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Abstract 

Background Oxygen saturation, a key indicator of COVID-19 severity, poses challenges, especially in cases of silent 
hypoxemia. Electronic health records (EHRs) often contain supplemental oxygen information within clinical narratives. 
Streamlining patient identification based on oxygen levels is crucial for COVID-19 research, underscoring the need 
for automated classifiers in discharge summaries to ease the manual review burden on physicians.

Method We analysed text lines extracted from anonymised COVID-19 patient discharge summaries in German 
to perform a binary classification task, differentiating patients who received oxygen supplementation and those 
who did not. Various machine learning (ML) algorithms, including classical ML to deep learning (DL) models, were 
compared. Classifier decisions were explained using Local Interpretable Model-agnostic Explanations (LIME), which 
visualize the model decisions.

Result Classical ML to DL models achieved comparable performance in classification, with an F-measure varying 
between 0.942 and 0.955, whereas the classical ML approaches were faster. Visualisation of embedding representa-
tion of input data reveals notable variations in the encoding patterns between classic and DL encoders. Furthermore, 
LIME explanations provide insights into the most relevant features at token level that contribute to these observed 
differences.

Conclusion Despite a general tendency towards deep learning, these use cases show that classical approaches 
yield comparable results at lower computational cost. Model prediction explanations using LIME in textual and visual 
layouts provided a qualitative explanation for the model performance.
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Background
In January 2020, the World Health Organisation declared 
a global health emergency based on growing case reports 
of the novel severe acute respiratory syndrome coronavi-
rus 2 (SARS-CoV-2) [1], leading to the outbreak of Coro-
navirus disease (COVID-19). The COVID-19 pandemic 
has created a widespread impact all over the world, 
with 700 million reported cases and 6 million estimated 
deaths [2] by late 2023. Up until now, an up-to-date pic-
ture of the clinical situation, capable of comparing patient 
data for a better understanding of all aspects of the 
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disease, has however been impaired by the lack of access 
to patient data and their lack of standardization, particu-
larly when locked within narrative EHR (electronic health 
record) content. The ongoing practice of documenting 
even crucial facts about critically ill patients as free text 
is a major barrier to the adoption of novel information 
extraction methods for health care and research. The 
manual extraction of specific information, such as diag-
noses, symptoms, medications, dates, and patient demo-
graphics from clinical narratives is a time-consuming and 
tiresome process. It would have to be done by clinicians 
familiar with the domain, who would be urgently needed 
for healthcare delivery in a pandemic context. This moti-
vates the importance of computerised methods to inter-
pret clinical narratives and to extract structured and 
meaningful information. Text classification with Natural 
Language Processing (NLP) has reduced the manual time 
required for analysing clinical text data. However, it is 
essential to customise the components to fit the specific 
use case in advance.

Classical and deep learning approaches
Text Classification. A comprehensive analysis of 
text classification models, spanning classical to DL 
approaches, highlights the advantages of DL in auto-
matically generating meaningful representations for text 
mining. However, it also acknowledges limitations, such 
as neglecting natural sequential and contextual infor-
mation  [3, 4]. Classical ML approaches such as Support 
Vector Machines (SVMs) have the advantage that their 
off-the-shelf implementations can not only be trained 
much faster when compared to deep neural networks [5] 
but have also an overall better runtime performance. Dis-
ambiguation of clinical abbreviations is another essential 
information extraction task, due to their abundance in 
clinical narratives, as demonstrated by Jaber and Mar-
tínez [6], who used a one-fits-all classifier based on deep 
learning (DL) models. Many other studies demonstrated 
the benefit of classical to deep ML algorithms in various 
healthcare use cases [7–11].

