis-
sions were included if they occurred between 2018-06-
02 to 2022-08-01. The pediatric cohorts (SickKids and 
StanfordPeds) included patients who were 28 days or 
older and younger than 18 years on the day of admission. 
We excluded neonates 1 to 27 days of age because Lucile 
Packard Children’s Hospital has an obstetrical unit and 
consequently includes healthy newborns while SickKids 
does not have an obstetrical unit and does not routinely 
see healthy newborns. StanfordAdults included adult 
patients aged 18 or above on the day of admission. Mul-
tiple admissions per patient were permitted as long as eli-
gibility criteria were met.

Outcome definitions
We included seven clinical outcomes that have lab-based 
definitions, namely acute kidney injury (AKI), hyper-
kalemia, hypoglycemia, hyponatremia, anemia, neutro-
penia, and thrombocytopenia. We appreciate there are 
a large number of potential lab-based outcomes; these 
seven were chosen based on our current research inter-
ests and because they are clinically meaningful. The out-
comes were chosen a priori, before conducting any of the 
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analyses. We purposely did not include abnormal high 
and low for the same lab test (for example, hyperglycemia 
and hypoglycemia) as they may be correlated. For each 
outcome, we created four lab-based labels based on the 
test result and one diagnosis-based label; these five labels 
were evaluated in each patient admission. Appendix 1 in 
Additional File 1 shows the thresholds for each severity 
level (mild, moderate, and severe levels) of the lab-based 
labels; these thresholds were based upon research stud-
ies or guidelines [15–21]. We also labeled the result as 
abnormal if the result was above or below (not both) of 
the institution-specific reference range. For lab-based 
labels, units for lab results were normalized, and sever-
ity level was nested. For example, a patient admission 
with severe hypoglycemia would also be included in the 

analyses for mild and moderate hypoglycemia. For the 
diagnosis-based label, we considered an outcome to be 
present if at least one outcome-related diagnosis code 
was assigned to the admission. Appendices 2 and 3 in 
Additional File 1 list the diagnosis codes used to define 
diagnosis-based labels.

Concept Selection for Lab-based and diagnosis-based 
labels
We adopted different search strategies for concepts in 
STARR-OMOP and SEDAR due to differences in struc-
ture and vocabularies for clinical codes. Diagnosis codes 
were derived from the “condition_occurrence” table 
for STARR-OMOP and from the “diagnosis” table for 
SEDAR. Lab test results were obtained from the “mea-
surement” table for STARR-OMOP and from the “lab” 
table for SEDAR. For face validation, diagnosis codes and 
lab result distributions obtained from STARR-OMOP 
were reviewed by three clinicians (KEM, CA and LS) to 
identify errors related to normalization or concept selec-
tion. At SickKids, this same review was only conducted 
by one clinician (LS) due to access restrictions.

Baseline characteristics by Cohort
To explore whether there were differences in the cohorts 
with respect to patients, we described the demographic 
characteristics and raw lab results of patients between 
centers. Demographic characteristics included age, sex, 
length of stay, and the prevalence of in-hospital mortality. 
For the evaluation of raw lab results, we determined the 
minimum or maximum result for each lab test per admis-
sion and stratified by cohort.

To gain insight into whether there were differences 
between pediatric institutions with respect to labora-
tory procedures or clinical practice, we described the 
institution- and age group-specific reference ranges for 
abnormal lab results by SickKids and StanfordPeds. The 
pediatric age groups were defined by the National Insti-
tute of Child Health and Human Development [22] as 
infancy (28 days– 12 months), toddler (13 months– 2 
years), early childhood (2–5 years), middle childhood 
(6–11 years) and early adolescence (12–17 years). In 
addition, we evaluated lab testing frequency calculated as 
the number of tests per inpatient day for each admission.

