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Abstract 

Objective Acute kidney injury (AKI) is a clinical syndrome that occurs as a result of a dramatic decline in kidney func-
tion caused by a variety of etiological factors. Its main biomarkers, serum creatinine and urine output, are not effective 
in diagnosing early AKI. For this reason, this study provides insight into this syndrome by exploring the comorbidities 
of AKI, which may facilitate the early diagnosis of AKI. In addition, organ crosstalk in AKI was systematically explored 
based on comorbidities to obtain clinically reliable results.

Methods We collected data from the Medical Information Mart for Intensive Care-IV database on patients aged ≥ 
18 years in intensive care units (ICU) who were diagnosed with AKI using the criteria proposed by Kidney Disease: 
Improving Global Outcomes. The Apriori algorithm was used to mine association rules on the diagnoses of 55,486 AKI 
and non-AKI patients in the ICU. The comorbidities of AKI mined were validated through the Electronic Intensive Care 
Unit database, the Colombian Open Health Database, and medical literature, after which comorbidity results were 
visualized using a disease network. Finally, organ diseases were identified and classified from comorbidities to investi-
gate renal crosstalk with other distant organs in AKI.

Results We found 579 AKI comorbidities, and the main ones were disorders of lipoprotein metabolism, essential 
hypertension, and disorders of fluid, electrolyte, and acid-base balance. Of the 579 comorbidities, 554 were verifi-
able and 25 were new and not previously reported. In addition, crosstalk between the kidneys and distant non-renal 
organs including the liver, heart, brain, lungs, and gut was observed in AKI with the strongest heart-kidney crosstalk, 
followed by lung-kidney crosstalk.

Conclusion The comorbidities mined in this study using association rules are scientific and may be used for the early 
diagnosis of AKI and the construction of AKI predictive models. Furthermore, the organ crosstalk results obtained 
through comorbidities may provide supporting information for the management of short- and long-term treatment 
practices for organ dysfunction.
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Background
Acute kidney injury (AKI) is a clinical syndrome that 
affects multiple organs and systems and has a serious 
impact on patient prognosis [1]. Globally, the in-hospital 
prevalence of AKI is 10-15%, while in intensive care unit 
(ICU) patients, it is over 50% [2]. Even if AKI occurs and 
then goes into remission, it may progress to chronic kid-
ney disease (CKD) and end-stage renal disease  (ESRD), 
requiring long-term dialysis treatment and resulting 
in longer hospital stays and higher medical costs [3]. In 
addition, the global burden of AKI-related mortality far 
exceeds that of mammary cancer, heart failure, and dia-
betes and has remained high over the past decades [4]. 
As a result, AKI is considered a worldwide public health 
problem with a high incidence, high mortality rates, and 
high health economic costs [1–4].

There is no effective treatment for AKI, but early diag-
nosis can minimize kidney damage and promote kidney 
function recovery. However, the main markers of AKI, 
serum creatinine (Scr) and urine output (Uo), are not 
effective in diagnosing early AKI [5]. Hence, additional 
information is urgently needed to aid in the early diag-
nosis of AKI to allow for early intervention. There have 
been many studies exploring potential biomarkers for 
more sensitive and earlier reflection of renal impairment 
(e.g., cystatin C, interleukin-18, etc.) [6]. However, the 
focus of this study is to explore the comorbidities of AKI. 
Analyzing and exploring the relationship between dis-
eases is known as comorbidity analysis [7]. Comorbidity 
analysis has offered a new approach to disease diagnosis 
by investigating disease associations [8]. There is grow-
ing evidence of a high comorbidity burden of AKI, yet 
existing research efforts have focused on one disease or 
several diseases commonly. For example, Dylewska et al. 
[9] reviewed the medical documentation on patients 
with AKI and found that hypertension was common in 
AKI patients. Hapca et  al. [10] evaluated the interplay 
between AKI and CKD in patients with diabetes using 
observational studies and showed that the development 
of both diabetes and CKD increased the risk of AKI. 
Recently, Clercq et  al. [11] explored the cardiovascular 
disease consequences of AKI using systematic evalua-
tion and meta-analysis and showed that patients with 
AKI were at higher risk of atrial fibrillation, heart fail-
ure, acute coronary syndrome and major adverse cardiac 
events. To our knowledge, no studies have systematically 
explored the comorbidity patterns of AKI. Studies have 
shown that association rule mining can be used to dis-
cover interesting associations hidden in large datasets 
[12]. Therefore, this thesis uses a new approach applying 
association rule mining to comprehensively explore pos-
sible comorbidities in AKI through information from the 
Electronic Health Records (EHR) of AKI patients. Such 

an exploration may provide a new insight into the comor-
bidities of AKI and may help to discover previously uni-
dentified relationships among diseases.