Machine learning for COVID-19. COVID-19-related 
information extraction has covered a broad range of 
methods, from classical ML to DL models. Daher et  al. 
[12] elaborated on the requirement for supplemental oxy-
gen for admitted patients. Several research works pre-
dicted the requirements of oxygen and oxygen therapies 
in COVID-19 patients using ML approaches  [13–16]. 
Prediction of COVID-19 mortality rates used gradient 
boosting  [17], decision trees  [18], artificial neural net-
works [19] and DL models [20]. Additionally, studies on 
severity score prediction [21] leveraged explainable artifi-
cial intelligence (XAI) approaches [22].

Several factors that contribute to advantages of clas-
sical ML approaches are (i) data size and complexity 
because DL models generally require large amounts of 
data to learn complex hierarchical representations; (ii) 
intensive computational resources required for DL mod-
els, (iii) the tendency of DL towards overfitting, especially 
when the dataset is small, and finally (iv) problem-spe-
cific considerations, (e.g., scalability, noise and outliers, 
ethical constraints, user requirements, etc.) can influence 
the performance of different models.

O2 saturation in EHRs
A precise understanding of how oxygenation information 
is recorded in EHRs is essential in retrospective COVID-
19 studies. The details of the fraction of inspired oxygen 
(FiO2), partial pressure of oxygen (PaO2/PO2) and arte-
rial oxygen saturation (SaO2) require attention. FiO2 is 
0.21 in room air and increases with supplemental oxy-
gen  [23]. PaO2 is sensitive but lacks specificity for gas 
exchange. The sigmoid oxygen dissociation curve relates 
PaO2 and SaO2, representing haemoglobin oxygen satu-
ration. Interpreting clinical data, including FiO2, PaO2, 
and SaO2, is complicated, so accurately extracting infor-
mation from narratives requires distinguishing and har-
monizing related terms and conflicting results [24]. One 
of the primary challenges lies in the diversity of medical 
records and the multitude of abbreviations employed, 
which are often context-dependent and vary across insti-
tutions and even between clinicians. The same abbrevia-
tion may carry different meanings in distinct contexts 
and settings. Information extraction systems therefore 
need to take this ambiguity into account, as well as the 
existence of synonyms, variants and typos in clinical 
texts.

The focus of our work is on the use of unstructured 
data on oxygen status and supplementation of COVID-
19 patients. The supply of the organism with oxygen is of 
vital importance, particularly in case of respiratory infec-
tion. Current practices involve monitoring of PaO2 and 
SaO2 using pulse oximetry as a common non-invasive 
tool [25]. A spontaneous fall in oxygen saturation levels, 
known as “silent hypoxemia”, is cardinal because low oxy-
gen levels indicate the severity of the disease and predict 
poor outcomes [26]. Peripheral oxygen saturation (SpO2) 
determines whether room air oxygen is no longer suffi-
cient and supplementation of oxygen via masks, nasal 
cannulas or ventilators is required, which often requires 
intensive care treatment  [27]. SpO2/FiO2 ratio is a reli-
able tool for hypoxemia screening among patients admit-
ted to the emergency departments, particularly during 
the SARS-CoV-2 outbreak  [23]. In addition, this paper 
addresses the problem of the lack of structured oxygen 
status data. The problem is complicated by the fact that 
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one and the same concept, viz. oxygen, is on the one hand 
mentioned as a status variable of the patient and a result 
of measurement, but on the other hand supplemental 
oxygen is referred to as a treatment administered to the 
patient. Thus, the word “oxygen” may refer to supplemen-
tary oxygen treatment as well as to the measurement of 
SpO2. Differentiation of the oxygen status was based on 
the measurements of the supplemental oxygen or indi-
cated features for the supplemental oxygen demand and 
those without any further information regarding the oxy-
gen requirement. In this investigation, the interpretation 
of whether the reported oxygen status is with or with-
out the supply of oxygen should be done via an adapted 
model-based approach, as described in this manuscript. 
This system should support an expert data curator in the 
identification of relevant document parts to be processed 
in the next step. Figure 1 represents the flowchart of the 
proposed method. In addition to the recognition of men-
tions of oxygen supplementation, this work adds func-
tionality for data visualisation and a methodology for ML 
model explainability.

