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Abstract 

Background The epiretinal membrane (ERM) is a common retinal disorder characterized by abnormal fibrocellular 
tissue at the vitreomacular interface. Most patients with ERM are asymptomatic at early stages. Therefore, screening 
for ERM will become increasingly important. Despite the high prevalence of ERM, few deep learning studies have 
investigated ERM detection in the color fundus photography (CFP) domain. In this study, we built a generative model 
to enhance ERM detection performance in the CFP.

Methods This deep learning study retrospectively collected 302 ERM and 1,250 healthy CFP data points 
from a healthcare center. The generative model using StyleGAN2 was trained using single-center data. EfficientNetB0 
with StyleGAN2-based augmentation was validated using independent internal single-center data and external data-
sets. We randomly assigned healthcare center data to the development (80%) and internal validation (20%) datasets. 
Data from two publicly accessible sources were used as external validation datasets.

Results StyleGAN2 facilitated realistic CFP synthesis with the characteristic cellophane reflex features of the ERM. The 
proposed method with StyleGAN2-based augmentation outperformed the typical transfer learning without a gen-
erative adversarial network. The proposed model achieved an area under the receiver operating characteristic (AUC) 
curve of 0.926 for internal validation. AUCs of 0.951 and 0.914 were obtained for the two external validation data-
sets. Compared with the deep learning model without augmentation, StyleGAN2-based augmentation improved 
the detection performance and contributed to the focus on the location of the ERM.

Conclusions We proposed an ERM detection model by synthesizing realistic CFP images with the pathological 
features of ERM through generative deep learning. We believe that our deep learning framework will help achieve 
a more accurate detection of ERM in a limited data setting.

Keywords Epiretinal membrane, Fundus photography, Deep learning, Generative adversarial net

Background
An epiretinal membrane (ERM), also known as an epi-
macular membrane or macular pucker, is an abnormal 
semi-translucent film of fibrocellular tissue at the vitreo-
macular interface (over the internal limiting membrane) 
[1]. Clinical presentations of ERM include: decreased 
visual acuity, metamorphopsia, micropsia, and monoc-
ular diplopia. However, most patients with ERM are 
asymptomatic at early stages. The prevalence of ERM 
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generally increases with age. According to a previous 
report, 30 million adults in the United States have ERM. 
In a nationwide study in South Korea, the prevalence of 
ERM was reported as 2.9–7.0% [2, 3]. The prevalence rate 
is expected to increase in aging societies. ERM can be 
treated by vitreoretinal surgery using a pars plana vitrec-
tomy procedure and membrane peeling [4]. If the fibro-
cellular tissue is detected early and removed by surgery 
before vision decreases, vision loss can be prevented. 
Most ERMs have no specific causes. Therefore, screening 
for ERM will become increasingly important.

Recently, the detection of ERM using optical coherence 
tomography (OCT) was established [1]. OCT reveals a 
hyperreflective layer of the fibrocellular membrane tissue 
by directly imaging the vitreoretinal interface. However, 
OCT is unsuitable as a retinal screening method because 
of its relatively long measurement time and difficulty 
in configuring the equipment. ERM can be diagnosed 
based on fundus examination or color fundus photogra-
phy (CFP), as shown in Fig.  1. The cellophane reflex in 
the macular area can be observed by careful examination 
of eyes with ERM [5]. There can be an irregular foveal 

Fig. 1 Representative fundus photographs (FPs) of the abnormal semi-translucent film of fibro-cellular tissues of epiretinal membranes (ERM) 
with reduced visual acuity and healthy retinas. A FP with ERM from the healthcare center data. B FP with ERM from the external validation data. C FP 
with healthy retina from the healthcare center data. D FP with healthy retina from the external validation data
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contour or a wrinkled retinal surface due to contracture 
of the fibrocellular membrane. However, because the 
membrane tissue is transparent, it is possible to misdiag-
nose ERM using fundus photographs. Most studies using 
artificial intelligence (AI) to diagnose ERM have concen-
trated in the OCT image domain [6, 7].

