
Julkaew et al. 
BMC Medical Informatics and Decision Making           (2024) 24:45  
https://doi.org/10.1186/s12911-024-02441-2

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Informatics and
Decision Making

DeepVAQ : an adaptive deep learning 
for prediction of vascular access quality 
in hemodialysis patients
Sarayut Julkaew1, Thakerng Wongsirichot2*, Kasikrit Damkliang2 and Pornpen Sangthawan3 

Abstract 

Background Chronic kidney disease is a prevalent global health issue, particularly in advanced stages requiring 
dialysis. Vascular access (VA) quality is crucial for the well-being of hemodialysis (HD) patients, ensuring optimal 
blood transfer through a dialyzer machine. The ultrasound dilution technique (UDT) is used as the gold standard 
for assessing VA quality; however, its limited availability due to high costs impedes its widespread adoption. We aimed 
to develop a novel deep learning model specifically designed to predict VA quality from Photoplethysmography (PPG) 
sensors.

Methods Clinical data were retrospectively gathered from 398 HD patients, spanning from February 2021 
to February 2022. The DeepVAQ model leverages a convolutional neural network (CNN) to process PPG sensor 
data, pinpointing specific frequencies and patterns that are indicative of VA quality. Meticulous training and fine-
tuning were applied to ensure the model’s accuracy and reliability. Validation of the DeepVAQ model was carried 
out against established diagnostic standards using key performance metrics, including accuracy, specificity, precision, 
F-score, and area under the receiver operating characteristic curve (AUC).

Result DeepVAQ demonstrated superior performance, achieving an accuracy of 0.9213 and a specificity of 0.9614. Its 
precision and F-score stood at 0.8762 and 0.8364, respectively, with an AUC of 0.8605. In contrast, traditional models 
like Decision Tree, Naive Bayes, and kNN demonstrated significantly lower performance across these metrics. This 
comparison underscores DeepVAQ’s enhanced capability in accurately predicting VA quality compared to existing 
methodologies.

Conclusion Exemplifying the potential of artificial intelligence in healthcare, particularly in the realm of deep learn-
ing, DeepVAQ represents a significant advancement in non-invasive diagnostics. Its precise multi-class classification 
ability for VA quality in hemodialysis patients holds substantial promise for improving patient outcomes, potentially 
leading to a reduction in mortality rates.
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Background
The number of end-stage kidney disease (ESKD) 
patients on hemodialysis (HD) has been rapidly increas-
ing worldwide and is accompanied by the high burden 
of HD vascular access (VA)-related complications. 
Globally, the HD patients comprise approximately 69% 
of all individuals receiving renal replacement therapy 
and 89% of those undergoing dialysis procedures [1]. 
In Southeast Asia, the prevalence rate (incidence per 
million persons) of HD patients is approximately 473.3 
compared with higher and lower income countries at 
305.8 and 167.5, respectively. The prevalence rates are 
expected to increase by 10% over five years [2, 3]. VA 
serves as a critical lifeline for HD patients, providing 
the necessary means for their dialysis treatment [4]. 
There are two commonly used types of VAs: AVF (Arte-
riovenous Fistula) and AVG (Arteriovenous Graft). AVF 
involves directly connecting an artery and a vein, while 
AVG utilizes a synthetic graft to establish the con-
nection. Maintaining a properly functioning VA is of 
utmost importance for effective HD management. Any 
malfunction in the VA can lead to dialysis insufficiency 
and significantly increase the morbidity and mortality 
risks for HD patients. Stenosis and thrombosis are the 
primary causes of VA dysfunction, necessitating timely 
detection and intervention to ensure the well-being and 
survival of HD patients [5].

