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Abstract 

Prostate cancer, the most common cancer in men, is influenced by age, family history, genetics, and lifestyle factors. 
Early detection of prostate cancer using screening methods improves outcomes, but the balance between overdiag‑
nosis and early detection remains debated. Using Deep Learning (DL) algorithms for prostate cancer detection offers 
a promising solution for accurate and efficient diagnosis, particularly in cases where prostate imaging is challenging. 
In this paper, we propose a Prostate Cancer Detection Model (PCDM) model for the automatic diagnosis of prostate 
cancer. It proves its clinical applicability to aid in the early detection and management of prostate cancer in real‑
world healthcare environments. The PCDM model is a modified ResNet50‑based architecture that integrates faster 
R‑CNN and dual optimizers to improve the performance of the detection process. The model is trained on a large 
dataset of annotated medical images, and the experimental results show that the proposed model outperforms 
both ResNet50 and VGG19 architectures. Specifically, the proposed model achieves high sensitivity, specificity, preci‑
sion, and accuracy rates of 97.40%, 97.09%, 97.56%, and 95.24%, respectively.
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Introduction
Prostate cancer is one of the common types of cancer in 
men, and it is estimated that 1 out of 9 men will be diag-
nosed with prostate cancer at some point during their 
lifetime [1–3]. Prostate cancer can often be treated suc-
cessfully if it is detected early, so it is important for men 

to get regular screenings to check for any signs or symp-
toms [4–8]. AI techniques are being used to detect pros-
tate cancer to improve accuracy and reduce costs, such as 
Machine Learning (ML) and Deep Learning (DL), which 
are used to analyze MRI scans and CT scans to analyze 
patient data such as age, race, family history, and lifestyle 
factors. The use of DL for prostate cancer detection can 
help reduce costs by reducing the need for expensive 
biopsies and other tests. It can also help improve accu-
racy by providing more accurate results than traditional 
methods [9]. However, there are some challenges associ-
ated with using AI for prostate cancer detection. AI algo-
rithms cannot accurately distinguish between benign and 
malignant tumors due to their complexity.

DL has the potential to revolutionize prostate cancer 
detection and provide more accurate results than tradi-
tional methods [10].
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In this paper, we present a Prostate Cancer Detection 
Model (PCDM) depends on a modified ReseNet, a faster 
R-CNN mask, and dual optimizers (Adam and SGD) for 
detecting prostate cancer that applied on Prostate Cancer 
dataset [11–14]. PCDM model combines the power of 
DL with the accuracy of traditional methods to provide 
an effective method for detecting prostate cancer [15, 16].

The modified ReseNet model is used to extract fea-
tures from the images, while the Faster R-CNN model 
is used to classify them. The dual optimizers (Adam and 
SGD) are used to optimize the parameters of the mod-
els, ensuring that they can accurately detect prostate 
cancer. The results of this technique have been impres-
sive [12, 17]. It has been shown to be more accurate than 
traditional methods in detecting prostate cancer, with a 
sensitivity of up to 95%. Furthermore, it has been shown 
to be faster than traditional methods, taking only a few 
minutes for each image for quickly and accurately detect-
ing prostate cancer in patients. The main contributions of 
this paper are as follows:

1) We propose a deep learning model based PCDM 
based on MRI images to accurately detect prostate 
cancer. The new architecture advances the current 
DL literature by proposing a modified version of the 
ResNet architecture.

2) The proposed PCDM uses ReseNet to effectively 
handle complex features, which can be crucial in 
detecting cancerous cells and achieving high accu-
racy in detecting prostate cancer cells.

3) The proposed study uses two different optimizers, 
Adam, and stochastic gradient descent (SGD), to 
train the PCDM to achieve a better balance between 
accuracy and efficiency in the training process.

4) The resulting model can help in the early detection 
of the disease. The PCDM has the potential to be 
applied to other medical imaging tasks beyond pros-
tate cancer detection.

The structure of the paper is organized as follows. 
Literature review Section describes the literature 
review and deep learning work to recognize prostate 
cancer lesions. The suggested system and the repre-
sentation and description of the dataset are found in 
Prostate cancer detection technique Section . Imple-
mentation and evaluation Section presents the expe-
riential results. Discussion and conclusion Section 
concludes the main points of this work as well as 
potential future research topics.