Considering the high prevalence of ERM, few AI-based 
studies have attempted to investigate ERM detection in 
the CFP domain compared to many other studies on dia-
betic retinopathy, age-related macular degeneration, and 
glaucoma [8, 9]. A previous study focused on the diagno-
sis of ERM through CFP using deep learning; however, 
the accuracy was relatively low [10]. This low accuracy 
was attributed to the relative lack of CFP data with ERM. 
Several previous studies on a big-data scale have analyzed 
ERM as a subclass for multiclass retinal disease classifica-
tion [11–13]. Recently, generative artificial intelligence 
(AI) was introduced to overcome the lack of data on rare 
diseases [14]. In this study, we synthesized CFP images 
with ERM by using a generative AI technique (generative 
adversarial network; GAN). Using the augmented data 
generated by StyleGAN2, we improved the diagnostic 
accuracy of the deep learning models for detecting ERM 
(Fig.  2). To confirm the performance, we validate the 
models using external datasets.

Methods
Data collection
We retrospectively collected CFP data containing ERM 
from an Eye Care Center (B&VIIT Eye Center, Seoul, 

South Korea). This study was approved by the Institu-
tional Review Board of the Korean National Institute 
for Bioethics Policy (KNIBP) and the requirement for 
informed consent was waived. All procedures were per-
formed in accordance with the ethical standards of the 
institutional and national research committees and the 
1964 Declaration of Helsinki and its later amendments 
or comparable ethical standards. The clinical data of 
human participants, except for CFP, were not obtained 
in this study. We collected CFP images from patients 
with ERM diagnosed with the KCD code H3539 (IDC-
10 code H35.379) between January 2015 and December 
2022. External validation was conducted using publicly 
accessible CFP databases to validate the developed deep 
learning models. The external databases include: the 
retinal fundus multi-disease image dataset (RFMiD) [15] 
and the Joint Shantou International Eye Center dataset 
(JSIEC) [12].

Data processing is demonstrated in the Supplementary 
Materials. The healthcare center dataset consisted of CFP 
images of 1,250 healthy eyes and 302 eyes with ERM. The 
training and internal validation datasets were obtained 
using healthcare center data and were randomly split. We 
assigned 1,239 CFP images (80%, including 1000 healthy 
and 239 ERM) to the training dataset, and 313 images 
(20%, including 250 healthy and 63 ERM) were used as 
the internal validation dataset. The GAN-based method 
augments ER images with proper diversity and high qual-
ity to improve diagnostic performance. After augment-
ing the training data for ERM, we trained deep learning 

Fig. 2 Schematic diagram of the development of deep learning model for epiretinal membrane (ERM) detection. The generative adversarial 
network (GAN) model augments ERM images with proper diversity and high quality to improve diagnostic performance. After augmenting 
the training data for ERM, we trained deep learning networks via transfer learning to classify ERM and healthy retinas



Page 4 of 13Choi et al. BMC Medical Informatics and Decision Making           (2024) 24:25 

networks via transfer learning to classify ERM separately 
from healthy retinas. Two external validation proce-
dures were performed. We collected the RFMiD test set 
(669 healthy retinas and 26 ERM) and JSIEC dataset (38 
healthy retinas and 26 ERM). The labels on the data-
sets from the healthcare center and publicly accessible 
sources were confirmed by an ophthalmologist. The data 
flow is shown in Fig.  3. We confirmed that the training 
of the GAN and convolutional neural network (CNN) 
models were performed using only the training dataset 
and that there was no overlap in the training (for both 
the GAN and CNN) and validation datasets, as shown in 
Fig. 3.

GAN image synthesis
With recent vigorous research on generative AI, GAN 
has been established as a standard method for generating 
medical images [16]. As the GAN model learns the image 
pixel data distribution for data synthesis, the training 
dataset requires a sufficient volume to train the genera-
tor without mode collapse or overfitting. We attempted 
to overcome this problem of overfitting sing traditional 
augmentation techniques with simple geometric trans-
formations. Traditional data augmentation was per-
formed using linear spatial transformation including: 
left and right flipping, width/height translation from 

-5% to + 5%, random rotation from -15° to 15°, zoom-
ing from 0 to 15%, and random brightness change from 
-10% to 10%. Initially, we prepared 4000 healthy and 1000 
ERM CFP images to train the GAN. As shown in Fig. 3, 
we attempted to improve the performance of the deep-
learning classifiers by creating an additional 2000 syn-
thetic CFPs with ERM using the GAN algorithm. It aims 
to eliminate data imbalance and further generalize the 
model by supplementing more diverse and realistic syn-
thetic data through the GAN.