The paper is organised as follows: Materials and meth-
ods section describes the data and the different types of 
classifiers used, Results section compares classifier per-
formances and the computational time needed, along 
with error analysis and model explanation. The Discus-
sion section compares the results with related work and 
discusses false positives and false negatives.

Materials and methods
Dataset
Text lines from discharge summaries of patients affected 
by COVID-19 were collected from the EHR system of 
KAGes, an Austrian network of public hospitals. Text 
lines up to a length of 30 characters, denoting potential 
oxygen status information, are extracted to build the 

dataset using a regular expression1. This expression was 
created in several iterations, supported by a data science 
specialist experienced in clinical queries. The binary clas-
sification task is formulated as follows: (i) there is evi-
dence that the patient got oxygen supplementation at 
some time during the hospital stay, vs. (ii) there is no evi-
dence that the patient received oxygen supplementation.

Gold standard creation
The dataset contained 3,844 anonymised text lines. These 
were annotated by two annotators independently. Both 
annotators had biomedical backgrounds, were supported 
by a guideline and passed a series of training sessions. 
The third annotator with medical expertise validated 
the annotations so that they could be used as the ground 
truth. The inter-annotator agreement was high, as evi-
denced by a Cohen’s Kappa [28] of 0.859, which indicates 
a 94% accuracy.

The annotation was based on specific text features for 
example, “l/min O2 über Nasenbrille”  (litre per min-
ute oxygen via nasal cannula), “Sauerstoffbedarf”  (oxy-
gen requirement), “unter CPAP”  (under continuous 
positive airway pressure), “mit RL” (with room air), “mit 
NIV”  (with non-invasive ventilation), etc. Some typical 
text lines are shown along with their class assignments in 
Table 1.

Of the 3,844 anonymised text lines, 1,435 clearly 
described the use of supplemental oxygen at some point 
in time and were thus assigned to class “1”. The remaining 
2,409 text lines were assigned to class “0”, of which 45 text 
lines did not provide any kind of information regarding 
supplemental oxygen. The dataset was split into training 
and test data, with a set of constant random state values 
and a test set size of 20 per cent. The training data con-
sisted of 3,074 spans, with 769 spans in test data.

Fig. 1 Overview of the proposed methodology encompassing text lines preprocessing, binary text classification, t-SNE visualization, error analysis, 
and LIME explanation

1 SO%|[sS][apP]?[O0o][22](?!.)|bO2.?Sä|bO2(?!.*?pH)|[
Ss]ättigung.
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Finally, a division into training and testing sets was 
performed by the ‘train_test_split’ function from scikit-
learn  [29]. To ensure robust evaluation, multiple train-
test splits using different random state values2 were done. 
This process helped mitigate the impact of the initial ran-
domization on model performance and assessed its gen-
eralisation ability.

Machine learning approaches
In ML, classification, in general, is a predictive modelling 
challenge, in which the model has to predict the category 
of the input data based on fitting of the training dataset. 
In particular, the classification of text is an elementary 
NLP task, which is applied wherever input data contain 
free text. NLP uses different types of ML methods. The 
following architectures have been applied for the com-
parative analysis, motivated by a comparison of popular 
core neural network architectures and their influence on 
model performance:

Model architectures

Support Vector Machine (SVM) SVM is used for both 
classification and regression tasks. It uses textual data, 
which is either represented as a vector or a token in a vec-
tor space. SVMs attempt to find a hyperplane that best 
divides the training data into corresponding classes [30]. 
We used the Support Vector Classifier (SVC) function 
from scikit-learn [29].

Random Forest (RF) RF is a classification algorithm 
based on the principles of decision trees. In RF, the set 
of attributes is randomly split into many subsets, each 
of which is used to construct decision trees with a few 
layers. These decision trees collectively form the ‘forest’. 
The overall performance is then determined based on 
the outputs of each tree. This randomness in attribute 
selection and tree construction helps reduce overfitting 

and enhances the diversity of the trees in the forest. RF 
is therefore considered a robust and accurate machine 
learning algorithm [31]. We used the RandomForestClas-
sifier function from scikit-learn.