The prevalent method for detecting VA stenosis 
and thrombosis in HD patients involves measuring 
VA blood flow via ultrasound dilution (VABF-UD), a 
technique considered the gold standard in HD treat-
ment. This method has notably improved patient care 
by facilitating timely interventions, maintaining VA 
functionality, and mitigating risks associated with inad-
equate dialysis [6, 7]. However, the broader applica-
tion of VABF-UD is constrained by factors such as cost 
and limited accessibility, particularly in developing or 
under-developed countries [8]. These barriers restrict 
its integration into routine clinical practice, limiting its 
benefits to a broader patient population.

In this study, we propose the utilization of low-cost 
PPG sensors, known for their effectiveness in captur-
ing biosignals, combined with a deep learning model 
based on fine-tuned parameters in a convolutional 
neural network (CNN) architecture called “DeepVAQ”. 
The resulting DeepVAQ model demonstrates remark-
able accuracy in early detection and prediction of VA 
quality in HD patients, offering a promising and effec-
tive approach for forecasting VA quality. This study 
contributes to the development of screening tests spe-
cifically tailored to evaluate VA quality in HD patients, 
enhancing early detection, patient care, and treatment 
outcomes.

Literature review
Recent advancements in monitoring health conditions 
and diagnosing diseases have increasingly capitalized on 
the integration of sensor technology with machine learn-
ing. Prominent among these technologies are Photop-
lethysmography (PPG) sensors, non-invasive devices that 
monitor blood volume variations in the vascular system 
[9]. These sensors function by detecting changes in light 
absorption or reflection, which facilitates the estimation 
of essential physiological parameters such as pulse rate, 
blood flow, and oxygen saturation. These parameters 
are crucial for non-invasive health monitoring [10, 11]. 
The application of wearable PPG sensors in healthcare 
has been extensively documented [12], particularly their 
utility in monitoring blood circulation changes, exem-
plified by their use in continuous heart rate monitoring. 
These sensors are also promising for the early detection 
of cardiovascular diseases and for real-time monitoring 
in clinical environments. The versatility of PPG sensors 
across various healthcare applications, including their 
use in vascular occlusion training, is well-established [13, 
14]. Advances in PPG signal analysis for biomedical pur-
poses have seen considerable progress, especially with 
the incorporation of sophisticated analytical methods 
and various sensor types. Deep learning algorithms, par-
ticularly the CNN-LSTM model applied to PPG signals, 
have shown to outperform other algorithms [15–17]. 
This highlights the potential for further research into 
model architectures, hyperparameters, and time–fre-
quency representations to refine PPG signal analysis. It is 
imperative to note the unique nature of vascular access 
in HD patients, which demands specialized consideration 
compared to other patient groups. While PPG sensors 
and deep learning techniques hold significant promise in 
healthcare, targeted research on their efficacy in evaluat-
ing VA quality for HD patients is scant. Advancing this 
line of inquiry is vital to harness the full capabilities of 
these technologies in enhancing HD patient care.

Methods
The experiment comprised two main sections: data col-
lection (a) and classification (b) as shown in Fig. 1.

Data Collection (a): Data were gathered from 398 
HD patients with both types of VA, Arteriovenous 
Fistula (AVF) and Arteriovenous Graft (AVG). The 
patient cohort included 246 males (61.81%) and 
152 females (38.19%), with ages ranging from 29 to 
90 years and an average age of 63 years. Among these 
patients, 155 (38.94%) had an AVG and 243 (61.06%) 
had an AVF. The VA locations were on the left arm 
for 276 patients (75.20%) and on the right arm for 91 
patients (24.80%), with 141 (36.34%) on the upper arm 
and 247 (63.66%) on the forearm. This demographic 



Page 3 of 11Julkaew et al. BMC Medical Informatics and Decision Making           (2024) 24:45  

and clinical information is detailed in Table 1. The data 
collection involved two sources: multiple PPG sensors 
(a1) and the VABF-UD machine (a2). For the PPG data 
collection, we employed the SEN0203 model PPG sen-
sors [18], equipped with the SON1303 IC/Module. 
Three PPG sensors were strategically placed over each 
patient’s VA site on the skin by expert staff specializing 
in VA, to ensure accurate positioning and data collec-
tion. This placement was standardized to ensure con-
sistent data quality, with sensors attached using pads, 
and the skin area was cleaned and prepared. The PPG 

sensors recorded signals for a continuous period of 
5  min before the patients’ dialysis sessions. Concur-
rently, VABF data (ml/min) were collected from the 
patients using a device manufactured by Transonic 
Systems Inc [19] during their dialysis procedures.