The increasing scale of administrative data on patient 
admissions and discharges currently provides an unprec-
edented opportunity to assess comorbidity patterns in 
AKI. Patient diagnostic data contained in administrative 
datasets, which usually carries a large amount of health 
information in the form of standardized International 
Classification of Diseases (ICD) codes, has more available 
clinical resources, and is more economically viable [13]. 
ICD codes have great potential for understanding comor-
bidities. To this end, the primary objective of this study 
was to explore the comorbidity pattern of AKI using 
ICD-10 codes. In addition, we constructed a disease net-
work (DN) based on comorbidity results obtained using 
ICD-10. DNs are a network structure that can be used to 
reveal potential links between diseases with similar char-
acteristics, providing a theoretical and practical basis for 
a deeper understanding of disease relationships and pro-
moting personalized medicine [14].

In addition, the results on comorbidity would allow 
us to gain further insights into organ crosstalk in AKI. 
Studies have shown that AKI can be triggered by distant 
non-renal organs, or it can lead to multiple organ failure 
in distant non-renal organs, resulting in organ cross-
talk. Crosstalk between the kidney and distant non-renal 
organs of the liver, heart, brain, lung, and gut in AKI has 
been reported, but most evidence for crosstalk between 
these has been obtained from animal models [15–19], 
whereas observations in humans have come from a lim-
ited number of participants or have focused only on 
cytokine levels rather than clinically reliable outcomes 
[20]. Therefore, this study also aimed to systematically 
investigate crosstalk between the kidney and other dis-
tant non-renal organs based on AKI comorbidities results 
to obtain reliable clinical results of organ crosstalk.

Methods
Data introduction
This study involved three databases: the Medical Infor-
mation Mart for Intensive Care (MIMIC)-IV, the Elec-
tronic Intensive Care Unit (eICU), and the Columbia 
Open Health Data (COHD). MIMIC-IV was used for 
data analysis, while eICU and COHD served as pivotal 
resources for validating the results of the analyses.

MIMIC‑IV
MIMIC-IV records data related to patients admitted to 
the ICU or emergency department at the Beth Israel Dea-
coness Medical Center between 2008 and 2019 and has 
medical health data and records for more than 380,000 
inpatients, including approximately 53,000 patients in 
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the ICU. MIMIC-IV provided information on patient 
vital signs, medication management, laboratory measure-
ments, diagnostic codes, and more [21]. The main data 
used in this study were laboratory measurements and 
diagnostic codes for ICU patients over the full period 
of the study dataset. Patients’ diagnoses in the database 
were presented as either version 9 or version 10 of the 
ICD.

eICU
eICU is made up of ICU data from many hospitals in 
the United States, including routine data collected from 
more than 200,000 patients admitted to ICUs in 2014 
and 2015, and has a wealth of high-quality clinical infor-
mation, including vital signs, laboratory measurements, 
diagnosis, and more [22]. The primary data utilized were 
laboratory measurements and diagnoses for all patients 
throughout the validation dataset period, where diagno-
ses are presented in the form of ICD codes.

COHD
COHD is the Observational Health Data Science and 
Informatics database at the Columbia University Irving 
Medical Center. The database contains 36,578 single 
concepts and 32,788,901 concept pairs from 5,364,781 
patients. It provided public access to EHR prevalence and 
disease co-occurrence frequencies by diseases, drugs, 
procedures, and demographics [23]. This study used the 
diagnoses and services provided by the database.