Long Short‑Term Memory (LSTM) LSTM [32] is a type 
of recurrent neural network. LSTM networks contain 
feed-forward networks along with corresponding feed-
back connections. This makes it distinguishable from 
other neural networks, as it processes sequences of data 
points. A single LSTM unit is known as a cell, which 
consists of an input, output and forget gate. These gates 
control the flow of data in and out of the cell, along with 
remembering essential information at random time 
intervals  [33]. We used the Keras  [34] library for imple-
menting the model layers. Our model architecture con-
sisted of (i) an embedding layer for word representation, 
(ii) an LSTM layer incorporating dropout for regulari-
sation, and (iii) a dense layer with a sigmoid activation 
function to produce binary classification output.

Bidirectional Long Short‑Term Memory (Bi‑LSTM) Bi-
LSTM networks consist of two LSTM networks, in which 
one feeds the data in a forward direction, while the other 
feeds the data in a backward direction  [35]. We used 
Keras  [34] library for implementing the model layers. 
Our architecture consisted of the following components: 
(i) an embedding layer for word representation, (ii) a Bi-
LSTM layer incorporating dropout for regularisation, 
and (iii) a dense layer with a sigmoid activation function 
to produce binary classification output.

Convolutional Neural Network (CNN) CNN adaptively 
learns the different hierarchies of features through back 
propagation using different layers such as convolution 
layers, pooling layers and fully connected layers  [36]. 
Even though convolutional networks were initially devel-
oped by the neural network image processing community 
where it excelled in recognising objects in predefined 
classes, it has recently shown excellent outcomes in NLP 
tasks, especially in sentence classification into predefined 

Table 1 Text spans from the dataset along with their classes and relevant tokens translated. Class “1” means the use of supplemental 
oxygen at some point of time

Text span Class Translation of the relevant tokens

“SpO2 99% mit 10l O2” 1 “with 10l O2”

“RR 160/80mmHg, HF 76’, Temp. 38,4◦ C, SpO2 89% mit RL” 0 “with room air”

“keine Dyspnoe, kein Fieber, keine Schmerzen, kein O2 Bedarf” 0 “no O2 requirement”

“1L O2/min. über die Nasenbrille respiratorisch völlig stabil.” 1 “1L O2/min. via nasal cannula”

“O2 2l/min bei Bed.” 1 “2l/min”

2 [509, 906, 331, 172, 729, 250, 762, 629, 926, 392]
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categories. CNN and extended CNN architectures  [37] 
have been successfully applied to text classification tasks 
of different granularity [38]. They also capture the neigh-
bourhood relation via the window size of the CNN fil-
ter. We used the Keras  [34] library for implementing 
the model layers. Our model architecture includes the 
following components: (i) an embedding layer for word 
representation, (ii) a 1-Dimensional convolutional layer 
with multiple filters and rectified linear unit (ReLU) acti-
vation, (iii) a global max pooling layer to capture relevant 
features and (iv) a dense layer with a sigmoid activation 
for binary classification.

Text preprocessing and representation
TF-IDF (Term Frequency-Inverse Document Frequency) 
vectorisation converts the text data into numerical fea-
tures in SVM and RF. Text data preprocessing, without 
the removal of stop words, includes tokenisation and 
sequence padding. For LSTM, Bi-LSTM and CNN mod-
els, we tokenised the text using the Keras [34] tokenizer 
with a specified maximum word count. To ensure that we 
capture the full context without unnecessary truncation, 
we selected a maximum token length of 30. This choice 
is well-justified, as it allows us to handle all sequences 
within our dataset, thereby capturing the most of the 
context and information from each text entry, without 
disclosing any patient-specific information.