Classification Model (b): In this section, DeepVAQ 
was constructed by conducting a series of experiments 
with different parameter settings. Each experiment 
underwent comprehensive evaluation using multiple 
performance measurements to identify the optimal 
parameters for the proposed model.

In previous studies [20, 21], researchers have estab-
lished optimal criteria for detecting stenosis and 
thrombosis. Among the various measurement tech-
niques, the VABF (vascular access blood flow) standard 
has been identified as the most effective predictor of 
impending stenosis and thrombosis. We utilized a com-
bination of the aforementioned VABF criteria to clas-
sify the dataset and predict the quality of VA. Through 
the use of statistical methods [22], we determined the 
range of VABF rates associated with different VA qual-
ity classes, which are summarized in Table 2.

The classification allows for the identification of VA 
conditions associated with a high chance of stenosis 
and thrombosis (Class 1), as well as those prone to such 
complications (Class 2). Additionally, it distinguishes 
between VA with good (Class 3), high (Class 4), and 
excellent (Class 5) quality.

Fig. 1 Research experimental design

Table 1 Demographic and clinical characteristics of HD patients

Variable Category HD patients (n) HD patients (%)

Gender Male 246 61.81%

Female 152 38.19%

Age Maximum 90

Minimum 29

Average 63

Type of Vascular Access AVG 155 38.94%

AVF 243 61.06%

Arm Left 276 75.20%

Right 91 24.80%

Location on arm Upper arm 141 36.34%

Forearm 247 63.66%
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Datasets and preprocessing
According to Fig. 2, PPG sensors were utilized to gather 
data from HD patients, resulting in a total of 27,000 
measurements (9,000 values per sensor) in a 1D-format-
ted data representation. This corresponds to an approx-
imate sampling rate of 30 values per second. To ensure 
consistent scaling of the features, the raw dataset was 
normalized using the min–max method, which rescales 
the values between 0 and 1 [23]. The normalization pro-
cess is governed by Eq. (1):

where Xmn denotes minimum value, Xm denotes maxi-
mum value, Xi denotes input value, and X

′

 denotes nor-
malized data.

To mitigate noise from the PPG sensors, we employed a 
Kalman filter, which utilizes a linear estimator to estimate 
the value of an unknown variable over time by consider-
ing previous data and weighing it against the actual data 
[24]. Applying the Kalman filter significantly enhances 
the accuracy and reliability of the PPG sensor data.

(1)x
′

=
xi − xmn

xm − xmn

To facilitate the classification process, the PPG sen-
sor data was assigned labels based on five distinct 
classes corresponding to the range of VA quality, as 
presented in Table  2. These classes serve as reference 
points for categorizing the VA quality based on the 
specific range of values associated with the PPG sensor 
measurements.

The collected dataset initially had an imbalance, 
which could introduce bias and impact prediction 
accuracy. To address this issue and avoid overfitting, we 
employed the Synthetic Minority Oversampling Tech-
nique (SMOTE) [25]. SMOTE, a widely used method, 
creates new synthetic samples for the minority class by 
utilizing a k-nearest neighbor algorithm. By augment-
ing the representation of the minority class with these 
synthetic samples, we aimed to rebalance the dataset 
and improve the model’s predictive capabilities for both 
majority and minority classes. This adjustment through 
SMOTE ensured a more balanced representation of 
each class in the dataset, reducing bias and enhancing 
overall performance. As a result, all classes consisted of 
125 samples, resulting in a total of 625 samples in the 

Table 2 Classification of VA Quality based on VABF Rate

Class VA quality VABF rate Minimum (ml/
min)

VABF rate Maximum (ml/
min)

Description

1 Poor 0 450 High chance of VA stenosis and thrombosis

2 Below Medium 451 900 Prone to VA stenosis and thrombosis

3 Medium 901 1,350 Good VA quality

4 Good 1,351 1,800 High VA Quality

5 Excellent ≥ 1,801 Highest VA Quality

Fig. 2 Dataset and preprocessing
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dataset. Table  3 presents the number of samples for 
each class before and after the application of SMOTE.