Data preparation
From laboratory measurements of ICU patients, Scr and 
Uo were extracted for their ICU stay. AKI was diagnosed 
and staged according to criteria proposed by Kidney 
Disease: Improvement Global Outcomes (KDIGO) cri-
teria based on Scr and Uo (Table  1) [24]. In this study, 
31,373 AKI patients were identified by definition and 
their diagnoses were extracted for the period of hospitali-
zation corresponding to when they were identified with 
AKI. The extracted data were processed using the follow-
ing methods: 1) As the ICD-10 codes recommended by 

the World Health Organization have been widely used 
in the diagnosis of diseases in hospitals, the diagnostic 
information was represented consistently using ICD-10 
codes (ICD-9 codes have been mapped to ICD-10 codes 
in the diagnosis) [25]. 2) V01-Y98 (external causes of 
morbidity and mortality) and Z00-Z99 (factors influenc-
ing health status and contact with health services) were 
removed from the patient’s ICD-10 codes, as there may 
be differences in the criteria for these two categories 
of codes between countries, which could cause bias in 
international comparisons [26]. 3) After excluding ICD-
10 codes according to Step 2), patients with at least two 
valid ICD-10 codes were selected, since the study is about 
associations between diseases where patients with no or 
only one ICD-10 code do not provide value to the study. 
As shown in Fig. 1, the final number of patients with AKI 
included in the analysis after applying the screening and 
exclusion criteria was 31,359. However, it was not pos-
sible to determine whether the comorbidities obtained 
differed between AKI and non-AKI patients if only AKI 
patients were analyzed. Therefore, the data analyzed 
included ICD-10 codes of 55,486 adult patients with AKI 
and non-AKI. ICD-10 codes can be divided into three 
levels of affiliation: category, suborder, and detail. The 
first three digits of the code being the category, such as 
S52 for fracture of the forearm; The first four digits being 
the suborder, such as S52.0 for fracture of the upper end 
of the ulna; Four or more digits being the detail, such as 
S52.01 for torus fracture of the upper end of the ulna. 
The first three digits of the ICD-10 code can already basi-
cally indicate a specific disease, and more detailed data 
are not conducive to the presentation of comorbidities, as 
the number of records with the same disease code is sub-
stantially reduced, which is not conducive to uncovering 
comorbidity patterns of general significance. Therefore, 
we used the top three digits (categories) of the ICD-10 as 
the analysis data.

Statistical analysis
Demographic characteristics (sex, age, and ethnicity) of 
AKI and non-AKI were compared using chi-square tests. 

Table 1 Measurements used to define and stage AKI

Scr Uo

AKI ≥ 0.3 mg/dl ( ≥ 26.5 µmol/l) increase within 48 hours, or ≥ 1.5 times baseline, which is known 
or presumed to have occurred within the prior 7 days

<0.5 ml/kg/h for 6 hours

Stage 1 1.5-1.9 times baseline, or ≥ 0.3 mg/dl (26.5 µmol/l) increase <0.5 ml/kg/h for 6-12 hours

Stage 2 2.0-2.9 times baseline <0.5 ml/kg/h for ≥ 12 hours

Stage 3 ≥ 3.0 times baseline, or increase in creatinine to ≥ 4.0 mg/dl (353.6 µmol/l) <0.3 ml/kg/h for ≥ 24 
hours, or anuria for ≥ 12 
hours
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To facilitate the study, patients divided into three groups 
according to age, i.e., youth (18-35 years of age), mid-
dle age (36-59 years of age), and old age ( ≥ 60 years). In 
addition, the diagnostic information of AKI patients was 
statistically analyzed and visualized in this study. Signifi-
cance of differences between subgroups was compared 
using t-tests (continuous variables), ANOVA (continu-
ous variables) and chi-square tests (discrete variables). 
A value of p < 0.05 was considered to be statistically 
significant.

Disease rules mining
Association rule mining is used to discover interesting 
itemset associations hidden in large datasets that are 
usually represented in the form of association rules or 
frequent itemsets. In general, if there is an association 
between two or more transactions, the occurrence of 
one transaction can predict the occurrence of the other 
transactions associated with it [12]. Therefore, the results 
of association rule mining can often be used to build 
predictive models. The aim of this study is to mine asso-
ciation rules for diseases by frequent 2-itemset. Apriori 

algorithm can obtain frequent binomial sets based on 
frequent 1-itemset, while FP-growth algorithm must first 
aggregate all frequent sets before filtering the frequent 
2-itemset. In other words, Apriori algorithm is more effi-
cient at obtaining frequent 2-itemset. Therefore, we used 
Apriori algorithm for comorbidity mining.

