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Abstract 

Background Systemic lupus erythematosus (SLE) is a rare autoimmune disorder characterized by an unpredictable 
course of flares and remission with diverse manifestations. Lupus nephritis, one of the major disease manifestations 
of SLE for organ damage and mortality, is a key component of lupus classification criteria. Accurately identifying lupus 
nephritis in electronic health records (EHRs) would therefore benefit large cohort observational studies and clinical 
trials where characterization of the patient population is critical for recruitment, study design, and analysis. Lupus 
nephritis can be recognized through procedure codes and structured data, such as laboratory tests. However, other 
critical information documenting lupus nephritis, such as histologic reports from kidney biopsies and prior medical 
history narratives, require sophisticated text processing to mine information from pathology reports and clinical notes. 
In this study, we developed algorithms to identify lupus nephritis with and without natural language processing (NLP) 
using EHR data from the Northwestern Medicine Enterprise Data Warehouse (NMEDW).

Methods We developed five algorithms: a rule‑based algorithm using only structured data (baseline algorithm) 
and four algorithms using different NLP models. The first NLP model applied simple regular expression for keywords 
search combined with structured data. The other three NLP models were based on regularized logistic regression 
and used different sets of features including positive mention of concept unique identifiers (CUIs), number of appear‑
ances of CUIs, and a mixture of three components (i.e. a curated list of CUIs, regular expression concepts, structured 
data) respectively. The baseline algorithm and the best performing NLP algorithm were externally validated on a data‑
set from Vanderbilt University Medical Center (VUMC).
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Results Our best performing NLP model incorporated features from both structured data, regular expression con‑
cepts, and mapped concept unique identifiers (CUIs) and showed improved F measure in both the NMEDW (0.41 vs 
0.79) and VUMC (0.52 vs 0.93) datasets compared to the baseline lupus nephritis algorithm.

Conclusion Our NLP MetaMap mixed model improved the F‑measure greatly compared to the structured data 
only algorithm in both internal and external validation datasets. The NLP algorithms can serve as powerful tools 
to accurately identify lupus nephritis phenotype in EHR for clinical research and better targeted therapies.

Keywords Natural language processing, Electronic health records, Computational phenotyping, Lupus nephritis

Introduction
Systemic Lupus Erythematosus (SLE) is an autoimmune 
disease that has diverse manifestations, resulting in sig-
nificant morbidity and mortality [1, 2]. While many auto-
immune diseases, such as rheumatoid arthritis, have 
benefitted from new classes of medications, SLE has seen 
few advancements in therapy in the last 50  years [3]. It 
has been hypothesized that the heterogeneity of SLE 
presentations may make it challenging to understand 
therapeutic responses across the full scope of SLE pres-
entations and that observational cohort studies and clini-
cal trials would benefit from targeting subpopulations 
with similar disease presentations [4]. Recently, the Food 
and Drug Administration has approved two new medi-
cations for use in managing lupus nephritis, increasing 
the urgency of identifying lupus nephritis in people with 
SLE to ensure the new therapeutics can be targeted to 
these patients to help reduce kidney damage and improve 
long term outcomes [5]. Classification criteria for SLE 
describe a broad range of evidence-based clinical and 
laboratory descriptors. There are three criteria currently 
in use: 1) the set developed in 1982 and revised in 1997 
by the American College of Rheumatology (ACR) [6], 
2) the set developed by the System Lupus International 
Collaborating Clinics in 2012 (SLICC) [2], and 3) the set 
developed by the European League Against Rheumatism 
/ American College of Rheumatology (EULAR/ACR) cri-
teria set [7]. Lupus nephritis is one of the most common 
and severe manifestations of SLE. Approximately 40% of 
SLE patients develop lupus nephritis [8] and it is included 
in all three classification criteria sets. In both the SLICC 
and EULAR/ACR criteria, one way to be classified as 
“definite lupus” is having a positive anti-nuclear anti-
body/anti-dsDNA screen in the presence of renal biopsy-
proven lupus nephritis [2, 7]. Thus, lupus nephritis is a 
critical attribute to describe for clinical and research 
applications and the identification of SLE subpopula-
tions, but often it requires time consuming chart adjudi-
cation to identify patients who satisfy this criterion.

Electronic health records (EHRs) are a readily avail-
able data source that includes a record of clinical care 
and procedures, diagnoses, laboratory test results, medi-
cation orders, and clinical notes for describing disease 

manifestations in persons with SLE. EHRs have been 
demonstrated useful in genome association studies, 
drug comparative effectiveness studies [9, 10], and oth-
ers. However, a large amount of information in the EHR, 
such as histology notes for kidney biopsies, is generally 
only located in text-based notes from which it is chal-
lenging to extract information using simple rule-based 
identification algorithms and text string searches [11, 
12]. Several prior studies developed algorithms to iden-
tify lupus nephritis using administrative claims data 
[13]. Chibnik et  al. identified lupus nephritis in claims 
data and reached a positive predictive value (PPV) of 
88% but sensitivity and specificity were not mentioned 
[14]. Li et al. used various combinations of International 
Classification of Diseases (ICD) codes to identify lupus 
nephritis [15]. Their algorithm achieved good sensitivity 
and specificity but a low positive predictive value (PPV) 
of 63.4%. Most of these studies only used structured data 
(i.e. ICD codes, laboratory test value), and the algorithms 
were often not validated in an external dataset [14, 15]. 
Thus, correctly identifying lupus nephritis from EHR 
for large cohort studies, in addition to identifying criti-
cal procedures, diagnoses and lab results, also requires 
the development of natural language processing (NLP) 
tools that can utilize histology reports and clinical notes. 
Previously, studies with other structured data-based con-
cepts (e.g. multiple sclerosis, rheumatoid arthritis) have 
demonstrated that NLP can significantly improve rate of 
identification [11, 16].