In this study, we adopted the deep convolutional GAN 
(DCGAN), CycleGAN, and StyleGAN2, which are the 
most popular GAN techniques in the medical field [17]. 
The DCGAN is a basic form of GAN architecture based 
on the vanilla GAN that replaces the building block 
of the generator with fully convolutional layers [18]. 
DCGAN has been successfully used to synthesize CFP 
images of glaucoma [19]. CycleGAN is the most popu-
lar unpaired image-to-image translation GAN technique 
[14]. The basic concept of CycleGAN is cyclic consist-
ency, in which the training algorithm matches the fea-
tures of the image data distribution between two classes 
in an unpaired dataset. CycleGAN was used to generate 
denoised CFP images from images with artifacts [20]. 
Recently, StyleGAN2 has been well-adopted to synthe-
size high-resolution images [21, 22]. StyleGAN employs 

Fig. 3 Dataset used in developing and validating the epiretinal membrane detection model in fundus photography. The deep learning models 
were trained and internally validated using randomly partitioned 80 and 20% of data, respectively. Using the training dataset, GAN models 
were trained to increase the volume of the ERM dataset for data augmentation. We finally built an ERM detection model based on the GAN 
augmentation techniques. The two external validation datasets, including RFMiD and JSIEC, represented a real scenario of a check-up center 
with CFP screening
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the concepts of similarity and aversion. StyleGAN dem-
onstrated good performance in synthesizing high-resolu-
tion CFP images [23]. StyleGAN2, which is an advanced 
version of StyleGAN, has been successfully adopted in 
the medical field for knee radiography and colonoscopy 
image synthesis [17, 24]. The sources of the backbone 
codes of the GAN architectures are shown in the Supple-
mentary Materials section and were modified to adapt to 
CFP synthesis. The size of the output images was set to a 
resolution of 256 × 256 pixels to use the default architec-
ture of the GAN models. The GAN models were trained 
using the same dataset. In our experience, owing to the 
limitations of the volume of data, the GAN model did 
not properly learn using only with CFP images of ERM. 
Therefore, the healthy retina data were learned together 
with the ERM to properly generate realistic CFP images. 
DCGAN and StyleGAN2 were trained by combining 
both healthy retinas and ERM data, and the generated 
ERM data were used for further deep-learning training. 
By contrast, CycleGAN separates healthy and ERM data 
to learn domain translation and generates ERM data by 
infusing pathological characteristics into healthy images. 
An ophthalmologist reviewed the CFP images generated 
by the GAN models and removed the synthetic images 
with artifacts or without ERM features. Only generated 
images that confirmed the structures of the optic disc and 
vascular arcades classical of ERM were used for training. 
This manual selection process was performed to improve 
the diagnostic performance of GAN-based augmenta-
tion. Finally, we generated 2,000 synthetic CFP images 
with ERM for each GAN technique to train the CNN 
models. The deep-learning models were trained using an 
NVIDIA RTX 2080Ti GPU with 4,352 CUDA cores and 
11 GB of RAM.

CNN model training
After the GAN-based augmentation to enrich the ERM 
data, we built a CNN classifier model for ERM detec-
tion. We used ResNet50 and EfficientNetB0 as the back-
bone CNN models for the classifiers. These architectures 
have been recognized as standard models owing to their 
robustness and performance [25]. The CNN architectures 
were pre-trained on general image features from the Ima-
geNet data and imported into the workspace. The input 
images were resized to the input tensor of each original 
CNN architecture (224 pixels × 224 pixels for ResNet50 
and EfficientNetB0). The last layers of the CNN architec-
ture were replaced with a modified fully connected net-
work layer (with 2 × 2048 weights and 2 × 1 bias) and two 
softmax functions for the two classes (ERM and healthy), 
which set the output of the prediction score to a range of 
zero to one, which corresponds to the prediction prob-
ability of each class. All CNN training procedures were 