In order to enhance the representational capacity and 
capture intricate patterns in our data across various 
machine learning models, our classical ML models with 
TF-IDF vectorization has a dimension within a range of 
2450 to 2520 for the applied random state values, and we 
choose 300-dimensional input vectors consistently in all 
our DL models, following current practice [39]. Unlike 
some deep learning models that have fixed dimensions, 
TF-IDF vectors adapt their dimensionality based on the 
dataset’s linguistic diversity. TF-IDF captures word sig-
nificance across documents, while fixed dimensions in 
deep learning aim for computational efficiency and con-
cise representations.

Hyperparameter tuning
For each model, hyperparameter tuning is performed 
using grid search [40] and five-fold cross-validation. The 
goal is to find the optimal set of hyperparameters for each 
model. For SVM, various combinations of hyperparam-
eters, including ‘C’ (regularization parameter), ‘kernel’ 
(kernel function), and ‘gamma’ (kernel coefficient) were 
tried. For RF, combinations of ‘n_estimators’ (the number 
of trees in the forest), ‘max_depth’ (the maximum depth 
of the trees), and ‘max_features’ (the number of features 
to consider when splitting nodes) were used. For LSTM 

and Bi-LSTM we combined the hyperparameters units, 
dropout and recurrent dropout. Finally, for CNN, hyper-
parameters, such as filters and kernel size were selected 
using grid search. In LSTM, Bi-LSTM and CNN models 
cross entropy was used as the loss function, adamax as 
the optimizer, early stopping as the stop criteria and run 
with an epoch value of ten. Model architectures with the 
best hyperparameters are summarised in Table 2.

Model assessment and selection
For each iteration through the random state values, we 
trained the classifiers with the best hyperparameters 
identified during the tuning phase. The performance was 
evaluated using precision, recall, and F1-score. We cal-
culated the mean and standard deviation of these perfor-
mance metrics across the different iterations to assess the 
overall model performance. The model with the highest 
F1 score was selected for further analysis.

Visualisation
To gain insights into the distribution of the data in a 
lower-dimensional space, we applied t-distributed Sto-
chastic Neighbour Embedding (t-SNE) [41] to the TF-
IDF vectors of the test data in SVM and RF. For the DL 
models, the word embeddings learned by the best model 
are extracted and visualised. The resulting 2D scatter 
plot visualises the data points based on their predicted 
labels (‘y_test‘) and serves as an additional tool for under-
standing the model’s behaviour. t-SNE is a technique 
commonly used to explore intricate patterns and rela-
tionships within complex datasets by projecting them 
into a lower-dimensional space. This reveals hidden 
insights not apparent in the original data. t-SNE visuali-
sations also offer an intuitive way to comprehend model 
performance, decision boundaries, and data separability. 
These are particularly popular for visualising text data 
due to their ability to capture complex relationships in 
high-dimensional data, making t-SNE a preferred choice 
to linear techniques, like Principal Component Analysis 
(PCA). However, one must be aware of the limitations of 
t-SNE, such as sensitivity to the perplexity parameter and 
difficulty in interpreting distances in the reduced space.

Model explanation using LIME
After determining the most effective model, we perform 
feature relevance analysis to understand which terms or 
features have the greatest impact on the classification 
result. This analysis provides valuable insights into the 
key phrases or structures from which the model cre-
ates its predictions. To this end, we use a method called 
LIME  [42], suited for predictions of complex black-
box models. LIME starts by creating variations of the 
input text, involving actions like removing, replacing, or 
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rearranging tokens randomly. It then passes these vari-
ations through the model and records the resulting pre-
dictions. LIME selects a subset of token features from 
both the original input text and the variations, focusing 
on those that significantly influence prediction. A linear 
SVM is then built using these selected features, which 
helps estimate the model’s behaviour regarding specific 
features. The feature importance weights calculated by 
this process clarify how the model’s output class is deter-
mined, highlighting the most influential tokens for pre-
dicted class probabilities. Higher weights signify stronger 
contributions, while lower weights indicate less influ-
ence. The application of LIME on machine learning mod-
els assists non-experts in comprehending the internal 
processes of a model and tracking decision details related 
to predictions.