In this study, we focus on the identification of lupus 
nephritis in the SLICC criteria in EHR data using 
NLP technologies to mine clinical notes and pathol-
ogy reports. To do this, we compared algorithms for the 
identification of lupus nephritis based on structured data 
alone to four different NLP models to determine whether 
NLP could improve identification of persons with lupus 
nephritis. Our approach facilitates accurate identifica-
tion of lupus nephritis in the EHR, enabling research-
ers to better understand patients’ SLE characteristics 
and serving as a foundation for lupus nephritis-related 
large cohort observational studies and clinical trials. 
We trained and evaluated the performance of all four 
algorithms in a dataset from Northwestern Medicine 
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Electronic Data Warehouse (NMEDW) and then further 
validated the performance in an external dataset from 
Vanderbilt University Medical Center (VUMC).

Methods
Data source
The Chicago Lupus Database (CLD), established in 1991, 
is a registry database specifically designed for lupus 
related studies. It is a physician validated registry of 1,052 
patients with possible or definite lupus according to the 
1982 American College of Rheumatology classification 
criteria revised in 1997 [17, 18]. The patients in the CLD 
met at least three ACR criteria (step 1 in Fig. 1). Among 
the 1052 patients in the CLD, 878 patients had definite 
lupus according to the Systemic Lupus International Col-
laborating Clinics (SLICC) classification criteria (step 
2 in Fig.  1) [2]. Among these patients, 178 have lupus 
nephritis according to the definition in SLICC. The pres-
ence or absence of lupus nephritis in patients in the CLD 
is verified by the physician chart review.

The Northwestern Medicine Electronic Data Ware-
house (NMEDW) is the primary data repository for all 
the medical records of patients who receive care within 
the Northwestern Medicine system [19]. Established in 
2007, the NMEDW contains records for over 3.8 million 
patients, with most EHR data going back to at least 2002, 
and with some billing claims data going back to 1998 or 
earlier. By linking patients in the CLD to patient records 
in the NMEDW through their medical record numbers, 
we identified 818 definite SLE patients based on SLICC 
criteria who were both in the CLD and the NMEDW (see 
step 3 in Fig. 1). To ensure our patient cohort has suffi-
cient depth of data in both data sources, we excluded 
any patients who had less than four clinical encounters 
documented in the NMEDW [20, 21], reducing the final 
case cohort size to 472 (see step 4 in Fig. 1). All inpatient 
and outpatient notes from transplant, nephrology, and 
rheumatology departments were retrieved. The retrieved 
clinical narratives included pathology reports, progress 
notes, consult notes, and discharge notes.

Algorithm development
In this study, we focus on identifying renal criterion/
lupus nephritis in the SLICC classification which is 
defined as “having a urine protein/creatinine ratio (or 
24-h urine protein collection) equivalent to 500  mg of 
protein per 24-h period, or red blood cell casts in the 
urine” [2]. The renal criterion/lupus nephritis in the 
SLICC classification includes both biopsy-proven and 
non-biopsy-proven nephritis. To set up the gold standard 
label for lupus nephritis, the physicians in our team who 
are expert clinicians on lupus, performed chart review 
using data from the CLD which has more in-depth infor-
mation on lupus related information compared to EHR 
data. The physicians also excluded other causes of glo-
merular disease when adjudicating the diagnosis of lupus 
nephritis.

We developed five algorithms (see Table 1 for the over-
view of the five algorithms) to identify lupus nephri-
tis from SLE patients’ EHR data including a baseline 
algorithm that used only structured data and four NLP 
models that used structured data and clinical notes. In 
the baseline algorithm, a patient is classified as lupus 
nephritis based on ICD9/10 diagnosis codes and labora-
tory test results. The details of the structured data used 
in the baseline algorithm are shown in Additional file 1: 
Table  S1. For the NLP models, following the steps in 
Zeng et  al. [22–24], we extracted different feature sets 
for model implementation including concept unique 
identifier (CUI) features and regular expression (regex) 
matches from the notes. For the CUI features, we first 
preprocessed the notes by removing duplicated records 
and tokenizing sentences. We then applied MetaMap to 
annotate medical concepts in each sentence [25]. Meta-
Map is an NLP application that maps biomedical text to 
the Unified Medical Language System (UMLS) Metathe-
saurus and assigns a CUI to each word or term [26]. Any 
CUIs recognized as being negated by MetaMap (i.e., “no 
glomerulonephritis”) were excluded. For regex features, 
five concepts were used as features, including nephritis 
class II, nephritis class III, nephritis class IV, nephritis 