Statistical analysis
The primary objective was to describe lab- and diagno-
sis-based labels at the three institutions. These were pre-
sented as the proportion of admissions with at least one 
positive label. To describe the odds of a lab- or diagnosis-
based label by whether the pediatric admission occurred 
at StanfordPeds vs. SickKids, analysis was complicated by 
the large number of admissions and multiple testing (35 
separate evaluations for this analysis alone). In addition, 

Table 1 Inclusion criteria and cohort characteristics
SickKids StanfordPeds StanfordAdults

Inclusion Criteria
Age at Admission ≥ 28 days 

and < 18 
years

≥ 28 days and 
< 18 years

≥ 18 years

Admission Date 2018-
06-02 to 
2022-08-01

2018-06-02 to 
2022-08-01

2018-06-02 to 
2022-08-01

Cohort 
Characteristics
Number 
Admissions

59,298 24,639 159,985

Number Patients 36,585 14,518 103,170
Median Age at 
Admission [IQR]

6 [2–12] 6 [2–12] 57 [36–71]

Pediatric Age 
Group, n (%)
 Infant (28 days– 
12 months)

8980 (15.1%) 3869 (15.7%)

 Toddler (13 
months– 2 years)

5661 (9.5%) 2269 (9.2%)

 Early childhood 
(2–5 years)

10,263 
(17.3%)

4307 (17.5%)

 Middle child-
hood (6–11 years)

14,837 
(25.0%)

6056 (24.6%)

 Early adoles-
cence (12–17 
years)

19,557 
(33.0%)

8138 (33.0%)

Sex, n (%)
 Females 27,264 

(46.0%)
11,800 (47.9%) 91,770 (57.4%)

 Males 32,030 
(54.0%)

12,837 (52.1%) 68,207 (42.6%)

 Unknown 4 (< 0.1%) 2 (< 0.1%) 15 (< 0.1%)
Patient Outcomes
 In-hospital 
mortality, n (%)

297 (0.5%) 203 (0.8%) 3088 (1.9%)

 Median length 
of stay [IQR]

2 [1–5] 3 [1–6] 3 [2–6]

Abbreviations: SickKids– The Hospital for Sick Children; Peds– pediatrics; IQR– 
interquartile range
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there were multiple admissions per patient, resulting in 
correlation within individuals. To address these concerns, 
we took several steps. First, we focused on describing the 
odds ratio (OR) and 99.9% confidence interval (CI) for a 
lab- or diagnosis-based label by pediatric institution. Sec-
ond, we described the 99.9% confidence interval rather 
than the 95% confidence interval to help address multiple 
testing. Third, we did not calculate P values but rather, 
focused on describing CIs with the exception of compar-
ing lab testing frequency by institution. Finally, to address 
multiple admissions per patient, OR and 99.9% CI were 
calculated using mixed-effects logistic regression. Mod-
els included each binary label as the outcome, institu-
tion and pediatric age group as fixed effects and subject 
as random intercept. Analysis was performed using the 
glmer function from lme4 package in R.

The secondary objectives were to describe agreement, 
sensitivity, and specificity of diagnosis-based labels 
against lab-based labels. Agreement in each cohort was 
described using Cohen’s Kappa coefficient. Sensitivity 
and specificity of the diagnosis-based labels were deter-
mined using each of the lab-based labels as the gold 
standard. For each metric, we presented the median and 
ranges stratified by cohort and lab-based severity (abnor-
mal, mild, moderate and severe).

As an exploratory analysis, we separately evaluated 
each visited unit during admissions at each pediatric 
institution. We examined the weighted proportion of 
positive lab-based labels and positive diagnosis-based 
labels for each hospital unit and calculated Spearman’s 
rho (r) based on the average across lab-based severity.

To describe lab-based reference ranges for pediatric 
patients, we described the threshold for an abnormal 
lab test by pediatric age group stratified by institution. 
Where the threshold varied within an age group, the 
range was visually depicted using a bar rather than a line. 
To compare testing frequency between pediatric institu-
tions, mixed-effects linear regression was performed with 
number of lab tests per admission as the outcome, insti-
tution and pediatric age group as fixed effects and subject 
as random intercept. Analysis was performed using the 
lmer function from the lme4 package in R.