optimized using stochastic gradient descent (SGD) with 
a momentum algorithm (SGD learning rate = 0.0001) and 
a mini-batch size of 20 over 100 epochs, which are the 
fine-tuning parameters for transfer learning. Using the 
Grad-CAM technique, attention heat maps were gener-
ated from the last layers of the softmax and the activa-
tion convolutional layers of the trained CNN model. 
This visualization indicates whether the CNN model 
was properly trained with a focus on the ERM features. 
To determine the best data-augmentation strategy, we 
trained the CNN weights using no augmentation, simple 
geometric transformation (classic augmentation) to bal-
ance the case–control datasets (ERM data oversampling), 
and GAN-based augmentation. For an additional com-
parison experiment, we adapted the denoising diffusion 
probabilistic model (DDPM) [26, 27] and CutMix [28] to 
augment the ERM data. A pretrained vision transformer 
(ViT) with transfer learning software [29] was used to 
check whether the performance could be improved.

Statistical analysis
The performance of the CNN models for detecting ERM 
was evaluated using metrics including: the area under 
the curve (AUC) of the receiver operating characteristics 
(ROC), sensitivity, and specificity. Due to the characteris-
tics of the imbalanced data, we adopted Youden’s index, a 
standard threshold method that assigns equal weights to 
sensitivity and specificity.

Results
Initially, we trained the GAN models based on tradi-
tional augmentation. Figure  4 shows the representative 
results of GAN image generation. The CFP images with 
ERM synthesized showed the basic structures of the 
macula, with the optic nerve, vascular arcade, and fovea, 
for all GAN techniques. The synthetic images gener-
ated by the DCGAN were of low quality and had distinct 
artifacts. The synthetic images generated by the Cycle-
GAN also had some checkerboard artifacts and showed 
insignificant ERM features. Compared to DCGAN and 
CycleGAN, StyleGAN2 synthesizes realistic CFP images 
with significant ERM features. After an ophthalmolo-
gist reviewed the images generated by the GAN models, 
we retained 2,000 CFP images with ERM for each GAN 
technique and added them to the original training data-
set. As shown in Fig. 5, an ERM attribute can be infused 
into the CFP by adjusting the latent space of the trained 
StyleGAN2 in a certain direction. However, because ERM 
is not completely independent of other factors, other 
changes in CFP are associated with ERM generation.

Figure  6 shows the ROC curves for the ERM detec-
tion results of the EfficientNetB0 models for the internal 
and external validation results. Table  1 shows the ERM 
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detection performance using the internal validation data-
set. EfficientNetB0 trained with StyleGAN2 augmentation 
exhibited the best detection performance. The AUC of the 
proposed styleGAN2 method was 0.926 (95% confidence 
interval [CI], 0.890–0.963), which was better than that of the 

other models. It yielded a sensitivity of 92.0% (95% CI, 82.4–
97.3%), a specificity of 80.8% (95% CI, 75.3–85.4%), a PPV of 
54.7% (95% CI, 48.1–61.1), and an NPV of 97.5% (95% CI, 
94.5–98.9%). In both ResNet50 and EfficientNetB0 archi-
tectures, augmentation with StyleGAN2 resulted in better 

Fig. 4 Epiretinal membrane image generation using generative AI algorithms. A DCGAN. B CycleGAN. C StyleGAN2

Fig. 5 Synthetic fundus photographs according to latent space changes in the StyleGAN2 model
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AUCs than the other GAN techniques. The deep learning 
models with classic linear augmentation were inferior to 
EfficientNetB0 trained with StyleGAN2 augmentation.

The external validation results obtained using the 
RFMiD dataset are listed in Table 2. The EfficientNetB0 
trained with StyleGAN2 augmentation also showed the 
highest AUC- 0.951 (95% CI, 0.926–0.976)-among the 
developed models. This model detected crystalline retin-
opathy with a sensitivity of 96.1% (95% CI, 80.3–99.9%), 
a specificity of 85.6% (95% CI, 81.6–87.2%), a PPV of 
19.5% (95% CI, 16.6–22.7%), and an NPV of 99.8% (95% 
CI, 98.8–99.9%). Similar results were observed for other 
external validations using the JSIEC dataset (Table  3). 
EfficientNetB0 trained with StyleGAN2 augmentation 
also showed a detection performance with an AUC of 
0.914 (95% CI, 0.818–0.999). The corresponding sen-
sitivity, specificity, PPV, and NPV were 88.4% (95% CI, 
69.8–97.5%), 94.7% (95% CI, 82.2–99.3%), 92.0% (95% CI, 
74.7–97.8%), and 92.3 (95% CI, 80.5–97.2%), respectively.