Fig. 1 SLE case cohort selection process. We identified 1052 SLE patients who met at least 3 ACR criteria based on physician chart review. Among 
these 1052 patients, we further identified 878 patients who also met SLICC classification criteria. Among the 878 patients, 818 patients were 
in NMEDW. We further restricted our study cohort to patients who had at least 4 encounters in the NMEDW which left 472 patients in the final 
cohort. Abbreviations: ACR criteria, American College of Rheumatology Classification Criteria; CLD, Chicago Lupus Database; SLE, systemic lupus 
erythematosus; NMEDW, Northwestern Medicine Enterprise Data Warehouse
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class V, and proteinuria. We developed regular expres-
sion patterns to search for text related to the five con-
cepts (see Additional file 1: Table S1 for the list of regex 
patterns). We built four NLP models using different 
feature sets. In the first NLP model, we implemented 
rule-based algorithm using both regex features and 
structured data. A patient is classified as lupus nephri-
tis if they have any match for the regex patterns, ICD 
9/10 codes, or laboratory test of interest (see Additional 
file 1: Table S1, S2). For the other three NLP models, we 
implemented an L2-regularized logistic regression classi-
fier. We chose L2-regularized logistic regression because 
it can handle high dimensional feature space and multi-
collinearity problems by penalizing its coefficients in the 
loss function. In addition, the model is straightforward, 
and model output is easy to interpretate. We tried both 
L1 and L2-regularized logistic regression and selected 
the latter because it generates equivalent if not superior 
performance compared to L1-regularized logistic regres-
sion in our NU dataset. In the first L2-regularized logis-
tics regression-based NLP model– the full MetaMap 
(binary) model, all positive mentioned MetaMap CUIs 
were used as binary type features. In the second L2-reg-
ularized logistics regression-based NLP model– the full 
MetaMap (count) model, the number of occurrences for 
every positive mapped CUIs were used as features. The 
minimum document frequency was set as 30 and 40 in 
MetaMap (binary) model and MetaMap (count) model, 
respectively to avoid feature sparsity. The frequencies 
were chosen by trying a list of frequencies and the ones 
generated the highest F measure were selected. In the last 
L2-regularized logistics regression-based NLP model– 
the MetaMap mixed model, we used a mixture of lupus 
nephritis related CUIs, structured data, and regex con-
cepts as features. The CUIs include C0024143, C0268757, 
C0268758, C4053955, C4053958, C4053959, C4054543 
(see Additional file 1: Table S3 for each CUI definition). 
For the structured data component, a single binary fea-
ture is used. A patient is indicated to be positive for the 
structured data feature if he/she is predicted positive in 

the baseline algorithm. There were 13 variables in total 
for the MetaMap mixed model including 7 features from 
CUIs, 5 lupus nephritis related concepts for regex expres-
sion search, and 1 feature from structured data.

Model training and evaluation
We split the data from NMEDW into training (75%) and 
testing datasets (25%). In the training dataset, to get the 
optimal hyperparameter, we used grid search on param-
eter C, which is the inverse of regularization strength, 
ranging from 1e-5 to 1e5 with interval spacing equal to 
10. For the L2-regularized logistics regression-based NLP 
models, we selected “sag” method as our optimizer [27]. 
We set the class weight as balanced to adjust for dispro-
portionate class frequencies. Parameters that generated 
the best accuracy were retained. We evaluated our model 
in the testing set (internal validation) based on sensitivity, 
specificity, PPV, negative predictive value (NPV), F meas-
ure, and area under the curve (AUC). We further explored 
feature contribution by extracting the top 5 features with 
the highest positive coefficient in MetaMap (binary), Met-
aMap (count), and MetaMap mixed model, respectively. 
We also evaluated feature importance by generating mean 
absolute Shapley value (SHAP) plots. L2-regularized logis-
tic regression was conducted using ‘scikit-learn’ library in 
Python, version 3.7.3. Regular expression was performed 
using ‘re’ package in Python, version 3.7.3 [27, 28]. Shap-
ley value was generated using ‘shap’ package in Python, 
version 3.7.3. SHAP plot was generated using ‘matplotlib’ 
package in Python, version 3.7.3.

External validation
We further validated both the baseline algorithm, and 
the best performing NLP model (based on results from 
the testing set at Northwestern University site) in an 
external validation dataset at Vanderbilt University Med-
ical Center (VUMC), a regional, tertiary care center [29, 
30]. The VUMC data warehouse contains over 3.2 mil-
lion subjects with de-identified clinical records from 
the EHR collected across the past several decades. We 

Table 1 Algorithm description

Algorithm name Classification model Description

Baseline algorithm Rule‑based A patient is confirmed to have lupus nephritis if he/she has proteinuria > 0.5 mg 
in laboratory test or has ICD 9/10 diagnosis code for lupus nephritis.

Full MetaMap model (binary) L2‑regularized logistic regression Features are the non‑negative mention of MetaMap CUIs. We treated CUIs as binary 
variables and fitted L2‑regularized logistic regression to predict lupus nephritis.

Full MetaMap model (count) L2‑regularized logistic regression The same as the full MetaMap model (binary) except that MetaMap CUIs are treated 
as numeric variables representing the count of instances each concept is mentioned 
in the clinical text.