We further partitioned the dataset into training and 
testing sets using a 70:30 ratio. The training set, com-
prising 70% of the data, was used for model training and 
parameter optimization. The remaining 30% of the data 
was reserved for evaluating the trained model’s perfor-
mance on unseen samples.

Table 4 illustrates the distinct waveforms of VA quality 
data captured by the PPG sensor. The waveforms exhibit 
intricate and diverse patterns within a frequency range of 
0–300. These patterns vary significantly across different 
classes, highlighting the complexity and uniqueness of 
each VA quality category.

DeepVAQ model construction
The construction of the DeepVAQ model employed in 
this study can be described as a highly sophisticated and 
intricate model as show in Fig. 3, surpassing the simplic-
ity of CNN architectures. It stands out due to its exten-
sive complexity and advanced design elements. One 
notable aspect is the utilization of two layers of 1D-CNN, 
which significantly enhances its capacity to extract mean-
ingful features which are then converted into vectors 
based on Eq.  (2). By incorporating multiple filters such 
as {8, 16, 32} and varying kernel sizes {3, 5, 7} [26, 27], 
the model becomes capable of capturing a wide range of 
intricate patterns and nuanced details present in the data.

Table 3 Classes distribution before and after SMOTE sampling

Class VA quality Number of samples

Before SMOTE After SMOTE

1 Poor 22 125

2 Below Medium 125 125

3 Medium 108 125

4 Good 55 125

5 Excellent 28 125

Table 4 Waveform of VA quality data from PPG sensor

Class VA quality Waveform

1 Poor

2 Below Medium

3 Medium

4 Good

5 Excellent
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Where x is the input to the convolution layer of length 
n, h the kernel of length k, and s represents the kernel 
window shift positions (number of strides) after each 
convolution.

The DeepVAQ model’s sophistication is enhanced 
through customized parameter tuning. The selection 
of appropriate filters and kernel sizes optimizes feature 
extraction, which is crucial for discerning and classify-
ing diverse data patterns. The incorporation of the Leaky 
ReLU activation function [28] introduces a small negative 
slope for negative inputs, thereby improving the model’s 
ability to handle complex data patterns. The model is 
further optimized using the Adam optimizer [29]. This 
algorithm adapts the learning rate based on the gradient 
of the loss function, promoting faster convergence and 
improved performance. The dynamic adjustment of the 
learning rate by the Adam optimizer aids in efficiently 
navigating the loss landscape, optimizing parameter val-
ues for better training outcomes.

Within its convolutional architecture, DeepVAQ incor-
porates max pooling and dropout layers. Max pooling, 
with a 2 × 2 size, reduces the dimensionality of the feature 

(2)

y(n) =
k
i=0 x(n+ i)h(i) ifn = 0.

k
i=0x(n+ i + (s − 1))h(i), otherwise.

maps, focusing on important features. The inclusion of a 
dropout layer, set at a rate of 0.5, acts as a regularization 
technique. It prevents overfitting by randomly dropping 
neuron outputs during training, thereby enhancing the 
model’s generalization and adaptability to varied datasets.

The classification layers of the model are instrumen-
tal for multi-class classification. These layers consolidate 
feature vectors from preceding layers into a synthesized 
form for processing in a dense layer, which is pivotal for 
final classification. The use of the one-hot encoding tech-
nique [30] ensures accurate differentiation among the five 
VA quality classes.