All analyses were conducted using Python (version 3.7) 
and R (version 4.1.2).

Results
Baseline characteristics
The number of admissions included were: SickKids 
(n = 59,298), StanfordPeds (n = 24,639) and Stanfor-
dAdults (n = 159,985). Characteristics of the three 
cohorts are listed in Table  1. The distributions of age, 
sex, in-hospital mortality, and median length of stay 
were similar between SickKids and StanfordPeds while 
the distribution of sex and in-hospital mortality differed 
at StanfordAdult. Table  2 shows the distribution of mini-
mum or maximum results for each lab test per admission 
by cohort. Distributions appeared similar between Stan-
fordPeds and SickKids with the exception of minimum 
absolute neutrophil count, which was lower at SickKids 
vs. StanfordPeds. Appendix 2 in Additional File 1 shows 
that the reference ranges varied between SickKids and 
StanfordPeds. Reference ranges for glucose and sodium 
were the same for all age groups except infants. Reference 
ranges for potassium and platelets were notably different 
by institution across age groups. Appendix 3 in Addi-
tional File 1 shows the average number of lab tests per-
formed per inpatient day across all admissions stratified 
by institution. SickKids performed significantly fewer 
tests compared to StanfordPeds for all tests.

Prevalence of lab-based and diagnosis-based labels
Table 3 provides the percentage of admissions with a pos-
itive lab- and diagnosis-based label. Table 3; Fig. 1 show 
OR and 99.9% CI. The proportion of admissions with a 
positive diagnosis-based label was significantly higher for 
StanfordPeds compared to SickKids across all outcomes, 
with OR (99.9% CI) for abnormal diagnosis-based label 
ranging from 2.2 (1.7–2.7) for neutropenia to 18.4 (10.1–
33.4) for hyperkalemia. Lab-based labels were more 
similar by institution although several were significantly 
different as demonstrated by CIs that did not cross 1.

Agreement between outcome definitions
Figure 2 shows the evaluations of diagnosis-based labels 
against each of the lab-based labels using Cohen’s Kappa 

Table 2 Distribution of minimum or maximum results for each 
lab test per admission stratified by cohort
Lab Test Units SickKids Me-

dian (IQR)
Stanford-
Peds Median 
(IQR)

Stanfor-
dAdults 
Median 
(IQR)

Maximum 
Creatinine

umol/L 42.0 
(29.0–60.0)

34.5 
(23.0–53.0)

78.7 
(61.0–109.6)

Maximum 
Potassium

mmol/L 4.5 (4.1–5.0) 4.4 (4.1–4.9) 4.4 
(4.1–4.8)

Minimum 
Glucose

mmol/L 4.9 (4.3–5.5) 4.9 (4.3–5.6) 5.2 
(4.6–5.9)

Minimum 
Sodium

mmol/L 138.0 
(136.0–140.0)

137.0 
(134.0–139.0)

135.0 
(132.0–
138.0)

Minimum Abso-
lute Neutrophil 
Count

10^9/L 2.2 (1.1–3.9) 3.4 (1.9–5.9) 5.5 
(3.6–7.7)

Minimum 
Hemoglobin

g/L 102.0 
(85.0–119.0)

99.0 
(81.0–117.0)

103.0 
(85.0–119.0)

Minimum Plate-
let Count

10^9/L 231.0 
(147.0–321.0)

219.0 
(140.0–303.0)

188.0 
(139.0–
243.0)

Abbreviation: SickKids: The Hospital for Sick Children; Peds: pediatrics; IQR: 
interquartile range



Page 5 of 9Guo et al. BMC Medical Informatics and Decision Making           (2024) 24:51 

coefficient, sensitivity, and specificity. Overall, diagno-
sis codes had high specificity (mean = 0.984, standard 
deviation (SD) = 0.026) but low sensitivity (mean = 0.203, 
SD = 0.158) and low Kappa (mean = 0.213, SD = 0.132) 
with lab-based labels. Compared to StanfordPeds, Sick-
Kids diagnosis-based labels had lower Kappa statistic and 
sensitivity, but higher specificity. Notably, the specificity 
results at SickKids exhibited less variation across out-
comes compared to StanfordPeds and StanfordAdults, 
particularly in the severe category.