MetaMap mixed model L2‑regularized logistic regression There are 13 features in this model including 7 CUI features, 5 RegEx concepts, and 1 
feature from structured data.
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first performed a simple SLE phenotyping algorithm 
based on SLE ICD9/10 codes to get a SLE cohort (not 
chart reviewed) on which to run our lupus nephritis 
algorithm. We then randomly selected 75 patients on 
which to evaluate our lupus nephritis algorithm. A rheu-
matologist manually reviewed the chart for these 75 
patients. Among these patients, there were 18 patients 
with definite lupus, 1 with possible SLE, and 56 with no 
SLE. Among these 75 patients, there were 14 patients 
with lupus nephritis all of whom had definite lupus and 
61 patients without. We evaluated the F measure, sen-
sitivity, specificity, PPV, and NPV for the lupus nephri-
tis baseline algorithm and NLP model with the highest 
F measure based on the results from the Northwestern 
University (NU) dataset. F measure evaluates the accu-
racy of the algorithm, it is calculated as the following:

F measure =
2 ∗ precision ∗ recall

precision + recall
,

Here precision and recall are also known as PPV and 
sensitivity, respectively.

Results
Among the 472 SLE patients at NU, there were 178 
patients (37.7% of the cohort) who developed lupus 
nephritis. The average number of notes per patient is 
68.58 (standard deviation [SD] = 59.37). The distribution 
of the number of notes for the patient cohort is shown in 
Fig. 2. Out of the 472 patients, 206 had ICD codes related 
to lupus nephritis, 4 had red blood cell cast test, and 230 
had urine protein test results available.

The performance for the five algorithms is shown 
in Table  2. All four NLP models have higher sensitiv-
ity, specificity, PPV, and NPV compared to the baseline 
algorithm using structured data alone. All the logistics 
regression-based NLP models had higher F measure 
compared to rule-based NLP model using structured 
data and regex patterns. The full MetaMap (binary) 

Fig. 2 Histogram of note count per patient for SLE patients

Table 2 Model performance

For logistic regression-based models, probability of 0.5 is used as the threshold for classification

Abbreviations: SLE systemic lupus erythematosus, NU Northwestern University, VUMC Vanderbilt University Medical Center, NLP natural language processing, PPV 
positive predictive value, NPV negative predicted value

Dataset Algorithm Sensitivity Specificity PPV NPV F Measure

NU (testing set) Baseline 0.43 0.6 0.39 0.64 0.41

NU (testing set) Regex + structured 0.49 0.93 0.81 0.76 0.61

NU (testing set) Full MetaMap (binary) 0.63 0.92 0.82 0.81 0.71

NU (testing set) Full MetaMap (counts) 0.6 0.95 0.88 0.80 0.71

NU (testing set) MetaMap mixed 0.74 0.92 0.84 0.86 0.79

VUMC Baseline 0.86 0.67 0.38 0.95 0.52

VUMC MetaMap mixed 0.93 0.98 0.93 0.98 0.93
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model has higher sensitivity compared to the full Met-
aMap (count) model, (0.63 vs 0.6), NPV (0.81 vs 0.8), 
and comparable F measure (0.71 vs 0.71). The MetaMap 
mixed model has higher sensitivity (0.74) and NPV 
(0.86) as well as F measure (0.79) compared to the other 
two models. Similarly, MetaMap mixed model has 
higher AUC (0.89) compared to full MetaMap (binary) 
(AUC = 0.85) and full MetaMap (count) (AUC = 0.84) 
model (see Fig.  3). Therefore, we selected the Meta-
Map mixed model as the final NLP model to be vali-
dated at VUMC in addition to the baseline algorithm. 
In the VUMC dataset, which included 75 patients, the 
MetaMap mixed model has higher sensitivity, specific-
ity, PPV, and NPV compared to the baseline algorithm. 
The F measure improved from 0.52 to 0.93 as shown in 
Table 2.

In terms of feature importance, the top 5 features with 
the highest positive coefficient for each classifier are 
shown in Table 3. C0024143 (lupus nephritis) appears to 
have high positive coefficient in all three L2-regualrized 

classifiers. C1962972 (proteinuria finding) are the 4th 
highest positive coefficient in both MetaMap (binary) 
and MetaMap (count) model. Our full MetaMap mod-
els are able to pick up many important lupus nephri-
tis related concepts such as kidney disease, proteinuria, 
lupus nephritis as high coefficient features. The SHAP 
plot shows the top 10 most important features for classi-
fication in each model. As shown in Figs. 4, 5 and 6, most 
of the important features are related to lupus nephritis 
clinically.

Discussion
In this study, we developed five algorithms to identify 
lupus nephritis: a baseline algorithm using structured 
data only, a rule-based model using regex and structured 
data, a full MetaMap model with binary features, a full 
MetaMap model with count features, and a MetaMap 
mixed model. In the NU testing dataset, the MetaMap 
mixed model outperformed (F measure = 0.79) both the 
baseline algorithm (F measure = 0.41) and the other two 

Fig. 3 Area under the curve (AUC) for Full MetaMap (binary), Full MetaMap (counts), and MetaMap mixed model in NU testing set

Table 3 Top 5 positive coefficient for each classifier

Features are ranked by the value of their associated coefficients

RENAL renal indictor from structured data only, gm gram

Coefficient 
ranking

Full MetaMap (binary) Full MetaMap (count) MetaMap Mixed

Feature, definition Coefficient Feature, definition Coefficient Feature, definition Coefficient

