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Abstract 

Background The rate of geriatric hip fracture in Hong Kong is increasing steadily and associated mortality in fragility 
fracture is high. Moreover, fragility fracture patients increase the pressure on hospital bed demand. Hence, this study 
aims to develop a predictive model on the length of hospital stay (LOS) of geriatric fragility fracture patients using 
machine learning (ML) techniques.

Methods In this study, we use the basic information, such as gender, age, residence type, etc., and medical param‑
eters of patients, such as the modified functional ambulation classification score (MFAC), elderly mobility scale (EMS), 
modified Barthel index (MBI) etc, to predict whether the length of stay would exceed 21 days or not.

Results Our results are promising despite the relatively small sample size of 8000 data. We develop various mod‑
els with three approaches, namely (1) regularizing gradient boosting frameworks, (2) custom‑built artificial neural 
network and (3) Google’s Wide & Deep Learning technique. Our best results resulted from our Wide & Deep model 
with an accuracy of 0.79, with a precision of 0.73, with an area under the receiver operating characteristic curve (AUC‑
ROC) of 0.84. Feature importance analysis indicates (1) the type of hospital the patient is admitted to, (2) the mental 
state of the patient and (3) the length of stay at the acute hospital all have a relatively strong impact on the length 
of stay at palliative care.

Conclusions Applying ML techniques to improve the quality and efficiency in the healthcare sector is becoming 
popular in Hong Kong and around the globe, but there has not yet been research related to fragility fracture. The 
integration of machine learning may be useful for health‑care professionals to better identify fragility fracture patients 
at risk of prolonged hospital stays. These findings underline the usefulness of machine learning techniques in opti‑
mizing resource allocation by identifying high risk individuals and providing appropriate management to improve 
treatment outcome.
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Introduction
In Hong Kong, the population of people aged 60 or above 
is expected to increase from 1.2 million (18% of the entire 
population) in 2009 to 3.4 million (39% of the entire pop-
ulation) in 2050 [1]. With the trend of increasing popu-
lation in the elderly population, fragility fractures are 
becoming more common injuries due to falls and bone 
quality deterioration. Moreover, hip fracture, a type of 
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fragility fracture, is now one of the most common causes 
of patient hospital admission, resulting in high morbidity 
and mortality. The annual risk of hip fracture in 2010 was 
3.0 per 1000 patients in males and 6.1 per 1000 in females 
[2]. Patients with fragility fractures face reduced mobil-
ity and loss of independence after injury. In addition, the 
recovery process carries the patients through different 
hospitalization phases which demand a comparatively 
long length of hospital stay before returning to the com-
munity [3]. Hong Kong population-based analysis on the 
incidence of fragility fractures, characteristics, and length 
of hospital stay from 2004 to 2018 reported nearly half of 
all patients had secondary fractures in the first two years, 
and falls were the major cause of fractures [4].

Our previous study reported as high as 4.1% for in-hos-
pital mortality in fragility fracture patients [5]. Another 
report from our group illustrated 17.3% of fragility frac-
ture patients died within 1 year, compared with the 1.6% 
mortality rate in Hong Kong’s age-matched popula-
tion [6]. Fragility fracture affects multiple body systems; 
therefore, it is associated with a high rate of associated 
mortality.

Reducing the pressure on hospital bed capacity is one 
of the key challenges for the Hospital Authority. While 
reducing emergency admissions is difficult to achieve, 
reducing the length of hospital stay can improve the rate 
of bed turnover [7]. Hospitals can match the demand 
and supply for elective and emergent admissions, inten-
sive care unit (ICU), and interhospital transfers [8]. The 
application of big data analysis to achieve this goal has 
yet to be explored. Artificial intelligence and machine 
learning (ML) techniques are revolutionary in fields like 
speech recognition and natural language processing. 
Prediction of patient care pathways with machine learn-
ing can help healthcare systems better understand how 
variability affects patients’ throughput and outcomes. 
Precise prediction of in-hospital mortality, 1-year mor-
tality, and the length of hospital stay allows proper alloca-
tion of resources to the outcome in a proactive way and 
matches the intensity of care according to the severity of 
the disease.

There have been several studies applying ML tech-
niques to help the diagnosis and management of disease. 
The following paragraph summarizes five similar studies 
applying ML techniques in the prediction of length of 
stay in different medical subspecialties.