In the training process, the DeepVAQ model utilizes 
the cross-entropy loss function [31], a widely-accepted 
measure for multi-class classification tasks. This loss 
function quantifies the dissimilarity between the pre-
dicted class probabilities and the actual ground truth 
labels, serving as a crucial metric for evaluating the mod-
el’s performance and guiding the optimization process. 
The number of training epochs is strategically set to bal-
ance the model’s complexity and efficiency.

DeepVAQ model evaluation
The DeepVAQ model utilized a ten-fold cross-valida-
tion approach on the test set to validate its performance 
across multiple iterations, enhancing the reliability of the 

Fig. 3 Convolution neural network architecture
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results. The evaluation metrics included accuracy, sensi-
tivity, specificity, precision, and F-score, which are com-
monly used classification performance measurements 
[32]. These metrics provide a comprehensive assessment 
of the model’s predictive capabilities and its ability to cor-
rectly classify different VA quality classes. The evaluation 
was conducted on the test set, and the mean and stand-
ard deviation of the performance measurements are pre-
sented in Table 5.

The development of the DeepVAQ model was built 
using the Keras high-level API [33] in Python, providing 
a powerful and user-friendly framework for deep learn-
ing. The experiments were conducted on a robust com-
putational infrastructure, featuring an Intel Core i7-7700 
processor with a clock speed of 3.60 GHz, 16-GB DDR4 
RAM, and a 512-GB solid-state drive (SSD). Comple-
menting the hardware, an NVIDIA Quadro-620 GPU 
with 2-GB GDDR5 memory was employed for efficient 
processing of the complex computations involved in 
model training and evaluation.

Results
The DeepVAQ model was evaluated through a series of 
experiments, where different parameter settings, fil-
ter sizes, and kernel sizes were tested. In each experi-
ment, the filter sizes (i) were set to 8, 16, and 32, while 

the kernel sizes (j) were set to 3, 5, and 7. The results of 
these experiments are presented in Table  6. Among all 
the experiments, exp((16,5)) achieved the highest average 
performance across all measurements, with an accuracy 
of 0.9106 ± 0.08, sensitivity of 0.7768 ± 0.17, specificity 
of 0.9441 ± 0.07, precision of 0.7984 ± 0.22, F-Score of 
0.7829 ± 0.18, and AUC of 0.8605 ± 0.11. A comprehen-
sive overview of the performance stands out as the best 
performing experiment, demonstrating the effective-
ness of the DeepVAQ model in accurately classifying VA 
quality.

Figure  4 illustrates the relationship between the fil-
ter sizes and the validation accuracy and loss. It can be 
observed that as the filter size increases, the validation 
accuracy improves, reaching a value of 0.8, while the vali-
dation loss decreases to 0.7.

The performance of the DeepVAQ model at the config-
ured parameter setting of  exp(16,5) was evaluated for each 
VA quality class. The results, summarized in Table  7, 
demonstrate the accuracy, sensitivity, specificity, preci-
sion, and F-Score achieved by the model for each class. 
For class 1, the model achieved an accuracy of 0.9894, 
high sensitivity (0.9474) and specificity (1.0000), precise 
predictions (precision of 1.0000), and a balanced F-Score 
of 0.9730. Class 4 also had notable results, with an accu-
racy of 0.9574, sensitivity of 0.8421, specificity of 0.9867, 
precision of 0.9412, and an F-Score of 0.8889. Addition-
ally, class 5 exhibited exceptional accuracy of 0.9947, sen-
sitivity of 0.973, specificity of 1.0000, precision of 1.0000, 
and an F-Score of 0.9863. Although classes 2 and 3 had 
relatively lower accuracies (0.8404 and 0.8245, respec-
tively), the model still demonstrated reasonable perfor-
mance in differentiating these classes.