To further determine whether the models properly 
analyzed the ERM features of the CFP, we generated 
attention maps of the EfficientNetB0 models using the 
Grad-CAM technique (Fig.  7). Using EfficientNetB0 
trained with StyleGAN2 augmentation, Grad-CAM fre-
quently focused on the central area of the macula and 
visualized the characteristic pathological features of ERM 
(cellophane reflex). EfficientNetB0, trained without GAN 
augmentation, frequently highlighted peripheral areas of 
the macula or margins of the ERM that did not match the 
exact location of the ERM.

Table  4 presents a comparison between the proposed 
method (EfficientNetB0 trained with StyleGAN2 aug-
mentation) and recent deep learning techniques. ERM 
data augmentation based on the DDPM and CutMix 
failed to achieve a performance comparable to that of the 
proposed model (P < 0.050). The ViT model with clas-
sic data augmentation also exhibited a lower ROC AUC 
than the proposed model. The difference between the 

Fig. 6 Validation results of ROC curves for detection of epiretinal membrane. A Healthcare center dataset. B External dataset 1 (RFMiD). B External 
dataset 2 (JSIEC)

Table 1 The prediction results from the internal validation (healthcare center dataset) to detect epiretinal membrane in fundus 
photographs

CI confidence interval, NPV negative predictive value, PPV positive predictive value, ROC-AUC  area under the receiver operating characteristic curve
a We oversample the ERM class to balance the training dataset

CNN architectures Training set ROC-AUC (95% CI) Sensitivity (%, 95% CI) Specificity (%, 95% CI) PPV (%, 95% CI) NPV (%, 95% CI)

ResNet50 Original set (no augmentation) 0.766 (0.702–0.830) 71.4 (58.6–82.1) 70.4 (64.3–75.9) 37.8 (32.2–43.7) 90.7 (86.7–93.6)

Original set + classic 
 augmentationa

0.827 (0.780–0.867) 92.1 (82.4–97.4) 58.0 (51.6–64.2) 35.6 (31.9–39.4) 96.7 (92.5–98.5)

Original set + DCGAN 0.850 (0.798–0.902) 90.4 (80.4–96.4) 63.6 (57.3–69.5) 38.5 (34.2–42.9) 96.3 (92.4–98.2)

Original set + CycleGAN 0.859 (0.803–0.914) 79.3 (67.3–88.5) 78.8 (73.2–83.6) 48.5 (41.8–55.2) 93.8 (90.2–96.1)

Original set + StyleGAN2 0.913 (0.872–0.954) 90.4 (80.4–96.4) 75.6 (69.7–80.7) 48.3 (42.5–54.1) 96.9 (93.6–98.5)

EfficientNetB0 Original set (no augmentation) 0.796 (0.736–0.855) 71.4 (58.6–82.1) 71.6 (65.5–77.1) 38.7 (33.0–44.8) 90.8 (86.9–93.6)

Original set + classic 
 augmentationa

0.833 (0.786–0.872) 88.9 (78.4–95.4) 62.4 (56.1–68.4) 37.3 (33.2–41.6) 95.7 (91.7–97.8)

Original set + DCGAN 0.821 (0.756–0.887) 65.0 (52.0–76.6) 88.4 (83.7–92.0) 58.5 (48.9–67.5) 90.9 (87.7–93.3)

Original set + CycleGAN 0.875 (0.821–0.929) 71.4 (58.6–82.1) 90.4 (86.0–93.7) 65.2 (55.4–73.8) 92.6 (89.4–94.8)

Original set + StyleGAN2 0.926 (0.890–0.963) 92.0 (82.4–97.3) 80.8 (75.3–85.4) 54.7 (48.1–61.1) 97.5 (94.5–98.9)
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proposed model and the ViT trained with StyleGAN2 
augmentation was not significant (P = 0.0914).