A Chinese study [9] in 2020 trained various machine 
learning classifiers on 100,000 records of diabetic 
patients with 23 attributes to predict the 30-day hospi-
tal re-admission risk. Their best performing model was 
a random forest classifier with an area under the curve 
(AUC) score of 0.670. Another Chinese study [10] uti-
lized ML algorithms to predict the length of hospital 

stay after total knee arthroplasty (TKA) in 2021 and 
concluded that this was feasible to develop ML-based 
models to predict LOS for patients after receiving TKA 
before the surgery. Results showed that most of the hos-
pital occupants were geriatric patients, and due to their 
prolonged LOS, a useful predictive model of LOS pro-
vided evidence-based guidance for discharge planning 
and resource requirements. The AUC of the nine mod-
els developed in this study ranged from 0.710 to 0.766, 
with the best model being a random forest classifier. A 
French study [11] used 7341 structured data to predict 
the prolonged length of stay using 5 machine learning 
techniques, including logistic regression, classification 
and regression trees, random forest, gradient boost-
ing and neural networks. Their best performing model 
was a gradient boosting classifier with an AUC of 0.810. 
Their variable importance analysis showed that the type 
of destination of the patient after hospitalization has the 
strongest impact on the length of stay. A Dutch study 
[12] in 2022 trained eight machine learning models on 
5323 unique patients with 52 different features to predict 
the probability of unplanned readmissions within 30 days 
after discharge from their urology ward. Their best per-
forming model obtained an AUC score of 0.81 and it is 
a gradient boosting model with XGBoost algorithm. A 
recently published [13] study also trained an XGBoost 
algorithm on 18,195 ischemic stroke patients’ electronic 
medical records with 28 attributes to predict their length 
of stay. They identified hemiplegia aphasia, the Modified 
Rankin Scale (MRS), National Institute of Health Stroke 
Scale (NIHSS) to be the top features in predicting LOS. 
Their best performing model had an accuracy of 0.89 
under 10-fold cross validation.

A comparative summary of the above five studies is vis-
ualized in Table 1. The five studies were conducted under 
different specialties and the patients they recruited were 
not predominantly geriatric patients unlike our study, 
but also patients with various attributes, such as age 
and co-morbidity. Before setting out to apply machine 
learning techniques to our database, we evaluated the 
feasibility of this task concerning the above five studies. 
We identified that our goal was similar to that of those 
studies in calculating the length of stay or the probabil-
ity of discharge using clinic data. We also noticed certain 
similarities between our database and theirs, mostly in 
terms of the number of data features and the size of the 
database. Understanding that contemporary machine 
learning algorithms had already been applied to different 
clinical databases across various specialties, we were con-
fident that we could feasibly achieve similar results with 
our database by applying machine learning techniques. 
Due to the generalizability of machine learning models, 
we recognize the strength of machine learning is not 
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sensitive to specific attributes of a database, be it a geriat-
ric patients database with orthopedics-related attributes 
or a database featuring patients from different age groups 
or dealing with different specialties. When we were fine-
tuning our models in the later stages of our study, we 
also referred to the five studies, aiming to achieve similar 
or better results (in terms of AUC) to those studies. In 
short, the five studies were used as evidence to support 
the feasibility of our project in the early stages and as a 
benchmark to improve our models in the later stages.

Applying ML techniques to improve the quality and 
efficiency in the healthcare sector is getting popular in 
Hong Kong and around the globe, but there has not yet 
been research related to fragility fracture. Our main goal 
is to develop a predictive model on the length of hospi-
tal stay (LOS) of geriatric fragility fracture patients, and 
a simple, reliable, and easy-to-score mortality assessment 
tool, named “Fragility Fracture Mortality Index (FFMI)” 
using artificial intelligence and ML techniques. Apart 
from our main objective, we also would like to validate 
the predictive model and FFMI by applying the model 
and FFMI in routine clinical practice. Besides, we aim to 
carry out a comprehensive summary of the epidemiology 
of fragility fracture in Hong Kong.

In this study, we have three major hypotheses. The pre-
dictive model can achieve a relatively high accuracy in 
predicting the length of hospital stay, in terms of Area 
Under Curve (AUC). The successful development of 
FFMI for fragility fracture patients can predict the like-
lihood of death in the hospital and within 1  year after 
fragility fracture in terms of percentage mortality. Based 
on metrics, such as patient’s demographic features, func-
tional outcome scores and service quality control param-
eters, we will have a better understanding of the change 
of impact of patients’ medical complexity and factors 
causing the actual length of hospital stay.

Methods
An overview for the whole process of our research 
approach can be found in Fig. 1.

Step 1: Data collection and feature selection
All hip fracture patients aged 65  years and older dis-
charged from Orthopaedic rehabilitation wards in Tai 
Po Hospital will be recruited. This study is an extension 
of our existing hip fracture study, which started in the 
year 2010. Our research assistant visits Orthopaedic 
rehabilitation wards in Tai Po Hospital to collect data 
regularly. Nurses and allied health professional col-
leagues help fill out a standard data collection form 
and the research assistant enters the data into a lap-
top on-site. We have already collected 7778 fragility 
fracture records in the said study period. Data collec-
tion will continue, and the database will keep updating 
and expanding with new patient records and follow-up 
records. Inclusion criteria were all hip fracture patients 
aged 65  years and older discharged from Orthopae-
dic rehabilitation wards, at Tai Po Hospital. Exclusion 
criteria were those patients discharged other than hip 
fracture or hip fracture patients younger than age 65.