To assess the performance of DeepVAQ, we utilized 
ROC curves and calculated the AUC (Area Under the 
Curve). Figure 5 illustrates the ROC curve for the Deep-
VAQ model across multiple classifications. The AUC 

Table 5 Performance measurements

TP True Positive, TN True Negative, FP False Positive, FN False Negative

Performance measurements Formula

Accuracy (TP + TN)/(TP + FP + TN + FN)

Sensitivity TP/(TP + FN)

Specificity TN/(TN + FP)

Precision TP/(TP + FP)

F-Measure (2× Precision× Recall)/

(Precision+ Recall)

Table 6 Performance measurements for different experiments

a  Best classification result

Experiment
exp(i,j)

Accuracy Sensitivity Specificity Precision F-Score AUC Loss validation

exp(8,3) 0.9021 +—0.09 0.7558 +—0.20 0.9388 +—0.07 0.7698 +—0.24 0.7610 +—0.22 0.8473 +—0.13 1.2521 +—1.02

exp(8,5) 0.8915 +—0.11 0.7267 +—0.37 0.9320 +—0.13 0.7391 +—0.28 0.6996 +—0.35 0.8294 +—0.18 1.4008 +—1.90

exp(8,7) 0.8851 +—0.12 0.7111 +—0.36 0.9280 +—0.15 0.7957 +—0.29 0.6939 +—0.33 0.8196 +—0.18 1.4810 +—1.85

exp(16,3) 0.8745 +—0.07 0.6863 +—0.27 0.9215 +—0.03 0.6681 +—0.17 0.6704 +—0.22 0.8039 +—0.14 1.6079 +—1.40

exp(16,5)
a 0.9106 +—0.08a 0.7768 +—0.17a 0.9441 +—0.07a 0.7984 +—0.22a 0.7829 +—0.18a 0.8605 +—0.11a 1.1441 +—0.86a

exp(16,7) 0.9000 +—0.10 0.7512 +—0.25 0.9376 +—0.08 0.7655 +—0.25 0.7490 +—0.25 0.8444 +—0.15 1.2754 +—1.30

exp(32,3) 0.8830 +—0.11 0.7077 +—0.23 0.9269 +—0.07 0.7287 +—0.28 0.7169 +—0.26 0.8173 +—0.16 1.4985 +—1.19

exp(32,5) 0.8915 +—0.11 0.7300 +—0.25 0.9323 +—0.09 0.7582 +—0.29 0.7335 +—0.26 0.8311 +—0.15 1.3840 +—1.30

exp(32,7) 0.9021 +—0.09 0.7560 +—0.19 0.9388 +—0.07 0.7794 +—0.25 0.7635 +—0.21 0.8474 +—0.13 1.2506 +—0.98
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Fig. 4 Validation accuracy and loss in exp(16,5)

Table 7 Performance measurements for DeepVAQ model at exp(16,5)

Approach Class Accuracy Sensitivity Specificity Precision F-Score

DeepVAQ model 1 0.9894 0.9474 1.0000 1.0000 0.9730

2 0.8404 0.5405 0.9139 0.6061 0.5714

3 0.8245 0.7105 0.8533 0.5510 0.6207

4 0.9574 0.8421 0.9867 0.9412 0.8889

5 0.9947 0.973 1.0000 1.0000 0.9863

Fig. 5 ROC curve for DeepVAQ
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value provides an indication of the model’s predictive 
capability, with a higher value suggesting better predic-
tion accuracy. In our evaluation, each class achieved a 
true positive rate exceeding 0.5. The position of the ROC 
curve closest to the upper-left corner represents a bal-
ance between high sensitivity and specificity, indicating 
an optimal classification performance. This effectively 
distinguished between different VA quality classes, dem-
onstrating its ability to accurately identify true positives 
and true negatives.

The confusion matrix, displayed in Fig.  6, provides a 
comprehensive assessment of the proposed DeepVAQ 
model. It offers valuable insights into the model’s per-
formance on the testing data, consisting of 125 records 
in the test set. The predictions obtained on the test set 
closely align with the training phase results, highlighting 
the model’s consistency.