1 C0027697, nephritis 0.04 C0022646, kidney 5.01 C0024143, lupus nephritis 1.26

2 C0024143, lupus nephritis 0.04 C0024143, lupus nephritis 4.79 ‘RENAL’ 0.64

3 C0022658, kidney disease 0.03 C0033687, proteinuria 3.58 ‘nephritis class IV’ 0.54

4 C1962972, proteinuria finding 0.03 C1962972, proteinuria finding 3.53 ‘proteinuria > 0.5 gm’ 0.45

5 C003368, sultroponium 0.03 C1707664, Delayed Release Dosage 
Form

3.52 C4053955, SLE class IV 0.25
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NLP models (F measure = 0.71, 0.71 respectively). In the 
VUMC validation dataset, the MetaMap mixed model 
significantly improved the F measure over the baseline 
algorithm (0.93 versus 0.52).

Error analysis
In the MetaMap mixed model, we investigated 10 SLE 
patients in the training set that were wrongly classified 
by L2-regularized logistic regression. One patient was 

Fig. 4 SHAP plot for full MetaMap (binary) model with SHAP feature importance measured as the mean absolute Shapley values. The Features are ordered 
according to their importance. The SHAP bar plot shows global importance of each feature which is taken to be the mean absolute SHAP value for that feature 
over all the given samples. The most important feature in this plot is C0027697 which has a global importance of 0.083 compared to an average feature global 
importance of 0.006. C0027697: nephritis; C0024143: lupus nephritis; C0194073: kidney biopsy; C0033687: proteinuria; C0022658: kidney diseases; C1318439: 
urine creatinine measurement; C045555: H/O: nephritis; C0428283: urine creatinine level finding; C0262923: Urine protein test

Fig. 5 SHAP plot for full MetaMap (count) model with SHAP feature importance measured as the mean absolute Shapley values. The Features 
are ordered according to their importance. The SHAP bar plot shows global importance of each feature which is taken to be the mean absolute 
SHAP value for that feature over all the given samples. The most important feature in this plot is C1318439 which has a global importance of 0.069 
compared to an average feature global importance of 0.005. C1318439: Urine creatinine measurement; C0428283: Urine creatinine level finding; 
C1962972: Proteinuria, CTCAE 3.0; C0033687: Proteinuria; C0262923: Urine protein test; C0027697: Nephritis; C0991510: Foam drug form; C0280592: 
doxorubicin/fluorouracil/mitomycin/vincristine protocol; C0022359: jaw. C0750394: white blood cell count decreased
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wrongly predicted as negative for lupus nephritis with a 
0.49 probability of having lupus nephritis. In the feature 
set the algorithm identified, the patient was positive for 
CUI C002413 (glomerulonephritis in the context of sys-
temic lupus erythematosus) and was negative for all the 
other features. It was mentioned in the notes that the 
patient had ‘stage 2 LN’. Lupus nephritis class II is one of 
the features used in our algorithm. However, our regex 
did not include this specific variation of wording for lupus 
nephritis class II. This pattern could be incorporated in 
the NLP in the future to improve algorithm performance.

In another example, a 26-year-old female was wrongly 
predicted as positive for lupus nephritis with a prob-
ability of 0.53 of having lupus nephritis. In the feature 
set the algorithm identified, the patient was positive for 
C0024143 (glomerulonephritis in the context of systemic 
lupus erythematosus) and proteinuria features both of 
which were positively associated with lupus nephritis. 
Our algorithm showed that the patient had matched for 
‘proteinuria > 0.5’ in the notes which was in the context 
of ‘negative renal disorder: either persistent proteinuria 
(> 0.5 g/day or +  + +) or cellular casts’. Our regex pattern 
was not able to capture the negation at the beginning of 
the sentence. Therefore, it falsely predicted the patient as 
positive for lupus nephritis.

All NLP models outperformed the baseline algo-
rithm in the NU testing (internal validation) dataset. 

In the baseline model, 20/35 lupus nephritis patients 
were wrongly classified as non-lupus nephritis patients, 
while the MetaMap mixed model reduced the misclas-
sified cases to 9/35. The baseline algorithm relies solely 
on ICD 9/10 diagnosis and laboratory test results. In the 
baseline rule-based algorithm, laboratory tests missing 
from the EHR largely influenced the performance. In the 
NLP MetaMap mixed model, using features from multi-
ple modalities (EHR notes-derived regex, CUIs features, 
laboratory tests, and ICD codes) that complement each 
other, and a penalized logistic regression model improved 
the accuracy and generalizability of the model. As part 
of the future work, we plan to apply advanced imputa-
tion methods [31, 32] to fill in missing laboratory tests in 
order to further improve the phenotyping performance.

Limitations
Our study has certain limitations. Firstly, even though 
we had physician adjudication to set up gold standard 
label, this could still be imperfect in the cases of lack 
of patient biopsy or other information to identify the 
true label of lupus nephritis. Although, the impact of 
such was minimized by using the CLD registry as the 
data source which has more in-depth lupus related 
information compared to EHR data and can help more 
accurately set up the gold standard label. Secondly, we 
only had 75 patients in the VUMC validation dataset. 