Figure  3 plots the weighted proportions of positive 
diagnosis-based labels against the weighted proportions 
of positive lab-based labels for each hospital unit at Sick-
Kids and StanfordPeds. At StanfordPeds, units with a 
higher incidence of patients with lab-based labels also 
had higher incidence of patients with a positive diag-
nosis-based label for a clinical outcome, evidenced by 
Spearman r ranging from 0.513 (hyponatremia) to 0.871 
(neutropenia). In contrast, the Spearman r’s were gener-
ally lower at SickKids across all outcomes, ranging from 
0.010 (hypoglycemia) to 0.356 (anemia).

Table 3 Proportion of admissions with positive lab- and diagnosis-based labels by cohort
Severity* Outcome** SickKids StanfordPeds StanfordAdults Odds Ratio (99.9% CI)***
Number Admissions 59,298 24,639 159,985
Lab (Abnormal) AKI 4,553 (7.7%) 2,266 (9.2%) 41,761 (26.1%) 1.3 (1.1,1.4)

Hyperkalemia 5,475 (9.2%) 1,596 (6.5%) 9,790 (6.1%) 0.7 (0.6,0.8)
Hypoglycemia 3,006 (5.1%) 1,613 (6.5%) 12,161 (7.6%) 1.4 (1.2,1.5)
Hyponatremia 3,888 (6.6%) 4,141 (16.8%) 53,512 (33.4%) 2.9 (2.6,3.2)
Neutropenia 4,263 (7.2%) 1,804 (7.3%) 5,085 (3.2%) 1.0 (0.9,1.2)
Anemia 14,839 (25.0%) 10,496 (42.6%) 119,796 (74.9%) 2.4 (2.2,2.6)
Thrombocytopenia 10,667 (18.0%) 3,844 (15.6%) 44,636 (27.9%) 0.8 (0.7,0.9)

Lab (Mild) AKI 4,478 (7.6%) 3,461 (14.0%) 31,930 (20.0%) 1.8 (1.6,2.1)
Hyperkalemia 3,408 (5.7%) 1,848 (7.5%) 9,776 (6.1%) 1.3 (1.2,1.5)
Hypoglycemia 3,844 (6.5%) 2,197 (8.9%) 13,115 (8.2%) 1.5 (1.3,1.6)
Hyponatremia 6,169 (10.4%) 5,648 (22.9%) 66,559 (41.6%) 2.6 (2.4,2.8)
Neutropenia 4,868 (8.2%) 1,921 (7.8%) 5,099 (3.2%) 0.9 (0.8,1.1)
Anemia 21,232 (35.8%) 11,436 (46.4%) 114,488 (71.6%) 1.6 (1.5,1.7)
Thrombocytopenia 7,061 (11.9%) 3,844 (15.6%) 44,636 (27.9%) 1.4 (1.2,1.5)

Lab (Moderate) AKI 1,650 (2.8%) 1,550 (6.3%) 11,321 (7.1%) 2.1 (1.8,2.4)
Hyperkalemia 1,939 (3.3%) 1,137 (4.6%) 4,790 (3.0%) 1.4 (1.3,1.6)
Hypoglycemia 2,084 (3.5%) 1,178 (4.8%) 7,366 (4.6%) 1.4 (1.2,1.6)
Hyponatremia 885 (1.5%) 917 (3.7%) 15,027 (9.4%) 2.5 (2.1,3.0)
Neutropenia 3,346 (5.6%) 1,172 (4.8%) 2,850 (1.8%) 0.9 (0.7,1.0)
Anemia 17,039 (28.7%) 9,429 (38.3%) 91,276 (57.1%) 1.6 (1.4,1.7)
Thrombocytopenia 4,175 (7.0%) 2,349 (9.5%) 19,327 (12.1%) 1.4 (1.2,1.7)