Figure  6 illustrates the confusion matrix, where each 
column represents the assigned VA quality labels, and 
each row corresponds to the true values. The highlighted 
colors within the matrix signify correct predictions, dem-
onstrating the model’s accuracy in classifying the VA 
quality classes. Notably, class 1 and class 5 achieved flaw-
less predictions, with all samples correctly identified.

The demonstrates high accuracy in predicting VA qual-
ity, particularly in classifying VA quality class 1 as "Poor" 
and class 5 as "Excellence". Class 1, representing the 
"Poor" state, indicates a high chance of VA stenosis and 
thrombosis, making it clinically significant. The model’s 
accuracy in class 5 reflects its ability to identify the high-
est VA quality. These findings highlight the DeepVAQ 

model’s effectiveness in distinguishing between different 
levels of VA quality, enabling clinicians to make informed 
decisions based on the predicted VA quality. The model 
shows promise in identifying patients at higher risk and 
assessing overall VA quality.

Discussion
The empirical evidence presented in this study confirms 
the DeepVAQ model’s exceptional capability in clas-
sifying VA quality in HD patients. Our comprehensive 
comparative analysis, detailed in Table  8, demonstrates 
DeepVAQ’s superior performance metrics against estab-
lished machine learning models, including Decision Tree 
[34], Naive Bayes [35], Support Vector Machine (SVM) 
[36], and k-Nearest Neighbors (kNN) [37]. These find-
ings are not merely academic but carry profound impli-
cations for clinical practice. DeepVAQ’s high accuracy 
and precision in non-invasive VA quality monitoring can 
potentially transform patient management, reducing the 
reliance on invasive procedures and facilitating proactive 
healthcare strategies.

Acknowledging the limitations of our research, we rec-
ognize that the controlled test conditions of our study 
may not fully encapsulate the complexities of real-world 
clinical environments. Future studies are required to vali-
date DeepVAQ in diverse clinical settings, ensuring its 
efficacy across a broader patient population. Addition-
ally, while our model exhibits robustness in classification, 
the overlap observed between classes 2 and 3 necessi-
tates further refinement of the model’s discriminative 
power. Advanced noise reduction and feature selection 

Fig. 6 Confusion matrix of DeepVAQ for each class of HD patients
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techniques, such as Recursive Least Square (RLS) and 
Least Mean Square Error (LMS), will be pivotal in 
addressing this challenge.

The potential for AI and machine learning to revo-
lutionize the field of HD patient care is unmistakable. 
DeepVAQ stands as a testament to this potential, paving 
the way for integrating such models into routine clinical 
practice, enhancing patient-centered care, and setting a 
new benchmark in the management of vascular access.

Conclusions
The proposed DeepVAQ model demonstrates success-
ful classification of VA quality in HD patients by uti-
lizing multiple PPG sensors. It was developed using a 
customized hyperparameter setting within the CNN 
architecture, DeepVAQ achieved superior classification 
performance when compared to other machine learning 
models, as evidenced by its highest scores across vari-
ous performance measurements. This approach offers a 
non-invasive and cost-effective means of predicting VA 
quality, which could potentially be accessible to the wider 
public. The findings highlight the potential of DeepVAQ 
as a promising tool for early detection of VA quality 
deterioration in HD patients. By accurately classifying 
VA quality, this model has the potential to greatly ben-
efit the quality of life for HD patients worldwide. While 
DeepVAQ performed exceptionally well overall, further 
enhancements can be explored to improve its ability to 
differentiate between closely related classes, specifically 
classes where some overlap was observed.

Abbreviations
VA  Vascular access
ESKD  End-stage kidney disease
HD   Hemodialysis
VABF-UD  VA blood flow using ultrasound dilution
PPG  Photopletysmography
CNN  Convolutional neural network
DeepVAQ   Deep learning for prediction of vascular access quality in hemo-

dialysis patients
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