Results
Classifier results
The model is optimised using the training data, and 
the chosen hyperparameters via grid search are then 

implemented in the model and analysed in the test per-
formance. Performance metrics for each model were cal-
culated in terms of precision (P), recall (R) and F1-score 
(F1) as shown in Table 3, with the different classifiers pro-
ducing comparable good results. We opt for the F1-score 
instead of ROC and AUC, because of its better handling 
of imbalanced data and its alignment with the substantial 
clinical impact of both false positives and false negatives.

Furthermore, classifier models were profiled with 
their computational speed assistance by identifying per-
formance bottlenecks and enhancing the underlying 
hardware or software infrastructure to acquire faster exe-
cution times. The computational speed for each sample 
is estimated using the Python module “time”3 to meas-
ure the model prediction time. We calculated the perfor-
mance of classifier models using an AMD Ryzen7 5700U 
with Radeon Graphics processor with a clock frequency 
of 1.8 GHz and 8 GB of RAM. The experiments were 

Table 2 Parameters used in different machine learning models after grid search optimization

Classifier Parameters - Values

SVM vectorisor - TF-IDF vectorisor (in a range of 2450 to 2520 dimensions)

kernel - rbf (Radial Basis Function) kernel

regularisation parameter - C value of 10

cross-validation - 5 fold

RF vectorisor - TF-IDF vectorisor (in a range of 2450 to 2520 dimensions)

maximum features- square root of the total number of features

number of decision trees - 100

cross-validation - 5 fold

LSTM & Bi-LSTM Embedding layer - 300 dimensional

LSTM / Bi-LSTM layer - 128 nodes

dropout and recurrent dropoutlayer -probability of 0.2

dense output layer - 1 node

activation layer - sigmoid

cross-validation - 5 fold

loss - binary cross entropy

optimizer - adamax

CNN Embedding layer - 300 dimensional

1D convolutional layer with:

- filters - 256

- window size - 5

- activation layer - relu

dropout layer - probability of 0.5

dense output layer - 1 node

activation layer - sigmoid

cross-validation - 5 fold

loss - binary cross entropy

optimizer - adamax

3 https:// docs. python. org/3/ libra ry/ time. html

https://docs.python.org/3/library/time.html
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conducted using Python 3.8.16 running on Windows 
11. Table 3 lists the mean prediction time per sample for 
each of the best models.

t-SNE visualisation
The input representation for the SVM is a high dimen-
sional vector based on token occurrence, which 
remains static during training and can lead to reduced 
separability in the dimension-reduced visualisation. 
While the embeddings in the CNN model adapt to the 
downstream task, optimising their representation for 

the domain-specific task, enabling separability in the 
visualization. The grouping into corresponding class 
clusters is therefore recognisable in the embedding 
case for CNN but less clear for the SVM representa-
tion. Figure 2 plots the visualisation of test data using 
the t-SNE method for the SVM and the CNN model. 
In summary, the t-SNE visualisation shows that the 
dynamic embedding approach of the CNN results in 
a better separability of data clusters compared to the 
static representation of SVM, highlighting the adapt-
ability of neural networks in domain-specific tasks.