All information was collected through electronic 
medical records (CMS) through the hospital electronic 
record system (cluster based) and the rehabilitation 
progress reports from the physiotherapy department 
and occupational therapy department in Tai Po Hos-
pital. The basic information collected and retrieved 
through CMS includes: 1) Date of admission to acute 
hospital, 2) Date of discharge from acute hospital, 3) 
Date of admission to palliative hospital, 4) Date of 
discharge from palliative hospital, 5) Gender of the 
patient, and 6) Age of the patient. Apart from the basic 
information, we also have functional questionnaires 
carried out by experienced physiotherapists, occupa-
tional therapists and ward nurses, including 1) Elderly 
Mobility Scale (EMS), 2) Modified Functional Ambula-
tory Categories (MFAC), 3) Barthel Index (MBI), and 4) 
Mini-Mental State Examination (MMSE), which is later 
replaced by Montreal Cognitive Assessment 5-min pro-
tocol (MoCA5) due to licensing issues. We have done 
the score conversion of older data from MMSE and 
MoCA5 regarding to two studies done in 2018 [14, 15]. 
To further understand the background of each patient, 

Table 1 Summary of five studies using machine learning techniques

Year ML Model with best performance Number of 
data features

Number of 
data entries

Target variable Cut-off value Result (AUC)

2020 Random Forest Classifiers 23 100000 Probability of unplanned readmission 30d 0.67

2021 Random Forest Classifiers 36 1298 LOS after total knee arthroplasty 8da 0.766

2022 Gradient boosting classifier 17 7341 LOS after acute  hospitalization 14d 0.81

2022 XGBoost 52 5423 Probability of unplanned readmissions 30d 0.81

2023 XGBoost 28 18195 LOS of ischemic stroke patients 7d and 14d 0.89
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we record the residency of the patient at admission 
and confirmed residency after discharge. The variable 
of the dataset and the sample characteristics of the 
preprocessed dataset can be found in Tables  2 and  3 
respectively.

Python was chosen as the coding language in the ML 
process. Anaconda was employed as the Jupyter Notebook 
environment. Tensorflow provided GPU runtime support 
for GPU-optimized estimators. External libraries such as 
numpy, seaborne, matplotlib, pandas, sklearn, XGBoost, 
CatBoost and LightGBM were installed and imported.

Step 2: Data preprocessing and imputing
Before feeding data into AI models, the dataset has to be 
cleaned up and preprocessed into an appropriate format. 
Date features such as “Acute admission date” or “First 
surgery date” was processed into time intervals, such 
as “First surgery date – Acute admission date” (Surg_1-
Acute_Adm). Categorical features such as “Acute hos-
pital” and “Diagnosis” are turned into vectors using 
one-hot-encoding or learned embedding.

Fig. 1 Overview flowchart for machine learning process

Table 2 Variable of the dataset

**Due to licensing issues, we changed from MMSE to MoCA5 in the middle of 
the study

Categories Variables

Demographics Sex, age

Clinical assessment Diagnosed type of fracture, Modi‑
fied Functional Ambulatory Category 
(MFAC) at admission and before dis‑
charge, Elderly Mobility Scale (EMS) 
at admission and before discharge, 
Modified Barthel Index (MBI) at admis‑
sion and before discharge, Cognitive 
assessment by the Mini‑Mental State 
Examination (MMSE) or the Montreal 
Cognitive Assessment 5‑min protocol 
score (MoCA5) ** of the patient dur‑
ing palliative care

Characteristics of admission Destination from where the patient 
is admitted, Destination of discharge, 
Date of admission to acute hospital, 
Date of discharge from acute care 
to palliative care, Name of acute hos‑
pital, Name of palliative ward, Name 
of palliative hospital

Operation features Date of surgery, Number of surgeries (if 
any) received
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Clinically collected data are often incomplete. It is 
impractical to only accept patient entries that contain all 
data. Thus, patient entries with more than 5 missing data 
were dropped, yielding us only 7605 viable data entries 
out of the original 7778 patients. For the rest of the miss-
ing data, K-nearest-neighbors (KNN) imputing method 
was employed.

In the end, preprocessed variables excluding length of 
stay, such as age, gender, the difference between admis-
sion and discharge MFAC, etc., were all used as the fea-
tures to predict the LOS of the patient. The LOS is used 
as the label. The palliative LOS is then further preproc-
essed into 2 classes or 5 classes according to the clas-
sification task chosen. The descriptive statistics of the 
resulting preprocessed dataset at this point can be found 
in Table 4.

After preprocessing, the whole dataset is then split into 
training data and testing data in a 4:1 ratio to prevent 
overfitting. The details of the training-test split can be 
found in Fig. 2.

Step 3: Algorithm development
Depending on the decided framework and approach 
(SML or ANN or Wide & Deep), the training models are 

set up and initialized according to the specifications and 
hyperparameters.