In this study, three indicators support (sup), kulczynski 
(kulc), and lift (sup:8; kulc:0; lift:1) were used to measure 
the degree of association of comorbidity pairs. The for-
mulas for the three indicators are as follows [27].

sup(A → B) represents the proportion of records 
with concurrent disease A and B to the total diagnos-
tic records; that is, the probability that A and B occur 
together.
kulc(A, B) represents the mean value of the confidence 

with diseases A and B as conditions and is used to meas-
ure the reliability of A and B as comorbidities of each 
other.
lift(A → B) represents the ratio of the probability of 

occurrence of disease B in a record containing disease A 
to the probability of occurrence of disease B itself and is 
used to measure the relevance of A and B.

Comorbidities verification
To demonstrate the scientific validity of mined AKI 
comorbidities, the results were validated primarily using 
the eICU and the COHD. In addition, medical literature 
reviewed by Google Scholar and Pubmed was used as an 
aid to validate in this study.

First validated using a large publicly available eICU 
database. The same methods were used here to process 
and analyze the eICU data. Firstly, 52,869 adult AKI 
patients were recruited from the eICU according to the 
KDIGO criteria (Table  1), and diagnostic information 
was obtained for a total of 95,428 patients including 
adult non-AKI patients. Secondly, the data was processed 
and then mined for association rules using Apriori algo-
rithms. Finally, mining results from the eICU (Sup-
plementary Table  1) were compared with those from 
MIMIC-IV. If comorbidity pairs mined in MIMIC-IV 
are also present in the eICU upon enquiry, comorbid-
ity pairs can be proven by the eICU. For example, N17 
(acute kidney injury) and I10 (essential hypertension) 
were an interesting comorbidity pair from the MIMIC-IV 

(1)sup(A → B) = P(A ∪ B)

(2)kulc(A,B) =
P(A|B) + P(B|A)

2

(3)lift(A → B) =
P(B|A)

P(B)
=

P(A ∪ B)

P(A) ∗ P(B)

Fig. 1 Study flowchart. Flowchart depicts the number of acute 
kidney injury patients included in the analysis after the exclusion 
criteria
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database, which was also one of the results of eICU min-
ing. Then the comorbidity pair (N17, I10) could be con-
firmed by the eICU.

The second proving method used the publicly accessi-
ble COHD. It provides direct access to the comorbidity 
pair analysis results (Chi-square, relative frequency, and 
observed-expected frequency ratio) [28], thus enabling 
validation of the results of this study. However, the dis-
ease codes used for COHD analysis are the Observa-
tional Medical Outcomes Partnership Common Data 
Model concept ID, which are different from the ICD-10 
codes used in this study. Therefore, the mapping tool [29] 
provided by COHD was used to map ICD-10 to OMOP 
concept ID (Supplementary Table  2). For validation of 
the comorbidity results, chi-square tests were used. If 
a comorbidity pair was present in COHD and was sig-
nificant (p < 0.05), the comorbidity pair was considered 
true. However, not all ICD-10 codes exactly matched 
the OMOP concept ID. Therefore, match validation was 
divided into three steps. For purposes of argument, the 
first three and four digits of ICD-10 were referred to as 
ID-3 and ID-4, respectively, and five or more digits were 
referred to as ID-5. First, matching was performed using 
comorbidity ID-3. COHD was used for direct valida-
tion of ID-3 that could be matched to OMOP Concept 
ID. Second, the mismatch ID-3 for each patient in the 
comorbidity analysis dataset was replaced with its cor-
responding ID-4 and association rule mining was per-
formed again using the replaced dataset. For example, 
S09 could not be matched and a patient’s original diag-
nostic code had S09.11 and S09.31, S09.1 and S09.3 were 
used to replace S09 for that patient. The comorbidity ID-4 
obtained from the analysis was then matched and proven. 
If any ID-4 could be proven as comorbidity by COHD, its 

corresponding ID-3 was also proven as comorbidity. For 
example, as long as at least one of S09.1 and S09.3 can 
be demonstrated at COHD to be a comorbidity of AKI, 
the comorbidity pair (N17, S09) was considered to be 
demonstrable by COHD. Moreover, for ID-4, which also 
did not match the OMOP concept ID, ID-3 in the dataset 
was replaced with the corresponding ID-5. The associa-
tion rule analysis was performed again, and the analyzed 
comorbidity, ID-5, was matched and proved.

Finally, medical literature (Supplementary Table 3) was 
reviewed to identify comorbidity pairs that could not 
be confirmed by either of the above methods. AKI was 
previously known as Acute Renal Failure (ARF), so using 
either AKI or ARF as well as unproven comorbidity as 
keywords in Google Scholar and PubMed was used to 
review the evidence.