Table 3 Performance metrics for SVM, RF, LSTM, Bi-LSTM, and CNN models on the test data and their average prediction time per 
sample

Classifier Metric Mean ± Std Error 95% Confidence Intervals Average 
Prediction Time 
(seconds)

SVM P 0.955± 0.002 [0.951− 0.959] 0.258

R 0.955± 0.002 [0.951− 0.959]

F1 0.955± 0.002 [0.951− 0.959]

RF P 0.942± 0.003 [0.936− 0.948] 0.057

R 0.942± 0.003 [0.936− 0.948]

F1 0.942± 0.003 [0.936− 0.948]

LSTM P 0.948± 0.002 [0.944− 0.952] 0.501

R 0.948± 0.002 [0.944− 0.952]

F1 0.948± 0.002 [0.944− 0.952]

Bi-LSTM P 0.944± 0.003 [0.938− 0.950] 0.502

R 0.946± 0.003 [0.938− 0.950]

F1 0.944± 0.003 [0.938− 0.950]

CNN P 0.954± 0.002 [0.950− 0.958] 0.130

R 0.954± 0.002 [0.950− 0.958]

F1 0.954± 0.002 [0.950− 0.958]

Fig. 2 Visualization of vector representations of test data using t-SNE. (i) Static TF-IDF weighted vectors with no clear separability among the classes 
and (ii) Dynamic embedding representation showing a better separability among the classes
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LIME explanation
LIME explanations are generated to give insight into 
the model’s prediction. Figure  3 illustrates the LIME 
explanation for the SVM model prediction for both 
class “0” and class “1” on specific text lines. LIME iden-
tified the most influential tokens contributing to the 
model prediction. The weights of each of the influential 
tokens are sorted based on their class predictions, and 
the sum of the weights for each class is calculated to 
reach the predicted class [43]. Tokens in input text are 
highlighted based on their probabilities of falling into 

a class. These explanations contribute significantly to 
understanding the decision-making process [44].

In our comprehensive analysis of top tokens using 
LIME for both SVM and CNN models, we gained gran-
ular insights into the differentiating features that deter-
mine classification performance. This not only enhances 
our understanding of model predictions but also provides 
interpretability, shedding light on the key factors influ-
encing the decision-making process within these com-
plex models. The most important tokens for this dataset 
according to our analysis were “raumluft”, “kein”, “nicht”, 

Fig. 3 LIME providing insights into model predictions by highlighting the key tokens influencing the classification decision

Table 4 Top influential tokens in the dataset for SVM and CNN models using LIME

Ranking Class 0 Class 1

SVM CNN SVM CNN

1 raumluft kein/keine l/L/Litre fiO2/FiO2

2 akuter ohne fiO2/FiO2 l/L/Litre

3 Kein/kein/keinem via Flüssigsauerstofftherapie Mit

4 ohne raumluft pflichtig Gabe

5 auszugehen AF Zufuhr O2

6 nicht mmol Gabe Flow

7 Pulsoxy nicht inadäquaten Sauerstoff

8 Aufsättigung K mehr für

9 niedriger zufuhr Darunter Brille

10 ausgeprägter seit Mit wurde
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“ohne” for class 0 (no supplemental oxygen) and “FiO2”, 
“mit”, “gabe”, numbers followed by “L” or “l” determin-
ing the litres for with supplemental oxygen (class 1), cf. 
Table 4 for the top 10 tokens per class.

Error analysis
Confusion matrices are designed to give the predicted 
values in a count format, which distinguishes between 
correct and incorrect predictions. The true positive and 
true negative values provide a clear picture of the correct 
predictions within the network, while the false positives 
and false negatives are the topics of interest for error 
analysis.

Analysing the false positives, i.e. the number of incor-
rectly assigned text lines to have received oxygen sup-
plementation and false negatives, i.e. the number of 
incorrectly assigned text lines to not have received oxy-
gen supplementation, it was of interest that for all ran-
dom state values, there were overlapping texts in these 
categories within all models, i.e., for a random state value 
of 729 there were 7 and 8 overlapping false positive and 

false negatively classified texts in all models, cf. Table 5. 
Figure 4 illustrated the values obtained for the confusion 
matrices for different models at the random state value 
of 729.