Lab (Severe) AKI 616 (1.0%) 612 (2.5%) 5,804 (3.6%) 2.4 (1.9,2.9)
Hyperkalemia 810 (1.4%) 588 (2.4%) 1,331 (0.8%) 1.8 (1.5,2.1)
Hypoglycemia 1,088 (1.8%) 585 (2.4%) 4,042 (2.5%) 1.3 (1.1,1.6)
Hyponatremia 301 (0.5%) 269 (1.1%) 3,790 (2.4%) 2.1 (1.6,2.8)
Neutropenia 2,290 (3.9%) 635 (2.6%) 1,316 (0.8%) 0.7 (0.6,1.0)
Anemia 2,675 (4.5%) 1,912 (7.8%) 14,239 (8.9%) 1.8 (1.6,2.0)
Thrombocytopenia 2,328 (3.9%) 1,306 (5.3%) 7,189 (4.5%) 1.4 (1.2,1.7)

Diagnosis AKI 176 (0.3%) 1,139 (4.6%) 9,440 (5.9%) 15.1 (11.3,20.0)
Hyperkalemia 38 (0.1%) 353 (1.4%) 2,453 (1.5%) 18.4 (10.1,33.4)
Hypoglycemia 209 (0.4%) 412 (1.7%) 1,385 (0.9%) 4.3 (3.1,5.8)
Hyponatremia 388 (0.7%) 708 (2.9%) 5,219 (3.3%) 4.2 (3.4,5.2)
Neutropenia 776 (1.3%) 790 (3.2%) 1,572 (1.0%) 2.2 (1.7,2.7)
Anemia 974 (1.6%) 4,238 (17.2%) 30,935 (19.3%) 9.7 (8.3,11.3)
Thrombocytopenia 192 (0.3%) 2,132 (8.7%) 10,334 (6.5%) 14.8 (10.7,20.6)

* Abnormal, mild, moderate and severe according to Appendix 1 in Additional File 1. Abnormal means either above or below (not both) reference range

** Lab-based measure of acute kidney injury was hypercreatinemia

*** Odds ratio for SickKids vs. StanfordPeds obtained using mixed-effects logistic regression with each binary label as outcome, institution and pediatric age group 
as fixed effects, and subject as random intercept

Abbreviation: AKI: acute kidney injury; SickKids: The Hospital for Sick Children; Peds: pediatrics
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Fig. 2 Cohen’s Kappa, sensitivity, and specificity for diagnosis-based labels against lab-based labels
The figure shows median, interquartile range (shaded box) and range (whiskers)

 

Fig. 1 Odds of each label by whether the pediatric admission occurred at Stanford vs. SickKids
Figure shows odds ratio and 99.9% confidence interval showing odds of an abnormal label by institution. Dashed line indicates an odds ratio of 1. An odds 
ratio of > 1 corresponds to higher odds of assigning a positive label for StanfordPeds compared to SickKids. Odds ratios were obtained using mixed-effects 
logistic regression with each binary label as outcome, institution and pediatric age group as fixed effects and subject as random intercept
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Discussion
Our results showed that despite similar demographic 
characteristics, there were large differences between the 
two pediatric institutions in the proportion of admissions 
with diagnosis codes for the evaluated clinical outcomes. 
In addition, diagnosis-based labels generally had low 
agreement with lab-based labels and displayed low sen-
sitivity but high specificity when considering lab-based 
labels as the gold standard, with differences observed 
between the two institutions. In addition, we found dif-
ferences between the two institutions in terms of test 
ordering frequency and even laboratory test references 
ranges.