Disease networks
Based on the comorbidity results mined in this study, a 
DN was constructed. A node in a DN represents a dis-
ease (ICD-10), and node colors are classified based on 
the ICD-10 chapters, with the size indicating the impor-
tance of the disease. The width of the node edges indi-
cates kulc, and the larger the width the larger the kulc. 
The color of the node edges from dark to light indicates 
lift from large to small. Figure 2 summarizes the technical 
route of the method used in AKI comorbidity studies.

Organ crosstalk in AKI
Based on the results obtained for AKI comorbidities, 
classification studies were conducted. First, we classi-
fied all AKI comorbidities by ICD-10 chapters to explore 
which systemic diseases in comorbidities had a strong 
association with AKI. Diseases associated with distant 

Fig. 2 Procedures and steps used in comorbidity studies. There are four main steps: Data preparation, acute kidney injury association rule mining, 
acute kidney injury comorbidities verification, and construction of disease networks
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non-kidney organs (Supplementary Table  4) were then 
screened and classified, and organ crosstalk in AKI 
was systematically explored to obtain clinically reliable 
results. In this study, the following formula was devised 
to calculate the importance of the relationship between a 
certain classification and AKI:

u represents a classification, such as heart disease; j rep-
resents all sub-items in u. sup and kulc represent the 
frequency and credibility of comorbidity pairs, respec-
tively, with higher values indicating greater comorbidity 
importance. The number of comorbidities included in a 
classification, in addition to sup and kulc, is an important 
indicator of the extent to which a classification affects 
AKI. According to equation (4), as sup, kulc, and the 
number of comorbidities in the classification increase 
score is greater. Therefore, it is reasonable to use it to cal-
culate the degree of association between disease catego-
ries and AKI.

Results
Demographic characteristics
As shown in Table  2, higher incidence of AKI in males 
(60.59 %) compared to females (p < 0.001). Stage 2 of 
AKI was more prevalent in females, and the remaining 
two stages followed the overall trend (p < 0.001). For the 
age distribution of patients, the highest incidence of AKI 

(4)scoreu =

jǫu

sup AKI , j × kulc AKI , j

was observed in the elderly (72.21%), and the incidence 
of AKI increased with age stage (p < 0.001). Similarly, the 
prevalence of each stage of AKI is highest among older 
adults. In addition, a comparison of the ethnicity of the 
patients showed that, excluding other races and unknown 
races, the incidence was highest in Caucasians and lowest 
in Asians (p < 0.001). Stage 1 of AKI continues to have a 
high prevalence among Caucasians, while stages 2 and 3 
have a higher prevalence among Native Americans (p < 
0.001).

Diseases in adults with AKI
In total 1,291 diseases other than AKI were identified 
from diagnostic information of 31,359 patients with AKI, 
and statistical analysis of this diagnostic data follows. 
Figure  3a illustrates the ten most frequent diseases, the 
most frequent of which are essential hypertension (I10); 
disorders of lipoprotein metabolism and other lipidemias 
(E78); disorders of fluid, electrolyte, and acid-base bal-
ance (E87); and chronic ischemic heart disease (I25) (p 
< 0.001). Of these ten diseases, E78 (p < 0.001), I25 (p < 
0.001), I48 (p < 0.001), E11 (p < 0.001), N18 (p < 0.001) 
were highly prevalent in males with AKI, especially I25, 
while I10 (p < 0.005), E87 (p < 0.001), I50 (p < 0.001), 
J96 (p < 0.001), and K21 (p < 0.001) were more prevalent 
in females (Fig.  3b). The number of diseases in patients 
with AKI was also compared. The highest proportion of 
patients had 10-14 diseases simultaneously (32.91%), fol-
lowed by those with 15-19 diseases (26.22%) (p < 0.001). 