Discussion
In all languages, but particularly in languages other than 
English, the access to comprehensive clinical narrative 
datasets for public use poses a challenge. Legal restric-
tions, privacy policies, and stringent data protection 
regulations limit their availability and hinder their publi-
cation [45]. Unfortunately, this constrained environment 
has impeded our ability to test our models on diverse 
datasets, thereby limiting our capacity to confirm the 
generalizability of our findings. Consequently, faced with 
these limitations, we opted to create our dataset for the 
experiment. The process of manual annotation proved 
to be a particularly arduous task, underscoring the chal-
lenges associated with compiling and annotating clinical 
narrative data under such restrictions.

Table 5 Common text segments identified as false positives (FP) and false negatives (FN) during error analysis of the test data

FP/FN Text span

FP “O2 Sättigungswert vom 1.12.2019 mit Normalwerten”

“O2 saturation value from 1.12.2019 with normal values”

FP “respiratorischem Infekt und keinem erhöhten O2 Bedarf”

“respiratory infection and no increased O2 requirement”

FN “SO2-Bedarf”

“SO2 requirement”

FN “Laut Pflegebericht: im PH trotz Sauerstoffgabe Sättigung von 65% und”

“According to the care report: saturation of 65% in the PH despite oxy-
gen administration and”

Fig. 4 Confusion matrices depicting the performance of (i) SVM, (ii) RF, (iii) LSTM, (iv) Bi-LSTM, and (v) CNN models
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Since the dataset is imbalanced with a substantially 
higher number of text snippets in class “0” compared to 
class “1”, accuracy is not a suitable metric for evaluating 
model performance. Hence, precision, recall and F1-score 
are more informative as they provide a better measure of 
the model’s potential to detect the minority class. Table 3 
highlights that the performance of classical ML models 
overlaps with DL models. Despite the emergence of DL 
models, there are several applications where classical ML 
such as SVM outperformed DL approaches  [46]. Even 
image classifiers related to the COVID-19 context have 
observed this phenomenon [47, 48].

In addition to the model’s predictive performance, 
the mean prediction time per sample was also assessed. 
Out of this assessment, the classical ML model (RF) is 
the fastest network for this text classification task. In 
comparison with Saadatmand et  al. [13] and Yamanaka 
et al. [14], who used certain features such as demograph-
ics, symptoms, patient background, etc. for determin-
ing the requirement of oxygen therapy, our experiments 
were especially focused on clinical narratives for oxygen 
status. In contrast to Muto et  al. [16], which relies on 
decision support from clinicians, our methodology lever-
ages an explainable AI module to understand the model 
decisions.

Even Fig. 2 does not show clear and distinct clusters for 
CNN as one class appears as an inverted V shape, while 
the other class is spread inside, which suggests that the 
classes might not be easily separable in the embedded 
space. This reveals the possibility of (i) overlap between 
classes, (ii) high intrinsic dimensionality that may not be 
captured by t-SNE, and (iii) complex non-linear relation-
ships within the data.

Conclusion
In this paper, text lines extracted from German-language 
discharge summaries of COVID-19 patients were used to 
detect patients who received supplementary oxygen ther-
apy, which constitutes important information for build-
ing cohorts for retrospective COVID-19 clinical studies. 
The classification task had to distinguish the mention of 
oxygen related to oxygen measurement from the mention 
of oxygen in the context of oxygen supplementation.

Of the applied classification methods using classical 
machine learning to deep learning models, the perfor-
mance of all of them (SVM, RF, LSTM, Bi-LSTM, and 
CNN) was similar. When comparing their computational 
efficiency, the RF model stood out, being the fastest clas-
sifier for this task, as well as in terms of training efforts. 
LIME aided in analysing and explaining the model pre-
dictions and played a crucial role in understanding the 

model performance. The pandemic highlighted the 
need for computerised classifications for the effective 
management of patient information in hospitals and for 
clinicians.

In future work, we aim to expand our research by 
acquiring additional datasets, thereby enhancing the 
robustness and generalizability of our model. We also 
plan to investigate its performance across diverse lan-
guages, ensuring its applicability and effectiveness in a 
broader linguistic context.
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