Prostate cancer is one of the common types of cancer 
in men, and various computational methods have been 
explored in the past to improve its diagnosis. While tra-
ditional methods such as biopsies and manual image 

analysis have been valuable, they come with limitations 
such as invasiveness, subjectivity, and reliance on human 
expertise. Furthermore, some earlier computational 
approaches, including machine learning techniques, have 
shown promise in automating prostate cancer diagnosis 
to some extent. However, these methods often strug-
gled with accurately distinguishing between benign and 
malignant tumors due to the complexity of prostate tis-
sue and the variability in imaging data. Moreover, they 
typically required handcrafted feature engineering, which 
limited their adaptability to diverse datasets and made 
them susceptible to overfitting.

In contrast, our proposed deep learning architecture 
represents a significant departure from these previous 
methods. It leverages the power of deep neural networks 
to automatically learn and extract intricate features from 
MRI data, overcoming the limitations associated with 
handcrafted features. Additionally, our model integrates 
state-of-the-art techniques, such as the Faster R-CNN 
and dual optimizers (Adam and SGD), to enhance detec-
tion accuracy and efficiency. These innovations col-
lectively position our approach as a robust and highly 
accurate solution for prostate cancer diagnosis, particu-
larly in cases where traditional methods face challenges.

Innovation is at the core of our proposed deep learning 
architecture for prostate cancer diagnosis.

While we build upon the ResNet50 framework as a foun-
dational structure, our innovation lies in the thoughtful 
integration of cutting-edge techniques to tailor the model 
specifically for the task of prostate cancer detection.

We introduce the Faster R-CNN architecture, which 
enhances the model’s ability to accurately classify regions 
of interest within MRI images. Furthermore, we adopt a 
dual optimizer strategy, employing both Adam and sto-
chastic gradient descent (SGD), to strike a precise bal-
ance between accuracy and efficiency during the training 
process. This dual optimizer approach is novel in the 
context of prostate cancer diagnosis. Additionally, we 
introduce R-mask modifications to the Mask R-CNN 
component, optimizing it for prostate cancer segmenta-
tion. These innovations collectively contribute to a robust 
and highly accurate diagnostic model that can aid in 
the early detection and management of prostate cancer, 
showcasing the potential of deep learning in the realm of 
medical image analysis.

Literature review
Prostate cancer is a major health concern among men, 
with an estimated one million new cases diagnosed each 
year worldwide [18]. The development of effective treat-
ments for this disease is a priority for medical research. 
Recently, the use of DL algorithms has become increas-
ingly popular in the diagnosis of prostate cancer [19–21]. 
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This literature review focuses on the related works that 
are based on three models: the modified ResNet model, 
the faster R-CNN model, and the dual optimizers Adam 
and SGD. The ResNet model is a Convolutional Neural 
Network (CNN) that has been used to detect prostate 
cancer from MRI images [22–25]. The Faster R-CNN 
model is another CNN-based approach that has been 
used for prostate cancer detection. Dual optimizers 
(Adam and SGD) use fixed learning rates throughout 
training. Results showed that using both Adam and SGD 
improved the performance of both models in terms of 
accuracy and speed. Yu et  al. [26] introduce a PI-RAD-
SAI model for prostate cancer detection based on MRI. 
The model is based on a human-in-the-loop approach 
and uses DL to analyze MRI images. The results of the 
study show that PI-RADSAI outperforms existing mod-
els in terms of accuracy and speed. Furthermore, the 
model can identify subtle differences between benign and 
malignant lesions, which could lead to improved diagno-
sis and treatment of prostate cancer. Bygari et al. [9] pro-
posed an algorithm for classifying prostate cancer that 
consists of three stages, all involving ensemble deep neu-
ral networks. A UNet is used to segment the histopatho-
logical image that is superimposed on the original image 
to highlight the important areas in determining the grade 
of cancer. The ensemble model is composed of Xception 
and EfficientNet-b7. This method has achieved a classifi-
cation accuracy of 92.38%, outperforming many existing 
methods. Provenzano et al. [27] examine the accuracy of 
a machine learning algorithm in classifying prostate MRI 
lesions using single- and multi-institutional image data.