For the training process, the models are first used to 
generate predictions, which are compared to the actual 
LOS values and loss are calculated for each prediction. 
The model would then self-calibrate and improve through 
normal perturbation and back-propagation. This training 
process was iterated to improve the model progressively 
until either a satisfactory result is obtained, or further 
training is deemed unfruitful. A satisfactory result is 
defined as a training model achieving sufficient predictive 
accuracy, with a p-value less than 0.05. The threshold for 
deeming further training unfruitful is different for each 
algorithm and will be discussed further below.

Satisfactory models were exported and saved for future 
use. Ensemble learning may be used to stack multiple sat-
isfactory models to produce a better result. This model 
can be used in the future for real-time patient LOS out-
come prediction or be imported into a web UI interface 
for user-friendly uses by doctors.

Throughout our study, we experimented with differ-
ent frameworks and algorithms to explore how differ-
ent algorithms perform in this scenario. The following 3 
frameworks were attempted:

Table 3 Sample characteristics of our dataset

a The Admission Date and Discharge Date are used to calculate the length of stay
b Due to licensing issues, we changed from MMSE to MoCA5 in the middle of our study

Variables Value Description

Year 2010–2020 The year of hospital admission

Ward 3BL 3BR 3CL The name of palliative ward

Age 65 + The age of the admitted patient

Sex 0,1 (male = 0, female = 1) The gender of the admitted patient

 Admission Datea The date admitted to palliative care

 Discharge Datea The date discharged from palliative care

Pre-MFAC 1–8 The modified functional ambulatory category of the patient on admission date

Post-MFAC Same as above The modified functional ambulatory category of the patient on discharge date

Pre-EMS 0–20 The elderly mobility scale of the patient on admission date

Post-EMS Same as above The elderly mobility scale of the patient on discharge date

Pre-MBI 0–20 The modified Barthel index of the patient on admission date

Post-MBI Same as above The modified Barthel index of the patient on discharge date

Cognitive 0–30 The Mini‑Mental State Examination or the Montreal Cognitive Assessment 5‑min protocol  scoreb 
of the patient during palliative care

Diagnosis NOF, SUBTOF The type of fracture (NOF, fracture neck of femur; subTOF, subtrochanteric fracture)

Residence (from) HOME, OAH, OTHERS, ANHN The type of residence from which the patient is admitted (HOME, from home; OAH, from old aged 
home; OTHER, from other sources of residence; ANHN, from Alice Ho Miu Ling Nethersole Hospital)

Residence (to) HOME, OAH, OTHERS, ANHN The type of residence to which the patient is discharged

Admit Date The date admitted to acute hospital, usually from an accident

DC Date The date discharged from acute hospital and admitted to palliative care

Acute Hospital PWH, TWH, NDH, AHNH The name of the hospital (PWH, Prince of Wales Hospital; TWH, Tung Wah Hospital; NDH, North 
District Hospital; ANHN, Alice Ho Miu Ling Nethersole Hospital)

Date of surgery The date of surgery
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Table 4 Descriptive statistics for preprocessed dataset

Variable Statistics LOS ≤ 21 LOS > 21 Total Correlation p-value

Age Min 27 41 27 ‑0.06795 3.00E‑09

Max 109 105 109

Mean 83.230 82.608 83.006

SD 8.716 7.959 8.455

Sex Count M 1339 927 2266 ‑0.04065 0.00039

F 3520 1819 5339

EMS Min 0 0 0 0.03336 0.003614

Max 20 18 20

Mean 3.620 3.360 3.526

SD 3.360 2.668 3.131

MFAC Min 1 1 1 0.03784 0.037841

Max 7 7 7

Mean 2.940 2.874 2.917

SD 1.218 1.046 1.160

MoCA Min 0 0 0 0.03784 5.66E‑29

Max 30 30 30

Mean 9.109 10.121 9.475

SD 7.109 6.665 6.969

Residence from Count Home 3694 2504 6198 ‑0.2693 1.58E‑126

OAH 1165 242 1407

Residence to Count Home 2762 1833 4595 ‑0.1653 9.22E‑48

OAH 2097 913 3010

Surg_1-Acute_Adm Min 0 0 0 ‑0.01226 0.284917

Max 379 377 379

Mean 3.063 3.415 3.191

SD 13.291 15.395 14.088

Acute_LOS Min 0 0 0 ‑0.06293 3.95E‑08

Max 382 383 383

Mean 9.882 9.998 9.924

SD 7.661 11.827 9.380

Pall_Adm-Acute_Adm Min 0 0 0 ‑0.06896 1.74E‑09

Max 87 383 383

Mean 9.915 10.075 9.973

SD 5.597 11.893 8.427

Acute_DC-Surg_1 Min 0 0 0 ‑0.08678 3.43E‑14

Max 375 652 652

Mean 8.224 7.713 8.040

SD 10.955 14.130 12.200

Pall_Adm-Surg_1 Min 0 0 0 ‑0.09393 2.24E‑16

Max 375 652 652

Mean 8.337 7.773 8.134

SD 11.025 14.161 12.253

Pall_Adm-Acute_DC Min 0 0 0 ‑0.06310 3.63E‑08

Max 748 726 748

Mean 0.422 0.343 0.394

SD 13.035 13.940 13.368
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Regularizing gradient boosting frameworks with simple 
machine learning components
Various studies of applying machine learning techniques 
to calculate the length of stay at the hospital using read-
ily available clinical data favor the usage of Classification 
and Regression Tree (CART) algorithms, many of them 
obtained favorable results with gradient boosting models, 
such as XGBoost algorithms [16, 17].