Fig. 6 SHAP plot for MetaMap mixed model with SHAP feature importance measured as the mean absolute Shapley values. The Features are 
ordered according to their importance. The SHAP bar plot shows global importance of each feature which is taken to be the mean absolute SHAP 
value for that feature over all the given samples. The most important feature in this plot is renal_C002413 which has a global importance of 0.916 
compared to an average feature global importance of 0.192. RENAL: renal indictor from structured data; renal_C4054543: membranous lupus 
nephritis; renal_C0268758: SLE glomerulonephritis syndrome, WHO class V; renal_C4053955: Systemic Lupus Erythematosus Nephritis Class IV; 
renal_C4053959: Systemic Lupus Erythematosus Nephritis Class III
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This is due to limited resources for chart review. The 
prevalence of lupus nephritis is high among our lupus 
population in the external VUMC dataset. This is likely 
contributing to the fact that VUMC is a tertiary care 
center which has sicker patients and the small sam-
ple size which may increase the chance of sample bias. 
Future study is needed to further validate our algorithm 
performance in a larger external dataset.

Conclusion
In conclusion, we developed five algorithms, a struc-
tured data only algorithm and four NLP models, to 
identify lupus nephritis phenotypes. We evaluated the 
algorithms in an internal and an external validation 
dataset. All four NLP models outperformed the base-
line algorithm in the internal validation dataset. In the 
external validation dataset, our NLP MetaMap mixed 
model improved the F-measure greatly compared to the 
structured data only algorithm. Our NLP algorithms 
can serve as powerful tools to accurately identify lupus 
nephritis phenotype in EHR for clinical research and 
better targeted therapies.

Abbreviations
SLE  Systemic lupus erythematosus
EHRs  Electronic health records
NLP  Natural language processing
NMEDW  Northwestern Medicine Enterprise Data Warehouse
VUMC  Vanderbilt University Medical Center
CUI  Concept unique identifier
ACR   American College of Rheumatology
SLICC  System Lupus International Collaborating Clinics
EULAR/ACR   European League Against Rheumatism / American College of 

Rheumatology
ICD  International Classification of Disease
PPV  Positive predictive value
NPV  Negative predictive value
CLD  Chicago Lupus Database
Regex  Regular expression
UMLS  Unified Medical Language System (UMLS) Metathesaurus
NU  Northwestern University

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12911‑ 024‑ 02420‑7.

Additional file 1: Table S1. ICD‑9/10 codes and LOINC codes used for 
baseline algorithm. Table S2. Regex concepts and their associated search‑
ing keywords for lupus nephritis. Table S3. CUIs and their definition.

Acknowledgements
Not applicable.

About this supplement
This article has been published as part of BMC Medical Informatics and 
Decision Making Volume 22 Supplement 2, 2022: Selected articles from the 
International Conference on Intelligent Biology and Medicine (ICIBM 2021): 
medical informatics and decision making. The full contents of the supplement 
are available online at https:// bmcme dinfo rmdec ismak. biome dcent ral. com/ 
artic les/ suppl ements/ volume‑ 22‑ suppl ement‑2.

Authors’ contributions
YD led the study, performed all data analyses, and wrote the manuscript. YL 
and TW designed the study. YL and TW supervised the project. RRG provided 
clinical expertise on interpreting the data. JAP coordinated the project, 
assisted with the design of the algorithms, implemented the algorithm with‑
out NLP, and provided expertise in EHR data analysis. RRG, TW, AC, AB, WW, 
and CD made substantial contribution to the data acquisition. AG assisted 
to develop structured data only and regex‑based algorithms. All the other 
authors read, edited, and approved the final manuscript.

Funding
This work was supported by National Institute of Arthritis and Musculoskeletal 
and Skin Diseases (NIAMS 5R21AR072263), NIH/NIAMS R61 AR076824‑01, NIH/
NIAMS 1K08 AR072757‑01 and Rheumatology Research Foundation K Supple‑
ment Award. This project is part of the Phase III of the eMERGE Network was ini‑
tiated and funded by the NHGRI through the following grants: U01HG008672 
(Vanderbilt University Medical Center); U01HG008680 (Columbia University 
Health Sciences); and U01HG008673 (Northwestern University). The publication 
fee will be charged through the eMERGE funding (U01HG008673). The funding 
body does not take part in the design of the study and collection, analysis, and 
interpretation of data and writing the manuscript.

Availability of data and materials
The datasets generated and analyzed during the current study are not pub‑
licly available due to protected patient information but are available from the 
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
This study was a retrospective study of existing records. Ethics approval was 
provided by Northwestern University Institutional Review Board and Vander‑
bilt University Institutional Review Board.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Center for Health Information Partnerships, Feinberg School of Medicine, 
Northwestern University, Chicago, USA. 2 Center for Genetic Medicine, Fein‑
berg School of Medicine, Northwestern University, Chicago, USA. 3 Department 
of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA. 
4 Department of Medicine, Vanderbilt University Medical Center, Nashville, USA. 
5 Department of Biomedical Informatics, Columbia University, New York City, 
USA. 6 Department of Medicine/Rheumatology, Feinberg School of Medicine, 
Northwestern University, Chicago, USA. 