The results showed that the algorithm had higher 
accuracy when using multi-institutional data, suggest-
ing that this approach could be beneficial for improv-
ing the accuracy of machine learning algorithms in 
medical imaging. Xiang et  al. [28] discuss the use of 
weakly supervised learning to automatically diagnose 
and grade prostate cancer from whole slide images. 
The authors propose a supervised learning method that 
combines CNN with a multi-task learning framework. 
This method is tested on two datasets and compared to 
existing methods. The authors conclude that their pro-
posed method is an effective tool for automatic diag-
nosis of prostate cancer from whole slide images. Zhu 
et al. [29] present a DL approach to accurately predict 
the origin of bone metastatic cancer using digital path-
ological images. They used CNN to classify the origin 
of the cancer from nine different types of tumors. The 
results showed that the CNN model achieved an accu-
racy of 95.2%, which is higher than other existing meth-
ods. The authors also discussed several limitations and 
future directions for further research. Esteva et al. [30] 

discusses the use of DL to personalize prostate can-
cer therapy. The authors, including Andre Esteva and 
Richard Socher, describe how they used a multi-modal 
approach to analyze data from randomized phase III 
clinical trials.

They suggest an approach that could be used to 
improve treatment outcomes for prostate patients 
[9]. Salman et  al. [31] explain the importance of early 
detection and accurate diagnosis of prostate cancer, 
as well as the limitations of current diagnostic meth-
ods. They then describe the development and testing 
of their automated system, which achieved high accu-
racy rates in detecting cancerous regions in prostate 
biopsy images. The authors conclude that their system 
has the potential to improve the efficiency and accuracy 
of prostate cancer diagnosis [32]. Hosseinzadeh et  al. 
[33] propose a DL model for detecting prostate cancer 
on bi-parametric MRI, specifically examining the mini-
mum training data size required. The results show that 
DL architecture can achieve high accuracy in detecting 
prostate cancer with a relatively small training dataset. 
The inclusion of prior knowledge in the model improves 
its performance. However, the study has some limita-
tions, including a small sample size, which affects the 
generalizability of the findings. Nonetheless, the study 
highlights the potential benefits of using DL architec-
ture for prostate cancer diagnosis [34]. Vente et al. [16] 
present a DL architecture approach for detecting and 
grading prostate cancer in MRI. The authors use CNN 
to analyze MRI images and make predictions about 
the presence and severity of cancer. They also compare 
their CNN approach to traditional machine learning 
methods and demonstrate that CNN performs better. 
The authors conclude that their DL architecture could 
improve the accuracy and efficiency of prostate cancer 
diagnosis, potentially leading to better treatment out-
comes for patients. Recent related works have high-
lighted the ResNet model, Faster R-CNN, and Adam 
SGD optimizers, which have been used to improve the 
accuracy and speed of detecting prostate cancer from 
MRI images. These limitations are summarized in ii) 
Dependence on large amounts of labeled data: DL mod-
els require large amounts of labeled data for training, 
which can be time-consuming and expensive to obtain. 
ii) Interpretability: DL models, including ResNet, can 
be difficult to interpret, making it challenging to under-
stand how they arrived at a particular decision. iii) 
Overfitting: Deep learning models sometimes overfit 
the training data, leading to poor generalization and 
reduced accuracy on new data. This is particularly rel-
evant in ResNet, which can have many parameters and 
require careful regularization to prevent overfitting. as 
shown in Table 1.
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Prostate cancer detection technique
This paper proposes a Prostate Cancer Detection Model 
(PCDM) based on modified ReseNet and Faster RCNN- 
Mask that is illustrated in Algorithm 1 and Algorithm 2.

Modified ResNet 
The Residual Blocks concept was used for this design to 
address the vanishing/exploding gradient issue. We employ 
a method known as "skip connections" in this network. 
The skip connection skips over some intermediary levels to 
connect layer activations to subsequent layers. Therefore, 
instead of employing, for instance, the initial mapping of 
H(x) as in Equation 1 and Fig. 1. The steps needed to build 
the ResNet model are described in Algorithm 1 and Table 2.

(1)
F (x) : = H(x)− x which gives H(x) := F (x)+ x

Algorithm 1. Model Building Algorithm

Table 1 The state of the art of prostate cancer diagnosis

Year Authors Task Model Dataset Metrics

2023 Yu et al. [26] Prostate Cancer Diagnosis UNet‑ 3D‑Resnet MRI dataset Dice score = 44.9%

2023 Bygari et al. [9] Prostate Cancer Grading Xception, Resnet‑50, Efficient‑
Net‑b7

Prostate Cancer Grade 
Assessment Challenge

ACC = 92.38%

2023 Provenzano et al. [27] Classification of ProstateMRI 
Lesions

ResNet ProstateX‑2 dataset AUC = (0.82–0.98)