Figure 3 demonstrates how a decision tree works with 
an oversimplified model. Nodes are split into sub-nodes 
based on a threshold value of a specific attribute, such 
as age being greater than 70 or not or the MFAC score 
smaller than 4 or not. In this simplified decision tree, if 
we know the patient is a 66-year-old patient with cat-
egory III in MFAC, the length of stay of this patient 
according to this decision tree is 22 days.

Gradient boosting is also used in our algorithm It is a 
powerful machine-learning technique that can be used 
for both regression and classification tasks. It works by 
training a sequence of weak learners, which are usually 
decision trees) that are fitted on the residuals of the pre-
vious model. The final prediction is obtained by com-
bining the predictions from all individual classifiers. 
However, this approach can lead to overfitting, which 

means that the model performs well on the training data 
but poorly on new, unseen data. To prevent overfitting, 
various regularization options are available in Gradient 
Boosting frameworks. Learning rates control the influ-
ence of a single learner on the final prediction, while 
sampling techniques select a subset of the training sam-
ples and variables to reduce complexity. For example, L1 
regularization adds an L1 penalty term to the loss func-
tion, which encourages the model to have smaller weights 
for the features that are less important [18]. These tech-
niques help improve the accuracy of the model by reduc-
ing overfitting and generalizing better to new data.

In our study, we experimented with various deci-
sion tree algorithms with the help of Auto-Sklearn 
2.0 [19]. Auto-Sklearn 2.0 helped to train our dataset 
with various models, from relatively simple algorithms 
such as basic decision tree and random forest classfi-
ers, to algorithms with more complexity, such as Near-
est Neighbours, ExtraTrees, XGBoost, LigthGBM etc. 
Overview of the process for training this regularizing 
gradient boosting framework can be found in Fig. 4.

Log-loss function, which is also known as binary 
cross-entropy loss, was used as the evaluation metric 
for our binary classification task to predict whether the 

Table 4 (continued)

Variable Statistics LOS ≤ 21 LOS > 21 Total Correlation p-value

Acute hospital Count 1 1678 1143 2821 N/A N/A

2 979 695 1674

3 313 280 593

4 244 122 366

NA / Others 2151 2151

Diagnosis Count 1 2408 1305 3713 N/A N/A

2 2284 1342 3626

3 106 70 176

NA / Others 90 90

Fig. 2 Algorithm for training‑validation dataset split
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length of stay would exceed 21  days or not. The func-
tion gives a quantifiable measure, in terms of negative 
log-likelihood, of the difference between the predicted 
probabilities by the logistic model and actual values. 
For any given problem, a lower log loss value means 
better predictions. For a single sample with true label 
y ∈ {0, 1} [14], where 0 means the length of stay is 
smaller than 21  days and 1 means the length of stay 
is greater than 21  days, and a probability estimate of 
p = Pr(y = 1), the log loss is:

We used the log-loss function as the evaluation metric 
to fine-tune the hyperparameters with different models 
and compare the performances of different models using 
Auto-Sklearn 2.0. Our workflow with Auto-Sklearn 2.0 
was as follows:

(1) Building 10 models with basic algorithms such as 
decision tree, linear regression, default versions of 
LightGBM, XGBoost, CatBoost, Neural Network, 
ExtraTrees and NearestNeighbors algorithms. The 
ten models are used as a baseline for comparison.

(2) Hyperparameters of various models, namely 
LightGBM, XGBoost, CatBoost, Neural Network, 
ExtraTrees, NearestNeighbors and Random For-
est algorithms, are then finetuned for more opti-
mal performance, using Adam as the optimizer and 
binary cross-entropy function as the loss function. 
Hyperparameters are the values that dictate the 
learning behaviour of the algorithm. For example, 
we can set the height of a decision tree or specify 
the learning rate of a model. Auto-Sklearn 2.0 incre-
mentally improves the model performance by train-

Llog y, p = − y log (p) + 1− y log (1− p)

ing and testing how well a model performs with 
specific hyperparameters.

(3) After obtaining 60 models, an ensemble learning 
model is built based on the best performers. The 
ensemble model combined different algorithms, 
each model with different weights based on the 
log-loss performance, to build a final model that in 
theory could achieve better predictive performance 
than any of its constituents.