Table 2 Basic demographic characteristics of AKI patients included in the study

a  N = number

Characteristic AKI,  Na (%) AKI-I, N (%) AKI-II, N (%) AKI-III, N (%)

Sex
Male 17965 (60.29%) 12770 (42.86%) 4346 (14.59%) 849 (2.85%)

Female 13394 (57.35%) 9375 (40.14%) 3498 (14.98%) 521 (2.23%)

P-value < 0.001  < 0.001

Age
18-35 1368 (33.91%) 1013 (25.11%) 281 (6.97%) 74 (1.83%)

36-59 7347 (51.70%) 5119 (36.02%) 1867 (13.14%) 361 (2.54%)

≥ 60 22644 (64.88%) 16013 (45.88%) 5696 (16.32%) 935 (3.68%)

P-value < 0.001 < 0.001

Ethnicity
Black/African American 2837 (56.79%) 1808 (36.19%) 747 (14.95%) 282 (5.64%)

White 21840 (59.91%) 15548 (42.65%) 5499 (15.09%) 793 (2.18%)

Asian 735 (45.91%) 538 (33.60%) 151 (9.43%) 46 (2.87%)

Hispanic/Latino 983 (51.68%) 676 (35.54%) 240 (12.62%) 67 (3.52%)

American Indian/Alaska Native 57 (58.76%) 35 (36.08%) 16 (16.49%) 6 (6.19%)

Other 1116 (53.84%) 797 (38.45%) 285 (13.75%) 34 (1.64%)

Unknown 3791 (62.88%) 2743 (45.50%) 906 (15.03%) 142 (2.36%)

P-value < 0.001  < 0.001
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Fig. 3 Basic clinical characteristics of 31,359 patients with acute kidney injury are included in this study. a Top 10 common diseases in acute 
kidney injury; b Sex distribution of ten common diseases; c Number distribution of diseases among acute kidney injury patients; d Sex distribution 
of the mean number of diseases based on different acute kidney injury stages. e Age distribution of the mean number of diseases based 
on different acute kidney injury stages. f Ethnic distribution of mean number of diseases in patients with acute kidney injury. * I10: Essential 
hypertension; E78: Disorders of lipoprotein metabolism; E87: disorders of fluid, electrolyte, and acid-base balance; I25: Chronic ischemic heart 
disease; I48: Atrial fibrillation and flutter; E11: Type 2 diabetes mellitus; I50: Heart failure; J96: Respiratory failure; N18: Chronic kidney disease; K21: 
Gastro-esophageal reflux disease
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Notably, only 1.36% of patients had 2-4 diseases, further 
indicating that AKI is a difficult clinical syndrome, often 
accompanied by a large number of complications. The 
number of diseases tended to increase as AKI became 
more severe (1 vs 2, p < 0.001; 1 vs 3, p < 0.001; 2 vs 3, p 
< 0.001). The number of diseases was higher in females 
than in males in stage 1 AKI (p < 0.001), and the differ-
ence between genders in the other two stages was not sig-
nificant (p>0.05). Age was also positively correlated with 
the number of diseases, with older AKI patients having 
the highest number of combined other diseases (youth vs 
middle, p < 0.001; youth vs old, p < 0.001; middle vs old, p 
< 0.001). And the different stages of AKI were consistent 
with the overall trend (Fig. 3e). In addition, Native Amer-
icans had more combined diseases than AKI patients 
of any other race (p < 0.05), except Black (p>0.05), who 
had more than Hispanics, Latinos, and Asians (p < 0.05) 
(Fig. 3f ).

Comorbidity mining results and disease network
A total of 579 AKI comorbidities were obtained using the 
Apriori algorithm, of which approximately 37% (213/579) 
of the associations were provable in the eICU. COHD 
allowed verification of 88% (511/579) of comorbidities, 
182 of which were also included in the eICU. Using both 
methods, more than 94% (542/579) of comorbidities 
were demonstrable. Among the remaining 39 comor-
bidities, 14 could be proven by reviewing the literature, 
but 25 could not (Table 3) (Supplementary Table 5). This 
indicates that the comorbidities we mined are scientific. 
The main categories of diseases among numerous comor-
bidities were circulatory system diseases, endocrine sys-
tem diseases, and respiratory system diseases, as shown 
in Fig.  5. In addition, 284 high incidence comorbidities 
were selected from which to construct a DN for simplic-
ity and clarity of visualization (Fig. 6). The largest nodes 
in this network were disorders of lipoprotein metabolism 
and other lipidemias (E78); essential hypertension (I10); 
disorders of fluid, electrolyte, and acid-base balance 
(E87); and atrial fibrillation and flutter (I48). This finding 

is similar to that in the common diseases in AKI patients, 
as shown in Fig. 3, except for a slight change in ranking 
due to kulc. In addition, anuria and oliguria (R34), acute 
respiratory distress syndrome (J80), and intraoperative 
and postprocedural complications and disorders of the 
respiratory system (J95) had the darkest margins, indicat-
ing that they were more strongly associated with AKI.