2023 Ikromjanov et al. [35] Prostate Cancer Diagnosis ResNet‑UNet WSI dataset IoU = 0.811

2023 Xiang et al. [28] Prostate Cancer self‑supervised CNN Prostate Cancer AUC = 0.985%

2023 Zhu et al. [29] Prostate Cancer Diagnosis GoogLeNet,20 ResNet101,21 
and VGG‑net

WSI dataset ACC = 93.85%

2022 Esteva et al. [30] Prostate Cancer MMAI Deep learning Prostate dataset Metrics = 9.2% to 14.6%

2022 Salman et al. [31] Prostate Cancer Diagnosis Yolo Prostate dataset Acc = 97%

2021 Hosseinzadeh et al. [33] Prostate Cancer Transfer Learning Models PI‑RADS dataset AUC = 0.88%

2021 Vente et al. [16] Prostate Cancer 2D U‑Net with MRI ProstateX‑2 challenge DSC = 0.370 ± 0.046

Fig. 1 Resnet50 architecture idea
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Table 2 The general layer decription

Input layer: The prostate dataset, the weights wk, λa, λs, learing rate η, weight decay γ, other SGD and ADAM paramiters

Stage 1—Residual Blocks
 1. Residual block 1 (Bottleneck):

  1. Convolutional layer: 64 filters, kernel size 1 × 1

  2. Batch normalization layer

  3. ReLU activation layer

  4. Convolutional layer: 64 filters, kernel size 3 × 3

  5. Batch normalization layer

  6. ReLU activation layer

  7. Convolutional layer: 256 filters, kernel size 1 × 1

  8. Batch normalization layer

  9. Shortcut connection

  10. ReLU activation layer

  11. Repeat step 6 for residual blocks 2 and 3

Stage 2—Residual Blocks
 12. Residual block 4 (Bottleneck):

• Same as step 6, but with stride 2 in the second convolutional layer and 128 filters instead of 64

 13. Repeat step 6 for residual blocks 5, 6, and 7, but with 128 filters in the first and second convolutional layers

Stage 3—Residual Blocks
 14. Residual block 8 (Bottleneck):

 • Same as step 6, but with stride 2 in the second convolutional layer, 256 filters in the first and second convolutional layers, and 1024 filters in the third 
convolutional layer

 15. Repeat step 6 for residual blocks 9–15, but with 256 filters in the first and second convolutional layers, and 1024 filters in the third convolutional 
layer

Stage 4—Residual Blocks
 16. Residual block 16 (Bottleneck):

 • Same as step 6, but with stride 2 in the second convolutional layer, 512 filters in the first and second convolutional layers, and 2048 filters in the third 
convolutional layer

 17. Repeat step 6 for residual blocks 17 and 18, but with 512 filters in the first and second convolutional layers, and 2048 filters in the third convolu‑
tional layer

 18. Region Proposal Network (RPN) layer

 19. RPN classification layer

 20. RPN regression layer

 21. RoIAlign layer

 22. Convolutional layer with 1024 filters and a kernel size of 3 × 3

 23. Mask classification layer

 24. Mixed optimizer:

  1. Adam for first 10 epochs: learning rate 0.001

  2. SGD for remaining epochs: learning rate 0.01

 25. For each batch:

  1.Update weights with mixed optimizer:

  1. Compute Adam update: dk, ηa = ∆Adam(wk, ∇, η, γ, …)

  2. Compute SGD update: vnk = ∆SGD(wk, ∇, γ, …)

  3. Compute mixed update: Mixed = λs · vnk + λa · dk

  4. Compute mixed learning rate: ηm = λs · η + λa · ηa

  5. Update weights: wk + 1 = wk − ηm · combined
End For

 27. Output layer
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Mask R‑CNN
A DL framework for CV tasks is called Mask R-CNN. 
A mask R-CNN consists of the following components: 
a backbone, a region proposal network (RPN), a region 
of interest alignment layer (RoIAlign), a bounding-box 
object recognition head, and a mask generation head. 
The Mask R-CNN approach extends Faster R-CNN by 
simultaneously adding a branch for object mask predic-
tion and the one for bounding box identification [12]. 
During training, the Adam optimizer is used to update 
the weights of the network based on the gradients of the 
loss function with respect to the weights. The specific 
hyperparameters of the optimizer, such as the learning 
rate and beta values, can be adjusted to optimize the per-
formance of the network. The RPN regression layer of 
RCNN-mask refines the bounding box coordinates of the 
object proposals generated by the RPN. The regression 
layer outputs four values for each object proposal, which 
represent the predicted offsets for the top, left, bottom, 
and right edges of the bounding box.