Discussion
We aimed to synthesize CFPs with ERM using GAN 
techniques to address the data imbalance problem. We 
built an improved ERM detection model using Style-
GAN2-based augmentation. Previous studies have 
focused on detecting ERM in CFP images using deep 
learning [10, 31]. However, the clinical application of the 
previous models was difficult because the ability to detect 
ERM was relatively low, and there was no external vali-
dation. Compared with previous studies, our approach 
additionally boosts the ERM detection performance by 
synthesizing CFP images using StyleGAN2, which com-
bines normal and pathological CFPs to generate realistic 

synthetic images. Our study demonstrates that generative 
AI techniques can be used to address the lack of medical 
data in the CFP image domain.

Grad-CAM heatmaps showed that the proposed clas-
sification model properly analyzed the ERM features. 
Compared with the CNN model without augmentation, 
the StyleGAN2-based augmentation process focused on 
the location of the ERM. If a small number of training 
sets is used, the risk of overfitting always exists, and it is 
expected that the StyleGAN2 has helped to avoid overfit-
ting. Based on this technique, our study achieved a better 
performance(0.926 of AUC) than that of a previous study 
(0.857 of AUC) in detecting ERM [10]. Several studies 
have developed deep learning models to detect ERM [12, 
13]; however, the validation sets were different, and addi-
tional studies are needed to compare the objective per-
formance of various deep learning models to detect ERM.

Table 2 The prediction results from an external validation dataset (RFMiD) to detect epiretinal membrane in fundus photographs

CI confidence interval, NPV negative predictive value, PPV positive predictive value, RFMiD Retinal fundus multi-disease image dataset, ROC-AUC  area under the 
receiver operating characteristic curve
a We oversampled the ERM class to balance the training dataset

CNN architectures Training set ROC-AUC (95% CI) Sensitivity (%, 95% CI) Specificity (%, 95% CI) PPV (%, 95% CI) NPV (%, 95% CI)

ResNet50 Original set (no augmentation) 0.873 (0.806–0.941) 65.3 (44.3–82.7) 90.4 (87.9–92.5) 20.9 (15.5–27.6) 98.5 (97.5–99.1)

Original set + classic 
 augmentationa

0.849 (0.820–0.875) 88.5 (69.8–97.5) 69.5 (65.8–72.9) 10.1 (8.6–11.9) 99.4 (98.1–99.8)

Original set + DCGAN 0.914 (0.869–0.959) 88.4 (69.8–97.5) 76.8 (73.4–79.9) 12.9 (10.8–15.2) 99.4 (98.3–99.7)

Original set + CycleGAN 0.863 (0.811–0.914) 80.7 (60.6–93.4) 79.8 (76.5–82.8) 13.4 (10.8–16.5) 99.0 (97.9–99.5)

Original set + StyleGAN2 0.939 (0.899–0.979) 84.6 (65.1–95.6) 88.3 (85.6–90.6) 22.0 (17.8–26.8) 99.3 (98.3–99.7)

EfficientNetB0 Original set (no augmentation) 0.823 (0.759–0.886) 96.1 (80.3–99.9) 60.0 (56.2–63.8) 8.5 (7.6–9.5) 99.7 (98.3–99.9)

Original set + classic 
 augmentationa

0.829 (0.799–0.857) 80.8 (60.6–93.4) 70.4 (66.8–73.8) 9.6 (7.8–11.7) 98.9 (97.7–99.5)

Original set + DCGAN 0.875 (0.815–0.935) 96.1 (80.3–99.9) 64.1 (60.3–67.7_ 9.4 (8.4–10.5) 99.7 (98.4–99.9)

Original set + CycleGAN 0.841 (0.773–0.908) 100 (86.7–100) 53.5 (49.6–57.3) 7.7 (7.1–8.3) 100 (98.9–100)

Original set + StyleGAN2 0.951 (0.926–0.976) 96.1 (80.3–99.9) 84.6 (81.6–87.2) 19.5 (16.6–22.7) 99.8 (98.8–99.9)

Table 3 The prediction results from the external validation dataset (JSIEC) to detect epiretinal membrane in fundus photographs

CI confidence interval, JSIEC Joint Shantou International Eye Center, NPV negative predictive value, PPV positive predictive value, ROC-AUC  area under the receiver 
operating characteristic curve
a We oversampled the ERM class to balance the training dataset

CNN architectures Training set ROC-AUC (95% CI) Sensitivity (%, 95% CI) Specificity (%, 95% CI) PPV (%, 95% CI) NPV (%, 95% CI)