Risk factors for severe AKI
Which diseases were risk factors for stage 3 AKI was 
explored by comparing comorbidities at different stages 
of AKI. Studies have shown that severe AKI was asso-
ciated with increased incidence of CKD, ESRD, and 
increased mortality [30–32]. By understanding the risk 
factors for severe AKI (stage 3), it may be possible to 
predict it in advance and intervene in time to treat it, 
ultimately reducing the healthcare burden. AKI was clas-
sified as stage 1 (22,145), stage 2 (7,844), or stage 3 (1,370) 
according to the KDIGO criteria (Table 1). Comorbidities 
were analyzed for different stages of AKI and selected the 
factors that uniquely distinguished severe AKI as risk fac-
tors. For example, E10 has been analyzed as a comorbid-
ity of stage 3 AKI and not stages 1 and 2, so the presence 
of E10 may be associated with the development of severe 
AKI. As shown in Fig.  4, type 1 diabetes mellitus (E10) 
was the largest node with a higher frequency of co-occur-
rence with severe AKI. Based on the nodal edge color 
depth, the contracted kidney (N26) was the darkest with 
the strongest correlation for severe AKI.

Distant organ effects in AKI
Comorbidity-based study has led to further clinical vali-
dation of the presence of crosstalk between the kidneys 
and distal non-renal organs in AKI. Of all the crosstalk, 
the heart-kidney crosstalk was the strongest and much 
larger than the lung-kidney crosstalk, which came in sec-
ond (Fig.  7). Common heart diseases in crosstalk were 
atrial fibrillation and flutter (I48), chronic ischaemic 
heart disease (I25), and heart failure (I50), while lung 
diseases were respiratory failure, chronic obstructive pul-
monary disease and pneumonia.

Discussion
In this study, a comprehensive study of comorbidities in 
AKI was conducted using the Aprior algorithm. The study 
identified 579(554/579) comorbidities, 96% of which 
were validated by COHD(511/579), eICU(231/579), and 
medical literature(24/37). This shows that mining comor-
bidities using the Aprior algorithm is feasible and the 
parameters used are reasonable [33], thus making the 
mining results scientifically valid. Comorbidities mainly 
involved circulatory, endocrine and respiratory diseases, 
which meant that AKI had clear correlations with them. 

Table 3 Consistency of the results of this study with those in 
eICU, COHD and medical literature

Confirmed by 
eICU

Confirmed by COHD Total

Yes No

Yes 182 31 213

No 327 As reported in the literature (39) 366

Yes No

14 25

Total 509 70 579
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Although this study did not delve into the underlying 
mechanisms and interrelationships between AKI and 
these three systems, it may provide direction for future 
research. In addition, this study constructed a DN based 

on comorbidities, which were used to gain a deeper 
understanding of disease associations. The largest nodes 
in the DN include disorders of lipoprotein metabolism 
and other lipidemias(E78), essential hypertension(I10), 

Fig. 4 Systems to acute kidney injury correlation. Classifications based on ICD-10 chapters

Fig. 5 Disease network. Nodes represent diseases, with different colors representing the disease classification based on ICD-10 sections and sizes 
become larger as sup * kulc increases. The width of the node border indicates the kulc of the disease and acute kidney injury, while the color 
ranges from dark to light to indicate a greater to lesser correlation between the two diseases. The color of the link indicates the different results 
of comorbidities verification
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disorders of fluid, electrolyte, and acid-base balance(E87), 
and atrial fibrillation and flutter(I48). These comorbidi-
ties have been mentioned in previous studies [34–38]. 
Such as Druml et al. [34] claimed that the occurrence of 
AKI disorders lipoprotein metabolism; Dylewska et  al. 
[35] assessed the prevalence of hypertension in patients 
with AKI and showed that hypertension is common 
in AKI. This further demonstrates the reliability of the 
results.