Received: 9 April 2021   Accepted: 9 January 2024

References
 1. Almaani S, Meara A, Rovin BH. Update on lupus nephritis. Clin J Am Soc 

Nephrol. 2017;12(5):825–35. https:// doi. org/ 10. 2215/ CJN. 05780 616.
 2. Petri M, et al. Derivation and validation of the systemic lupus international 

collaborating clinics classification criteria for systemic lupus erythematosus. 
Arthritis Rheum. 2012;64(8):2677–86. https:// doi. org/ 10. 1002/ art. 34473.

 3. Dörner T, Furie R. Novel paradigms in systemic lupus erythematosus. Lan‑
cet. 2019;393(10188):2344–58. https:// doi. org/ 10. 1016/ S0140‑ 6736(19) 
30546‑X.

 4. Murphy G, Isenberg DA. New therapies for systemic lupus erythematosus 
— past imperfect, future tense. Nat Rev Rheumatol. 2019;15(7):403–12. 
https:// doi. org/ 10. 1038/ s41584‑ 019‑ 0235‑5.

 5. FDA approves first oral therapy for lupus nephritis. https:// www. hcpli ve. 
com/ view/ fda‑ appro ves‑ first‑ oral‑ thera py‑ voclo sporin‑ for‑ lupus‑ nephr 
itis. Accessed 23 Jan 2024.

https://doi.org/10.1186/s12911-024-02420-7
https://doi.org/10.1186/s12911-024-02420-7
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-22-supplement-2
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-22-supplement-2
https://doi.org/10.2215/CJN.05780616
https://doi.org/10.1002/art.34473
https://doi.org/10.1016/S0140-6736(19)30546-X
https://doi.org/10.1016/S0140-6736(19)30546-X
https://doi.org/10.1038/s41584-019-0235-5
https://www.hcplive.com/view/fda-approves-first-oral-therapy-voclosporin-for-lupus-nephritis
https://www.hcplive.com/view/fda-approves-first-oral-therapy-voclosporin-for-lupus-nephritis
https://www.hcplive.com/view/fda-approves-first-oral-therapy-voclosporin-for-lupus-nephritis


Page 10 of 10Deng et al. BMC Medical Informatics and Decision Making          (2022) 22:348 

 6. Hochberg MC. Updating the American College of Rheumatology revised 
criteria for the classification of systemic lupus erythematosus. Arthritis 
Rheum. 1997;40(9):1725. https:// doi. org/ 10. 1002/ art. 17804 00928.

 7. Aringer M, et al. 2019 European league against rheumatism/American 
college of rheumatology classification criteria for systemic lupus erythe‑
matosus. Ann Rheum Dis. 2019;78(9):1151–9. https:// doi. org/ 10. 1136/ 
annrh eumdis‑ 2018‑ 214819.

 8. Hoover PJ, Costenbader KH. Insights into the epidemiology and manage‑
ment of lupus nephritis from the US rheumatologist’s perspective. Kidney 
Int. 2016;90(3):487–92. https:// doi. org/ 10. 1016/j. kint. 2016. 03. 042.

 9. Deng Y, Ghamsari F, Lu A, Yu J, Zhao L, Kho AN. Use of real‑world evidence 
data to evaluate the comparative effectiveness of second‑line type 2 
diabetes medications on chronic kidney disease. J Clin Transl Endocrinol. 
2022;30:100309.

 10. Deng Y. Advancing computational methods to derive insights from real‑
world health data. Doctor, Northwestern University, ProQuest Disserta‑
tions and Theses database. 2022.

 11. Zeng Z, Deng Y, Li X, Naumann T, Luo Y. Natural language processing for 
EHR‑based computational phenotyping. IEEE/ACM Trans Comput Biol 
Bioinform. 2019;16(1):139–53. https:// doi. org/ 10. 1109/ TCBB. 2018. 28499 68.

 12. Luo Y, Uzuner O, Szolovits P. Bridging semantics and syntax with graph 
algorithms‑state‑of‑the‑art of extracting biomedical relations. Brief Bioin‑
form. 2017;18(4):722. https:// doi. org/ 10. 1093/ bib/ bbx048.

 13. Moores KG, Sathe NA. A systematic review of validated methods for iden‑
tifying systemic lupus erythematosus (SLE) using administrative or claims 
data. Vaccine. 2013;31(Suppl 10):K62‑73. https:// doi. org/ 10. 1016/j. vacci ne. 
2013. 06. 104.

 14. Chibnik LB, Massarotti EM, Costenbader KH. Identification and validation 
of lupus nephritis cases using administrative data. Lupus. 2010;19(6):741–
3. https:// doi. org/ 10. 1177/ 09612 03309 356289.

 15. Li T, et al. Development and validation of lupus nephritis case definitions 
using United States veterans affairs electronic health records. Lupus. 
2021;30(3):518–26. https:// doi. org/ 10. 1177/ 09612 03320 973267.

 16. Liao KP, Cai T, Savova GK, Murphy SN, Karlson EW, Ananthakrishnan AN, 
et al. Development of phenotype algorithms using electronic medical 
records and incorporating natural language processing. BMJ. 2015;350. 
https:// www. bmj. com/ conte nt/ 350/ bmj. h1885. full.

 17. Chicago Lupus Database: Systemic Lupus Research Studies: Feinberg 
School of Medicine: Northwestern University. https:// www. lupus. north 
weste rn. edu/ resea rch/ cld. html. Accessed 23 Jan 2024.