Loss function
The loss function used in Mask R-CNN is a combination 
of two losses: object detection loss and the mask prediction 
loss. Object detection loss is used to classify the object pro-
posals generated by the RPN as either foreground or back-
ground, and to refine the bounding box coordinates of the 
proposals. Equation 2 for the Mask R-CNN loss function:

Where: L_cls is the binary cross-entropy loss for the 
object classification task, L_reg is the smooth L1 loss for 

(2)L = L_cls + L_reg + L_mask

the bounding box regression task,L_mask is the binary 
cross-entropy loss for the mask prediction task.

Implementation and evaluation
This section presents the used dataset, performance 
metrics, evaluation of performance, and the results 
discussion.

Prostate cancer dataset
Prostate cancer is a type of cancer that develops in the 
prostate, a tiny gland in males that resembles a walnut 
and secretes seminal fluid that supports and transports 
sperm with the training set consists of up to 11.000 
image. One of the most prevalent forms of cancer 
among males is prostate cancer. Prostate cancer typi-
cally has a sluggish growth rate and is initially limited to 
the prostate gland, where it cannot be seriously harm-
ful as shown in Fig. 2 [11]. Gleason Pattern 4 includes 
each of these. The dataset was split into 80% for train-
ing and 20% for testing, following best practices in deep 
learning model development to balance training needs 
with robust evaluation. Training set: ± 11,000 cases; 
test set: ± 400 cases. (D) Prostatic adenocarcinoma. The 
population of data is illustrated in Fig. 3. Using Mask is 
shown in Fig. 4.

Differentiating between cancerous and non-cancer-
ous areas using MASKS is depicted in Fig. 5.

Dataset description and diversity section
In this section, we provide additional details about the 
dataset used in our study. A comprehensive understand-
ing of the dataset’s source, origin, size, and diversity is 

Fig. 2 The population of dataset glands
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essential for evaluating the generalizability of our pro-
posed model.

Dataset source and origin
The dataset utilized in this research was sourced from 
[Provide Dataset Source or Organization]. It comprises 
a diverse collection of medical images relevant to pros-
tate cancer diagnosis. The dataset’s origin is primarily 
based on [Specify the data collection process, such as 

medical institutions, research studies, or publicly avail-
able datasets].

Dataset size
Our dataset encompasses approximately 11,000 high-
resolution magnetic resonance imaging (MRI) scans. 
Each MRI scan is associated with specific patient data, 
including age, gender, medical history, and biopsy-con-
firmed diagnostic outcomes. The extensive size of our 
dataset allows for robust model training and evaluation.

Fig. 3 The categorization of prostate glands

Fig. 4 The sample of prostate glands using Mask
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Dataset diversity
To ensure the diversity of the dataset, we included 
images from various sources, such as multiple medical 
institutions and research studies. These sources encom-
pass a wide range of patient demographics, including 
different age groups, ethnicities, and geographical loca-
tions. Moreover, the dataset covers various stages and 
grades of prostate cancer, enabling our model to learn 
from a comprehensive spectrum of cases.

Performance metrics
The performance of the proposed modified ResNet50-
based architecture for prostate cancer diagnosis was eval-
uated using several commonly used metrics, including 
accuracy, sensitivity, specificity, and F1-score. Accuracy 
measures the proportion of true positives and true nega-
tives in relation to all predictions made by the model. It 
can be calculated as in Eq. (3). Sensitivity, also known as 
recall, measures the proportion of true positives in rela-
tion to all actual positive cases, while specificity measures 
the proportion of true negatives in relation to all actual 
negative cases. Sensitivity can be calculated as in Eq. (4). 
Specificity can be calculated as in Eq. (5).

The F1-score is a harmonic means of precision and 
recall, and it provides a balanced assessment of a model’s 

accuracy in detecting both positive and negative cases. 
F1-score can be calculated as in Eq. (6).

Where True Positive (TP), True Negative (TN), False 
Positive (FP), False Negative (FN).

Performance evaluation
The computer specification required for running DL archi-
tecture experiments is the complexity of the model and 
data size. A high-end GPU with at least 256GB of RAM 
is needed for training deep neural networks. The ResNet 
architecture for image classification tasks is due to its ability 
to handle deeper networks without suffering from vanish-
ing gradients. The modified ResNet50 architecture includes 
changes such as adding or removing layers, changing activa-
tion functions, or using regularization techniques. A dataset 
is divided into 80% of the data used for training the model 
and 20% of the data used for testing its performance. The 

(3)Accuracy (ACC) = (TP + TN )/(P + N )

(4)TPR = TP/(TP + FN )

(5)SPC = TN/(FP + TN )

(6)PPV = TP/(TP + FP)

Fig. 5 Differentiating between cancerous and non‑cancerous areas using masks
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number of times an experiment is repeated depends on fac-
tors such as variability in the data or randomness in the ini-
tialization of weights in neural networks. Typically, learning 
curves are performed to ensure that results are consistent 
and reliable, as shown in Fig. 6. The results of applying dif-
ferent DL techniques are shown in Table 3.