Additionally, 25 new AKI comorbidities were identi-
fied in this study. Studies have shown that the inclusion 
of new comorbidities increases the overall understand-
ing of AKI and contributes to improved prediction and 
decision-making in AKI, leading to the designation of 
more effective treatment strategies for better manage-
ment of the patient’s health status [39, 40]. Although 
they have not been directly confirmed, the information 
they hide could be useful. Notably, four of the 25 new 
comorbidities were associated with drug intoxication 
(T36, T44, T45, and T50). The kidney is particularly 
susceptible to the effects of drugs because it is the main 
excretory organ of the body. Some drugs can induce 
AKI through various pathophysiological pathways, 
leading to acute nephrotoxic kidney injury [41]. Three 
of the new comorbidities were malignant neoplasms 
(C02, C44, and C54). Consistently, studies have shown 
that the incidence of AKI in patients with malignancies 
is as high as 12%, and there are many causes of AKI in 

malignancies, such as cancer, cancer-related metabolic 
disorders, anti-cancer treatment, and other complica-
tions [42]. In addition, some of the new comorbidities, 
although not directly demonstrable in literature, could 
be reviewed to find their association with AKI, such as 
other zoonotic bacterial diseases (A28) and nonscar-
ring hair loss (L65). The former (A28) contains pasteur-
ellosis (A28.0) and cat-scratch disease (A28.1). There is 
a greater association between these two zoonotic dis-
eases and sepsis [43], while sepsis is closely related to 
the development of AKI [44]. The latter (L65) can be 
caused by metabolic disorders [45], whereas AKI can 
lead to the development of metabolic diseases [46]. 
Collectively, these results suggest new comorbidities in 
AKI, and they may be more or less associated with AKI.

This study also explored crosstalk between the kid-
ney and distant non-renal organs (including liver, heart, 
brain, lungs, and gut) in AKI based on comorbidities. 
Although previously reported in the literature, it was 
mostly based on evidence obtained from animal models 
[15–19]. This study obtained evidence based on clini-
cal data leading to clinically reliable results and com-
pared the intensity of crosstalk. The results showed that 
heart-kidney crosstalk was the strongest, followed by 
lung-kidney crosstalk, and the intensity of heart-kidney 
crosstalk was much higher than lung-kidney crosstalk. 
Therefore, the monitoring of both heart and kidney 
organ diseases should be strengthened in clinical prac-
tice to help early detection and management of heart 

Fig. 6 Disease networks with severe acute kidney injury risk factors. Nodes indicate diseases, their size indicates importance, and their color 
indicates the type of disease. The width of the node border indicates kulc and the color indicates the correlation
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and kidney problems in patients, and to improve thera-
peutic efficacy and patients’ quality of life.

Despite our best efforts, there are limitations to this 
study. First, ICD codes are mainly concerned with the 
diagnosis and classification of diseases and do not involve 
deeper biological information such as disease pathogen-
esis and molecular changes. Therefore, in future work, 
molecular data, such as genomics and proteomics, can 
be combined with ICD data to better explain disease 
associations and understand the underlying biological 
mechanisms, thus revealing the reasons behind the onset 
and progression of comorbidities [47]. The incorpora-
tion of molecular data not only provides a deeper under-
standing but also helps identify potential biomarkers, 
providing more targeted information for personalized 
medical care and treatment. Second, disease associations 
obtained using association rule mining can only indicate 
coexistence between diseases, not causation. However, 
in future practice, disease associations can be studied 
in a more comprehensive and in-depth manner, taking 
into account the sequence of diseases and expertise in 

the medical field. This will enable a more accurate deter-
mination of causation and an understanding of which 
disease may lead to another. Medical expertise can pro-
vide an in-depth understanding of the physiological and 
pathophysiological characteristics of diseases, can reveal 
possible causal links between events, and can help estab-
lish more reliable inferences about relationships. While 
temporal relationships between disease occurrences can 
provide additional clues to help understand whether a 
causal relationship exists. In conclusion, this approach 
provides a more in-depth and interpretable direction for 
future research. In conclusion, this integrated approach 
to research provides a deeper and more interpretable 
direction for future research.

Conclusion
In this study, the comorbidity of AKI was investigated 
by association rule mining. The validation results of 
comorbidities not only indicate that comorbidities have 
scientific validity, which may provide references for clini-
cal diagnosis of AKI and the construction of AKI risk 

Fig. 7 Organ interactions in acute kidney injury. The width of the link indicates the degree of crosstalk (score), while the text displays the score 
for each crosstalk and the top three comorbidities in the crosstalk



Page 12 of 13Wang et al. BMC Medical Informatics and Decision Making           (2024) 24:35 

prediction models, but also indicate that mining comor-
bidities using association rules is feasible. In addition, 
organ crosstalk in AKI was systematically investigated 
based on comorbidity results, and clinically reliable 
results were obtained.
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