ResNet50 Original set (no augmentation) 0.808 (0.703–0.912) 88.4 (69.8–97.5) 60.5 (43.3–75.9) 60.5 (50.2–69.9) 88.4 (71.9–95.8)

Original set + classic 
 augmentationa

0.849 (0.738–0.926) 92.3 (74.9–99.1) 71.1 (54.1–84.6) 68.6 (56.7–78.4) 93.1 (77.8–98.1)

Original set + DCGAN 0.866 (0.753–0.980) 92.3 (74.8–99.0) 76.3 (59.7–88.5) 72.7 (59.8–82.6) 93.5 (79.0–98.2)

Original set + CycleGAN 0.879 (0.796–0.961) 69.2 (48.2–85.6) 89.4 (75.1–97.0) 81.8 (63.2–92.1) 80.9 (70.2–88.4)

Original set + StyleGAN2 0.910 (0.817–0.983) 76.9 (56.3–91.0) 92.1 (78.6–98.3) 86.9 (68.8–95.2) 85.3 (74.1–92.2)

EfficientNetB0 Original set (no augmentation) 0.890 (0.794–0.985) 84.6 (65.1–95.6) 92.1 (78.6–98.3) 88.0 (70.9–95.6) 89.7 (77.9–95.5)

Original set + classic 
 augmentationa

0.899 (0.798–0.960) 84.6 (65.1–95.6) 94.7 (82.3–99.4) 91.7 (73.9–97.7) 90.0 (78.5–95.7)

Original set + DCGAN 0.861 (0.764–0.959) 92.3 (74.8–99.0) 76.3 (59.7–88.5) 72.7 (59.8–82.6) 93.5 (79.0–98.2)

Original set + CycleGAN 0.871 (0.778–0.967) 76.9 (56.3–91.0) 86.8 (71.9–95.5) 80.0 (63.2–90.2) 84.6 (72.9–91.8)

Original set + StyleGAN2 0.914 (0.818–0.999) 88.4 (69.8–97.5) 94.7 (82.2–99.3) 92.0 (74.7–97.8) 92.3 (80.5–97.2)
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As the society ages, idiopathic ERMs are expected to 
occur. In addition, as the number of cataract surgeries 
increases, the prevalence of secondary ERM also increase 
[32]. Compared to the high prevalence of ERM, attempts 
to screen for ERMs using CFP have been relatively insuf-
ficient. Using current deep learning systems that pri-
marily target diabetic retinopathy, age-related macular 
degeneration, and glaucoma [33, 34], most patients with 
ERM encounter diagnostic delays during the screening 
stage. Permanent visual damage is possible if the ERM 
is left unattended because there are no symptoms in the 
early stages. Our work establishes a deep learning model 
that focuses on diagnosing ERM early and shows a higher 
performance than traditional data learning. Table 5 pre-
sents a literature review that investigates deep learning 
models for ERM detection using CFP. Previous studies 
have reported very high performance (ROC-AUCs > 0.95) 
in detecting membrane features using a large data-
set from a single center [11, 35]. Deep learning using 
large-scale multicenter datasets has also achieved high 
diagnostic accuracy for ERM (ROC-AUCs > 0.99) [12]. 

However, obtaining large-scale pathological data from 
ERM is difficult. Therefore, methods for achieving high 
accuracy with limited pathological data should be further 
studied. To our knowledge, no previous study has investi-
gated a deep learning model with StyleGAN2-based aug-
mentation for ERM detection using CFP. If our proposed 
generative AI method continues to expand, we can create 
a deep-learning model that can accurately diagnose early 
ERMs.

Currently, the CFP is the standard image domain that 
dominates ophthalmic screening [37]. A deep learning-
based diagnosis of OCT cross-sectional images was 
developed for ERM. However, the detection of ERM 
in CFP has been overlooked. In studies using OCT, 
deep learning models have shown very high accuracy 
in detecting ERM [6, 7, 38]. The OCT, however, cap-
tures the cross-section of several local areas of the ret-
ina, so it is difficult to scan all areas of the macula with 
it. Therefore, early ERM may be difficult to detect with 
OCT. alone. In contrast, the CFP is an imaging domain 
that briefly depicts the entire macula. A subtle difference 