These results suggest that if machine learning mod-
els are intended for deployment at multiple institutions, 
reliance on diagnostic codes, either as feature or labels, 
could be problematic if institutions have different cod-
ing practices. Differences in diagnostic coding practices 
between countries, such as between Canada and the U.S., 
might also contribute to the observed variations. Second, 
they suggest that using institutional reference ranges to 
categorize laboratory test results may contribute to geo-
graphic dataset shift. This study contributes to the body 
of evidence that demonstrates the limitations of using 
diagnosis codes for outcome identification. Studies have 
reported low sensitivity rate when using diagnosis codes 
to identify, for example, acute kidney injury [23], obesity 
[24], and symptoms of coronavirus disease 2019 [25]. 
In addition, this study showed differences between and 
within institutions in diagnostic practice that may have 
contributed to the differences in the performance of diag-
nosis codes for outcome identification.

Diagnosis codes from the EHR are commonly queried 
during feature extraction [26–30], label creation [31], and 

cohort identification [32]. Heterogeneity in diagnostic 
practice across hospital units within the same institution 
(e.g., SickKids) can impact a model’s performance within 
sub-populations or spuriously associate certain units 
with the outcome of interest during model development. 
In addition, the cross-institution difference in diagnostic 
coding practice has implications for network studies as 
it violates the assumption that coding practice is compa-
rable across institutions and creates heterogeneity in out-
come prevalence as an artifact of code availability.

While we found that the proportions of positive lab-
based labels were more similar between pediatric institu-
tions, there were significant differences although smaller 
than that observed for diagnosis-based labels. Possible 
contributions were the observed differences in lab test-
ing frequency between the two pediatric institutions. In 
addition, the reference ranges themselves were different 
for tests with the same absolute interpretation regard-
less of where the test was conducted. For example, two 
hypothetical children with the same platelet count could 
be considered to have a normal test at one institution and 
an abnormal test at the second institution. Some Sick-
Kids reference ranges were based upon those established 
by the Canadian Laboratory Initiative on Pediatric Refer-
ence Intervals (CALIPER) initiative [33], which contrib-
uted to the disparity. Nonetheless, this has implications 
for machine learning models. First, it is common during 
feature processing to categorize lab test results as nor-
mal, high, and low based upon the reference range [26, 
34]. Having different reference ranges would thus pro-
duce different features despite having the same numeri-
cal value. Second, different reference ranges may impact 
downstream clinical decision making and variability of 
resultant clinical actions, for example procedures and 

Fig. 3 Agreement between diagnosis-based labels and lab-based labels across hospital units
The numbers on the x- and y- axis represent the weighted proportion of positive lab-based labels and positive diagnosis-based labels for each hospital 
unit visited during the admission. Spearman rho (r) was calculated based on the average across lab-based severity
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medication administrations. Since these actions will be 
recorded in the EHR, impact on clinical decision making 
can further worsen geographic dataset shift.

The strengths of this study include the ability to evalu-
ate multiple institutions in different countries and the 
involvement of clinician co-investigators who contrib-
uted to the identification of concepts to include in the 
various label definitions. However, this study is limited 
for several reasons. First, we only evaluated seven out-
comes. In addition, the outcomes were restricted to those 
that have lab-based definitions in order to use lab tests 
to develop gold standard labels. Outcomes that are more 
complex might require chart review to establish gold 
standards and more sophisticated electronic phenotyp-
ing approaches to reach reasonable performance [35, 36]. 
Next, our analyses were restricted to admissions within 
a relatively narrow time period (2018–2022). It might be 
useful to characterize practice differences over time as 
temporal distribution shift can negatively impact model 
performance over time [28, 37]. Finally, it is possible that 
differences in EHR implementation [38] and data trans-
formation processes between the institutions may have 
contributed to the observed variations.

Conclusion
In conclusion, across multiple outcomes, diagnosis codes 
were consistently different between the two pediatric 
institutions. This difference was not explained by dif-
ferences in test results. These results may have impli-
cations for machine learning model development and 
deployment.
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