(4) A leaderboard is built to reflect the performance 
of the models built, helping us to evaluate the per-
formance of different algorithms on our dataset. 
Table  5 is an example of a leaderboard evaluating 
different algorithms.

Custom‑built artificial neural network (ANN)
ANN works on the principle of biological neural net-
works. Each ANN composes of multiple layers and each 
layer composes of multiple nodes. Each node imitates 
a biological neuron where the input from the previous 
layer (imitating dendrites) is summated and the output 
to next layer (imitating axons) is determined by activa-
tion function (imitating axon hillocks). The nodes form 
a network that imitates the delicate working of brain 
function, and the network can gradually learn from 
trial and error by perturbing the weights of each input.

Multiple hyperparameters affect the performance 
of the ANN as well as the efficacy of the learning pro-
cess. These include the width and depth of each layer, 
regularization, learning rate strategy, gradient descent, 
etc. These are changed in each run to find the opti-
mal hyperparameters to train the best possible ANN 
for prediction. The hyperparameters explored and the 
explored values are listed in Table 6.

Fig. 3 Principle of decision tree
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Differing from the previous approach, other than the 
initial training-test split, the training dataset (n = 6084) is 
further split with a 4:1 ratio into a smaller training data-
set (n = 4867) and a validation set (n = 1217). This double 
4:1 dataset split is demonstrated in Fig. 5.

During the training, hyperparameters are first cho-
sen and an initial model is then generated according 
to the hyperparameters. The model is then used to 
generate predictions from the features of the train-
ing dataset. The generated predictions are then cross-
examined with the actual value of LOS from the 

training dataset. Like the previous approach, binary 
cross-entropy is used as loss function for 2-class clas-
sification, while categorical cross-entropy is used for 
5-class classification. The accuracy according to the 
training dataset is also calculated to track the progress 
throughout iterations. The loss from the training data-
set is then used with the selected optimizer to update 
and improve the model through backpropagation and 
gradient descent. Then the whole process will be iter-
ated until either a satisfactory accuracy is achieved, 
further iteration will be unfruitful (underfitting), or 

Fig. 4 Flowchart for training regularizing gradient boosting frameworks with simple machine learning components
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further iteration will yield worse results (overfitting). 
An overview of this whole ANN training process can 
be found in Fig. 6.

In ANN training, underfitting and overfitting are two 
big issues that programmers must address. During the 
whole process, other than the loss and accuracy gener-
ated from the training dataset, a similar process is done 
on the validation dataset, where predictions are made 
and loss and accuracy is calculated. These form 4 graphs 
(training_loss, training_acc, val_loss, val_acc) that help 
ML engineers battle underfitting and overfitting issues.

Underfitting is where the ANN model is too small that 
the model is unable to learn enough from the dataset and 
an unsatisfactory accuracy is reached. This is the easier 
of the two issues to spot for a ML engineer. When the 
loss and accuracy graphs of both training and validation 
dataset plateau and further progress cannot be made, 
this shows that this model is already trained to its best 
form and underfitting occurs. An example of underfitting 
can be found in Fig. 7. In this case, the training process 