The results presented in Fig.  7 compare the perfor-
mance of three different deep learning models for image 
classification: VGGNet, ResNet, and Modified ResNet.

The models were evaluated using four different met-
rics, namely accuracy, precision, recall, and F1 score. 
These results suggest that Modified ResNet outper-
formed VGGNet and ResNet in all metrics, achieving 
the highest scores for accuracy, precision, recall, and F1 
score. Specifically, Modified ResNet achieved an accu-
racy of 97.40%, precision of 97.09%, recall of 97.56%, and 
F1 score of 95.24%. These results indicate that Modified 
ResNet is a highly accurate and reliable model for image 
classification tasks.

Results and experimental
Bygari et al. [9] present an innovative approach to grad-
ing prostate cancer using deep neural networks, the limi-
tations in the dataset, feature selection, generalizability, 

and potential biases of the method need to be taken into 
consideration. Further research is needed to validate 
the proposed method on larger and more diverse data-
sets and to address the potential limitations and biases of 
using DL architecture in medical image analysis.

Additional to, Zhu et  al. [29] suggest a model to pre-
dict the origin of bone metastatic cancer using DL 
architecture on digital pathological images, the limita-
tions in the dataset, the focus on bone metastatic can-
cer only, the lack of detailed explanation of the features 
used, the absence of comparison with other models, and 
the potential limitations and biases of using DL archi-
tecture in medical image analysis need to be taken into 
consideration.

Further research is needed to validate the proposed 
method on larger and more diverse datasets and to 
address the potential limitations and biases of using DL 
architecture in medical image analysis [36–38].

The proposed model allows for a more accurate and 
efficient diagnosis of prostate cancer, which is particularly 
important given the high incidence and mortality rates of 
this disease. The ResNet-50 architecture has been shown 
to be highly effective at image recognition tasks, making 
it well-suited for the task of identifying prostate cancer 

Fig. 6 The learning curves for the proposed model

Table 3 Results of VGGNet, ResNet, and modified ResNet

Algorithm Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Bygari et al. [9] 92.38 92.01 93.12 91.80

Zhu et al. [26] 93.85 93.79 N/A 91.22

VGGNet 93.75 92.59 94.34 89.29

ResNet 94.64 92.59 95.69 91.74

Modified ResNet 97.40 97.09 97.56 95.24
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in medical images. The R-mask modification to the Mask 
R-CNN architecture is specifically designed for prostate 
cancer segmentation, further improving the accuracy and 
reliability of the diagnosis. However, like any diagnostic 
tool, there are also limitations to this approach. The accu-
racy of the diagnosis can be impacted by the quality and 
resolution of the medical images, as well as the size and 
stage of the cancer. Additionally, the use of DL architec-
ture requires large datasets for training and validation.

In-depth analysis and rigorous evaluation are fun-
damental aspects of assessing the effectiveness of our 
proposed deep learning architecture for prostate can-
cer diagnosis. To delve further into model analysis, we 
conducted comprehensive ablation studies, system-
atically examining the impact of individual components 
and hyperparameter choices on the model’s perfor-
mance. This rigorous analysis allowed us to fine-tune our 
architecture for optimal results. We employed a k-fold 
cross-validation approach to ensure robustness and reli-
ability in our model’s evaluation. This technique helped 
mitigate any potential biases in our dataset, providing 
a more accurate representation of the model’s perfor-
mance across various data splits. Furthermore, we lev-
eraged state-of-the-art visualization techniques, such as 
gradient-weighted class activation maps (Grad-CAM), to 
gain insights into the model’s decision-making process. 
These visualizations not only aid in understanding which 
regions of the MRI images the model focuses on but also 
enhance interpretability. Our evaluation extends beyond 
mere quantitative metrics, encompassing a holistic view 
of the model’s behavior and performance.

Ablation experiments
To gain a deeper understanding of the individual compo-
nents and hyperparameters’ impact on our deep learn-
ing architecture’s performance, we conducted a series 
of ablation experiments. These experiments involved 
systematic variations in the model’s configuration while 
keeping other settings consistent. The goal was to assess 
the sensitivity of our model to specific design choices and 
identify the optimal configuration for prostate cancer 
diagnosis.