 18. Hochberg MC. Updating the American College of Rheumatology revised 
criteria for the classification of systemic lupus erythematosus. Arthritis 
and Rheumatism. 1997;40(9):1725.

 19. Northwestern Medicine Enterprise Data Warehouse (NMEDW): Research: 
Feinberg School of Medicine: Northwestern University. https:// www. feinb erg. 
north weste rn. edu/ resea rch/ cores/ units/ edw. html. Accessed 23 Jan 2024.

 20. Rasmussen LV, et al. Design patterns for the development of electronic 
health record‑driven phenotype extraction algorithms. J Biomed Inform. 
2014;51:280–6. https:// doi. org/ 10. 1016/j. jbi. 2014. 06. 007.

 21. Zhong Y, Rasmussen L, Deng Y, Pacheco J, Smith M, Starren J, et al. 
Characterizing design patterns of EHR‑driven phenotype extraction 
algorithms. In: 2018 IEEE International Conference on Bioinformatics and 
Biomedicine (BIBM). IEEE; 2018. p. 1143–6. https:// ieeex plore. ieee. org/ 
abstr act/ docum ent/ 86212 40/.

 22. Zeng Z, et al. Using natural language processing and machine learning to 
identify breast cancer local recurrence. BMC Bioinformatics. 2018;19(17):65–74.

 23. Zeng Z et al. Identifying breast cancer distant recurrences from electronic 
health records using machine learning. J Healthc Inform Res. 2019:1–17. 
https:// doi. org/ 10. 1007/ s41666‑ 019‑ 00046‑3.

 24. Zeng Z, et al. Contralateral breast cancer event detection using natural 
language processing. In: AMIA Annual symposium proceedings. Ameri‑
can Medical Informatics Association; 2017. p. 1885–92. https:// www. ncbi. 
nlm. nih. gov/ pmc/ artic les/ PMC59 77664/.

 25. MetaMap ‑ a tool for recognizing UMLS concepts in text. https:// www. 
nlm. nih. gov/ resea rch/ umls/ imple menta tion_ resou rces/ metam ap. html. 
Accessed 23 Jan 2024.

 26. Unified Medical Language System (UMLS). https:// www. nlm. nih. gov/ 
resea rch/ umls/ index. html. Accessed 23 Jan 2024.

 27. sklearn.linear_model.Ridge — scikit‑learn 0.23.2 documentation.
 28. re — Regular expression operations — Python 3.9.2rc1 documentation.

 29. Vanderbilt University Medical Center. https:// www. vumc. org/ main/ home. 
Accessed 23 Jan 2024.

 30. Research Data Warehousing | Department of Biomedical Informatics. 
https:// www. vumc. org/ dbmi/ resea rch‑ data‑ wareh ousing. Accessed 23 
Jan 2024.

 31. Luo Y, Szolovits P, Dighe AS, Baron JM. 3D‑MICE: integration of cross‑sec‑
tional and longitudinal imputation for multi‑analyte longitudinal clinical 
data. J Am Med Inform Assoc. 2017;25(6):645–53. https:// doi. org/ 10. 1093/ 
jamia/ ocx133.

 32. Luo Y. Evaluating the state of the art in missing data imputation for clini‑
cal data. Brief Bioinform. 2021. https:// doi. org/ 10. 1093/ bib/ bbab4 89.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1002/art.1780400928
https://doi.org/10.1136/annrheumdis-2018-214819
https://doi.org/10.1136/annrheumdis-2018-214819
https://doi.org/10.1016/j.kint.2016.03.042
https://doi.org/10.1109/TCBB.2018.2849968
https://doi.org/10.1093/bib/bbx048
https://doi.org/10.1016/j.vaccine.2013.06.104
https://doi.org/10.1016/j.vaccine.2013.06.104
https://doi.org/10.1177/0961203309356289
https://doi.org/10.1177/0961203320973267
https://www.bmj.com/content/350/bmj.h1885.full
https://www.lupus.northwestern.edu/research/cld.html
https://www.lupus.northwestern.edu/research/cld.html
https://www.feinberg.northwestern.edu/research/cores/units/edw.html
https://www.feinberg.northwestern.edu/research/cores/units/edw.html
https://doi.org/10.1016/j.jbi.2014.06.007
https://ieeexplore.ieee.org/abstract/document/8621240/
https://ieeexplore.ieee.org/abstract/document/8621240/
https://doi.org/10.1007/s41666-019-00046-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977664/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5977664/
https://www.nlm.nih.gov/research/umls/implementation_resources/metamap.html
https://www.nlm.nih.gov/research/umls/implementation_resources/metamap.html
https://www.nlm.nih.gov/research/umls/index.html
https://www.nlm.nih.gov/research/umls/index.html
https://www.vumc.org/main/home
https://www.vumc.org/dbmi/research-data-warehousing
https://doi.org/10.1093/jamia/ocx133
https://doi.org/10.1093/jamia/ocx133
https://doi.org/10.1093/bib/bbab489

	Natural language processing to identify lupus nephritis phenotype in electronic health records
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Data source
	Algorithm development
	Model training and evaluation
	External validation

	Results
	Discussion
	Error analysis
	Limitations

	Conclusion
	Acknowledgements
	References