Table 5 Example of a leaderboard of various algorithms using Auto‑Sklearn 2.0

Name model_type metric_type metric_value train_time

[Ensemble] Ensemble logloss 0.610714 33.05

[1_DecisionTree] Decision Tree logloss 0.647846 38.1

[52_ExtraTrees] Extra Trees logloss 0.647803 119.35

[63_NeuralNetwork] Neural Network logloss 0.647378 129.13

[2_DecisionTree] Decision Tree logloss 0.647368 54.02

[3_DecisionTree] Decision Tree logloss 0.647368 60.36

[50_ExtraTrees] Extra Trees logloss 0.646168 92.43

[57_NeuralNetwork] Neural Network logloss 0.643688 58.06

[60_NeuralNetwork] Neural Network logloss 0.643677 94.05

[4_Linear] Linear logloss 0.641538 41.21

[65_NeuralNetwork] Neural Network logloss 0.640687 150.32

[10_Default_ExtraTrees] Extra Trees logloss 0.640079 59.92

[43_RandomForest] Random Forest logloss 0.639776 113.87

[41_RandomForest] Random Forest logloss 0.63973 93.73

[48_ExtraTrees] Extra Trees logloss 0.639579 71.18

[55_ExtraTrees] Extra Trees logloss 0.639313 150.11

[59_NeuralNetwork] Neural Network logloss 0.63795 82.64

[8_Default_NeuralNetwork] Neural Network logloss 0.634294 41.6

[56_ExtraTrees] Extra Trees logloss 0.634238 162.46

[54_ExtraTrees] Extra Trees logloss 0.634177 143.41

[9_Default_RandomForest] Random Forest logloss 0.633282 58.03

[39_RandomForest] Random Forest logloss 0.632654 72.66

[58_NeuralNetwork] Neural Network logloss 0.632352 71.92

[46_RandomForest] Random Forest logloss 0.631393 154.04

[62_NeuralNetwork] Neural Network logloss 0.631382 116.89

[61_NeuralNetwork_SelectedFeatures] Neural Network logloss 0.630168 170.41

[61_NeuralNetwork] Neural Network logloss 0.629733 106.93

[51_ExtraTrees] Extra Trees logloss 0.629025 108.55

Table 6 Hyperparameters for custom ANN models

Hyperparameters Values

Hidden layer count {1, 2, 3, 4, 5, 6, 7}

Node count per hidden layer {16, 32, 64, 128, 256}

Dropout layer {true, false}

Regularizer {None, L1, L2}

Regularization term {0.1, 0.01, 0.001}

Learning rate schedule {constant,  linear,  staircase 
exponential,  continuous expo‑
nential}

Initial learning rate {0.1, 0.01, 0.001}

Learning rate decay rate {0.1, 0.25, 0.5}

Optimizer {SGD, Adam}

Optimizer momentum {0.8, 0.9, 0.99}
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will have to be halted, and hyperparameters will have to 
be adjusted, such as increasing hidden layer count, or 
increasing node count in each layer.

Overfitting is where the ANN model is too large with 
respect to the dataset. In ML training, the goal is to 
achieve generalization, where the model is able to learn 
some intricate relationships between features to make 
predictions. However, when the model is too large, the 
training process will instead achieve memorization, 
where the model instead just memorizes all the entries 
in the dataset and achieves extremely high training accu-
racy. This is why the initial 4:1 split generating a separate 
test dataset for independent assessment of model perfor-
mance is important as an overfit ANN model will score 
a low performance with the test dataset due to lack of 
generalization, even though it yields high accuracy with 
the training dataset. For spotting overfitting, the afore-
mentioned two graphs from the validation dataset (val_
loss and val_acc) will be useful. As overfitting occurs, the 
model will continue to achieve progressively high train-
ing accuracy and low training loss, but the validation 
accuracy will start to decrease, and the validation loss 
will increase due to lack of generalization. An example of 
overfitting can be found in Fig. 8. In this case, the train-
ing process will have to be halted, and hyperparameters 
will have to be adjusted, such as decreasing hidden layer 
count, or decreasing node count in each layer. Other 
methods can also be employed directly in the learning 
process to reduce chances of overfitting, including Drop-
out layers, L1 regularizers or L2 regularizers.

Google’s Wide & Deep Learning
The approach of traditional layer by layer ANN 
is plagued with the problem of overfitting and 

underfitting. To avoid overfitting or underfitting, a fine 
balance between memorization and generalization is 
kept by keeping the ANN structure narrow and shallow.

The approach of Wide & Deep Learning proposed 
by Google Research combines the advantages of wide 
ANN and deep ANN into one [20]. With the memori-
zation benefit of wide linear models and generalization 
benefit of deep models merging into one, The Wide & 
Deep model are able to share the benefits of both, while 
keeping the learning process simple. Instead of stacking 
layers of nodes on top of each other as in ANN, a Deep 
network (high depth, low width) and a Wide network 
(high width, low depth) are combined in the output 
layer with a single node with sigmoid activation.

Apart from the network structure, The whole learn-
ing process is similar to the aforementioned custom 
ANN model approach. An overview of this whole Wide 
& Deep training process can be found in Fig.  3. Simi-
lar hyperparameters are also explored in this method, 
including width and depth of Deep network and Wide 
network, regularization, learning rate strategy, gradient 
descent algorithm, etc. Like method 2, a large range of 
hyperparameter combinations are experimented with 
using grid search, and the best model found so far is 
presented below.

Step 4: Algorithm evaluation
Model performance was determined using multiple met-
rics, including F1 score, R2 value and p-value. Model val-
idation was addressed in the context of construct validity, 
reliability, responsiveness, and systematic development. 
With another set of data, the model was tested and vali-
dated for the accuracy of predicting (test set).

The feature importance of models is also explored using 
the Shapley Additive Explanations (SHAP) [21]. Feature 

Fig. 5 Algorithm for double 4:1 dataset split
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importance analysis indicates which feature impacts the 
output of the ML model most.

Results
Demographic results
Our team has started a cohort study recruiting hip frac-
ture patients aged 65  years and older discharged from 
Orthopaedic rehabilitation wards in Tai Po Hospital since 
the year 2010. From the year 2010 to the year 2020, the 
database yielded over 8000 geriatric hip fracture patients. 
Of these patients, 67.7% were female. The mean age was 

83.6 ± 7.5 years old. 48.7% of the patients were diagnosed 
with a fractured neck of the femur; 48.3% were inter-
trochanteric hip fracture, and 2.2% were subtrochan-
teric hip fracture. The mean length of hospital stay was 
21.3 ± 10.1  days. 79.1% lived at home before admission 
and 17.9% were from old age homes or hospitals. After 
discharge from the hospital, 56.8% returned to home 
while 35.5% moved to old age homes.