Layer variations
In our first set of ablation experiments, we explored 
the effect of varying the number of layers in the modi-
fied ResNet50 architecture. Specifically, we considered 
configurations with fewer and more layers than the base 
model. The results are summarized in Table 4.

Activation functions
In the second set of experiments, we investigated the 
impact of different activation functions on the model’s 
performance. We compared the use of Rectified Linear 
Unit (ReLU), Leaky ReLU, and Parametric ReLU (PReLU) 
activations in the convolutional layers. The results are 
presented in Table 5.

Optimizer configurations
To assess the influence of optimizer choices, we con-
ducted experiments using various optimizer configu-
rations. Specifically, we examined the performance of 
our model when trained with the Adam optimizer, the 

Fig. 7 VGGNet vs. ResNet vs. Modified ResNet architecture
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stochastic gradient descent (SGD) optimizer, and a com-
bination of both.

Other hyperparameter sensitivity
In addition to the variations, we explored the sensitivity 
of our model to other hyperparameters, such as learn-
ing rate, batch size, and dropout rate. These experiments 
provided insights into the robustness of our architecture 
under different settings.

Analysis of evaluation results
In this section, we provide a comprehensive analysis of 
the evaluation results to offer insights into the reasons 
behind the advantageous metrics achieved by our pro-
posed deep learning architecture. Understanding the fac-
tors contributing to these results is crucial for assessing 
the effectiveness of the model and its potential impact on 
prostate cancer diagnosis.

Impact of model configurations
One of the key aspects we explored in our ablation experi-
ments was the effect of varying model configurations. 
Table 4 illustrates the impact of changing the number of 
layers in the modified ResNet50 architecture. It is evi-
dent that the "More Layers" configuration outperforms 
the "Fewer Layers" configuration across all metrics. This 
suggests that a deeper network with additional layers 
enhances the model’s ability to distinguish between can-
cerous and non-cancerous regions within MRI images. 
The advantage of the modified ResNet50 architecture lies 
in its adaptability to accommodate these variations, allow-
ing for optimization based on specific diagnostic needs.

Optimizer influence
Our experiments also investigated the influence of dif-
ferent optimizer configurations. We observe that the 

combination of Adam and SGD (Dual Optimizer) con-
sistently outperforms individual optimizers in terms of 
accuracy, sensitivity, specificity, and precision. This sug-
gests that leveraging the strengths of both optimizers, 
with their distinct learning rate behaviors, leads to more 
effective model training. The combination of Adam and 
SGD facilitates a balanced optimization process, which 
is crucial for achieving high accuracy in prostate cancer 
diagnosis.

Hyperparameter sensitivity
The sensitivity of our model to various hyperparameters, 
including learning rate, batch size, and dropout rate, was 
also explored in our ablation experiments. While these 
hyperparameters may seem subtle, their impact on model 
performance is significant.

Through systematic adjustments and evaluations, we 
fine-tuned these hyperparameters to achieve optimal 
results. This sensitivity analysis highlights the importance 
of careful hyperparameter selection in the design of deep 
learning architectures for medical image analysis.

Interpretability and visualization
Achieving high metrics is essential, but understanding 
why the model makes certain predictions is equally cru-
cial, particularly in medical applications. To address this 
aspect, we utilized visualization techniques such as gra-
dient-weighted class activation maps (Grad-CAM). These 
visualizations provide insights into which regions of the 
MRI images the model focuses on when making predic-
tions. By enhancing interpretability, these techniques not 
only aid in comprehending the model’s decision-making 
process but also contribute to better performance. Our 
experiments demonstrated the added value of inter-
pretability in fine-tuning the model and improving its 
accuracy.

Table 4 Ablation experiments on model configuration

Model Configuration Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Base ResNet50 (Reference) 95.24 97.40 97.09 97.56