Fig. 7 Attention maps generated by the Grad-CAM technique from the developed EfficientNetB0 to detect epiretinal membrane. A Healthcare 
center dataset. B External dataset (RFMiD)

Table 4 Comparison of prediction performance from internal validation (healthcare center dataset) to detect epiretinal membrane in 
fundus photographs

CI confidence interval, DDPM denoising diffusion probabilistic model, ROC-AUC  area under the receiver operating characteristic curve
a We oversampled the ERM class to balance the training dataset

Classification network 
architecture

Augmentation ROC-AUC (95% CI) Sensitivity (%, 95% CI) Specificity (%, 95% CI) P-value

EfficientNetB0 StyleGAN2 (Ours) 0.926 (0.890–0.963) 92.0 (82.4–97.3) 80.8 (75.3–85.4) Reference

EfficientNetB0 DDPM [26, 27] 0.825 (0.779–0.866) 88.9 (78.4–95.4) 65.2 (58.9–71.1) 0.0048

EfficientNetB0 CutMixa [28] 0.837 (0.792–0.877) 77.8 (65.5–87.3) 86.0 (81.1–90.1) 0.0080

Vision Transformer [29] Classic  augmentationa 0.835 (0.789–0.874) 84.1 (72.7–92.1) 75.2 (69.4–80.4) 0.0051

Vision Transformer [29] StyleGAN2 0.863 (0.819–0.899) 82.5 (70.9–90.9) 84.0 (78.9–88.3) 0.0914
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between the cellophane reflex of the ERM and the nor-
mal reflection of the retina exists; distinguishing between 
them can be difficult for ophthalmologists. Timely surgi-
cal interventions can reduce the socioeconomic costs of 
late-stage ERM [39]. Therefore, developing and distribut-
ing a model that accurately screens ERM through contin-
uous development is necessary.

We addressed the challenge of using an imbalanced 
dataset for ERM detection. Compared with conventional 
linear transformation augmentation (classic augmen-
tation), GAN-based augmentation showed improved 
performance in the detection of ERM. In particular, 
the StyleGAN2 model generated relatively high-quality 
and realistic CFP images. This model performed better 
than the CNN models using DDPM-based or CutMix 
augmentation methods. ViT, which recently exhibited 
a higher performance than CNN architectures, failed 
to show a better performance than the proposed CNN 
model with StyleGAN2 augmentation. A previous study 
demonstrated that StyleGAN2 can synthesize mixed-
style medical images by combining the features of the 
training sets [17]. To learn various samples and improve 
the generalization of deep learning models, StyleGAN2 
could be adopted for out-of-distribution sample detec-
tion of computed tomography images [40]. Our study 
also confirms that StyleGAN2 is a promising generative 
AI technique for improving medical image synthesis 
and prediction performance. Generative AI continues 
to develop by adopting and expanding various numeri-
cal and probabilistic algorithms [14]. Recent advances 
in diffusion methods predict the future generation of 
higher-quality images [36]. A recent study showed that 
the diffusion model outperformed GAN techniques 
in the CFP, chest X-ray, and histopathology imaging 
domains [26]. There was an attempt to improve diagnos-
tic performance in CFP by combining GAN and Trans-
former structures [41], and performance improvement is 
expected if applied to ERM in the future.

This study has several limitations. Firstly, we gener-
ated CFP images with relatively low resolution in the 
GAN models, which had a resolution of 256 × 256 pixels. 
For the early diagnosis of ERM, it is necessary to analyze 
images with greater resolution. Secondly, the dataset 
included an East Asian population from a single health-
care center. Although the proposed model performed 
well on limited external validation datasets, models 
trained with data from a single institution are expected 
to degrade in performance in other clinical settings. 
Thirdly, the training and validation datasets included 
only a limited number of CFP images. Although GAN 
have been used to overcome the data shortage of ERM, 

additional data collection is essential to achieve a higher 
performance.

Conclusion
We propose an improved deep learning model by synthe-
sizing realistic CFP images with the pathological features of 
ERM through generative AI. We leveraged a deep learning 
classification model with additional StyleGAN2 training to 
address limited data availability. The final model outper-
formed the typical augmentation and other GAN-based 
learning methods for detecting ERM using the CFP. We 
believe that our deep learning framework will help achieve 
a more accurate detection of ERM in a limited data setting.
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