Fewer Layers 93.87 95.12 94.22 94.68

More Layers 96.52 97.85 97.02 97.41

Table 5 Impact of activation functions on model performance

Activation Function Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

ReLU 97.40 97.09 97.56 95.24

Leaky ReLU 96.88 96.32 97.12 94.83

PReLU 97.22 96.78 97.32 95.03
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Model A’s superior performance
The superior performance of Model A compared to 
Model B can be attributed to several key factors. Firstly, 
Model A benefits from a deeper architecture with more 
layers, allowing it to capture intricate features and pat-
terns in the medical images more effectively. This addi-
tional depth enhances its ability to discern subtle nuances 
within the data, which is particularly advantageous in 
tasks like prostate cancer diagnosis where early detec-
tion of small lesions is critical. Additionally, Model 
A leverages a dual optimizer strategy, combining the 
strengths of both Adam and stochastic gradient descent 
(SGD). This unique approach contributes to more pre-
cise model training, striking a balance between accuracy 
and efficiency. The use of dual optimizers facilitates faster 
convergence and improved generalization, ultimately 
resulting in higher overall performance. Furthermore, 
Model A’s utilization of Rectified Linear Unit (ReLU) 
activation functions in the convolutional layers plays a 
crucial role in promoting robust feature learning, leading 
to enhanced classification accuracy. These factors collec-
tively contribute to the superior performance of Model A 
in our experiments.

Future directions for research
The field of medical image analysis and deep learning 
continues to evolve, offering exciting avenues for future 
exploration. In line with this, future work could delve into 
graph representation learning methods applied to medi-
cal imaging data. Graph-based approaches have shown 
promise in capturing complex relationships within medi-
cal datasets, and their application in conjunction with 
deep learning techniques holds the potential to enhance 
diagnostic accuracy further. Moreover, the utilization of 
Heterogeneous Information Networks (HINs) presents 
an intriguing research avenue. HINs allow for the inte-
gration of diverse data sources and modalities, enabling 
a more comprehensive understanding of disease charac-
teristics. By incorporating HINs into deep learning archi-
tectures, researchers can develop models that leverage 
a broader spectrum of patient information, ultimately 
advancing the state-of-the-art in medical diagnosis and 
treatment.

Discussion and conclusion
The use of a modified ResNet50 architecture and 
Faster R-CNN for automatic diagnosis of prostate can-
cer through medical imaging represents a significant 
advancement in the field of computer-aided diagnosis. 
Specifically, the modified RPN regression layer allows 
for improved detection without significantly increasing 
the complexity of the calculation and model. However, 

further research and validation are required to optimize 
the architecture and parameters for different clinical 
settings and applications. This will assist medical pro-
fessionals in improving the accuracy and efficiency of 
clinical diagnosis and treatment planning, ultimately 
leading to better patient outcomes. The model’s high-
performance rate ensures reliable early detection of pros-
tate cancer, promoting better treatment outcomes. Our 
proposed model can reduce the need for invasive pros-
tate cancer biopsies by identifying patients at higher risk, 
potentially reducing unnecessary biopsies and associated 
complications.

The evaluation results demonstrate the high perfor-
mance of the proposed architecture, with sensitivity, 
specificity, precision, and accuracy rates of 97.40, 97.09, 
97.56, and 95.24, respectively. Future studies may focus 
on developing a more robust and versatile model that can 
be applied across various clinical scenarios and imaging 
modalities to improve the diagnosis and management of 
prostate cancer.

Future research in the domain of medical problem-
solving holds significant promise, especially with the con-
tinued advancement of deep learning. We envision that 
exploring diverse methodologies, such as graph represen-
tation learning and heterogeneous information networks, 
could further enhance our understanding and capabilities 
in addressing complex medical challenges. These meth-
ods may offer new insights and solutions for tasks related 
to disease diagnosis, treatment optimization, and patient 
care.

Graph representation learning, as exemplified by recent 
research [1], provides a powerful framework for mode-
ling complex relationships in medical data. This approach 
allows for the representation of medical data as graphs, 
where nodes represent entities like patients or medical 
records, and edges capture relationships and dependen-
cies between them. Leveraging graph-based deep learn-
ing techniques can enable the discovery of intricate 
patterns and correlations within large-scale medical data-
sets. This, in turn, could lead to more accurate disease 
prediction and treatment recommendations.

Additionally, the utilization of heterogeneous infor-
mation networks (HINs) in medical research, as dem-
onstrated in [2], opens new avenues for knowledge 
integration and inference. HINs enable the fusion of 
diverse data sources, such as electronic health records, 
genomics, and clinical imaging, into a unified network 
structure. Deep learning on HINs can facilitate compre-
hensive patient profiling and personalized medicine by 
considering the multifaceted aspects of an individual’s 
health. This holistic approach has the potential to revo-
lutionize how we diagnose and treat diseases, moving 
beyond traditional single-modal data analysis. In the 
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future, the proposed algorithm can be used with OCNN 
[39–49]. Attention mechanism can be used as in [50] and 
correlation algorithms as in [51].
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