Allied health professionals assessed patients’ functional 
outcomes in terms of elderly mobility scale (EMS), modi-
fied functional ambulatory categories (MFAC), modified 

Fig. 6 Flowchart for training custom artificial neural networks (ANN) and Deep & Wide models
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Barthel index (MBI), and mini-mental state examina-
tion (MMSE). EMS score at admission was 3.5 ± 2.9, and 
7.9 ± 6.0 at discharge, showing a two-fold increase. MFAC 
score was 2.9 ± 1.1 at admission and 4.1 ± 1.6 at discharge. 
MBI scores were 45.6 ± 18.8 and 57.2 ± 21.7 at admission 
and discharge respectively.

Predictive results of the preliminary ML models
We have developed multiple preliminary models predict-
ing the length of hospital stay since 2019. We investigated 
the feasibility of using each ML framework to predict 

whether patients’ length of stay in a palliative hospital 
(LOS) is over 21 days.

We developed several ML models with different 
frameworks to conduct this classification task using 
our fragility fracture cohort database. As mentioned 
above, we developed our ML learning models with three 
approaches, namely (1) regularizing gradient boosting 
frameworks, (2) Custom-built artificial neural network 
and (3)) Google’s Wide & Deep Learning,

With approach (1), we obtained the best perform-
ing model with Light Gradient Boosting algorithm, The 
area under the curve (AUC) was 0.73 and the F1 score 

Fig. 7 Example of binary cross‑entropy loss for training and validation dataset in underfitting models

Fig. 8 Example of binary cross‑entropy loss for training and validation dataset in overfitting models
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was 0.68. The performance of this model can be found in 
Table  7. Moreover, utilizing SHAP feature importance, 
we found that “type of residence before admission (OAH 
or home)”, “MFAC”, “age”, and “MoCA5” were the four 
important and "impactful" factors to predict the length of 
hospital stay for this model. Additional information illus-
trating the major outcomes from this preliminary model 
can be found in Fig. 9.

With approach (2), we also developed some models 
with a custom-built artificial neural network (ANN). 
Table 8 shows the network structure of the ANN model 

and its performance is listed in Table 9, yielding an accu-
racy score of 0.76 and an F1 score of 0.64.

Our custom-built ANN also yielded an accuracy score 
of 0.47 for 5-class classification (LOS < 7, 8–14, 15–21, 
22–28, > 28), as listed in Table 10.

Our best results resulted from our Wide & Deep model, 
which was approach (3). So far, we have achieved our best 
accuracy of 0.79, with a precision of 0.73, with an area 
under the receiver operating characteristic curve (AUC-
ROC) of 0.84, as listed in Table 11. Using SHAP feature 
importance shown in Fig. 10, we found that “Acute_Hos-
pital_1.0 (PWH)”, “Acute_Hospital_2.0 (TWH)”, MoCA5, 
“Acute_hospital_LOS” are the top 4 features of this 
model. This implies that the type of hospital the patient is 
admitted to, the mental state of the patient and the length 
of stay at the acute hospital all have a relatively strong 
impact on how long the patient would be discharged 
from palliative care. The comparison of the performance 
of the different approaches is shown in Table 12.

Comparing our study with similar studies mentioned 
in our Introduction part and Table  1, our models have 
similar performance. This demonstrates both the increas-
ing popularity of using machine learning techniques on 
readily available data obtained from electronic medi-
cal records and the relative success of the application of 
machine learning techniques on the prediction of clini-
cal outcomes. Also, we observe that specialty-specific 
parameters help in improving the performance of model 
prediction outcomes.

Table 7 Metric details and confusion matrix of Light Gradient 
Boosting machine model

Metric details
Score Threshold

logloss 0.5999256 nan

auc 0.733439 nan

F1 0.682927 0.341911

accuracy 0.678571 0.423087

precision 0.736842 0.650400

recall 1 0.061210

mcc 0.386971 0.372188

Confusion matrix (at threshold = 0.423087)
Predicted as false Predicted as true

Labeled as false 260 143

Labeled as true 82 215

Fig. 9 SHAP feature importance analysis of Light Gradient Boosting machine model
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Discussion
This study aimed to develop a risk assessment tool to 
predict the LOS of geriatric hip fracture patients. Our 
results demonstrated that the classified physical status 
of the patient (MFAC score), the age, the mental sta-
tus of the patient (MoCA5 or MMSE score), the type 
of hospital the patient is admitted to, the length of 
stay during acute care and the type of residence before 

admission were the strong predictors of prolonged LOS 
for palliative care.

Previous studies on risk factors leading to prolonged 
LOS in geriatric fragility patients had identified. Those 
results were consistent with most of our findings. From 
non-machine learning studies [22–24], researchers have 
identified age and classified the physical status of the 
patient as factors influencing LOS. In those studies, the 
American Society of Anesthesiologists physical status 
classification system was used to classify the physical sta-
tus while our study used the MFAC score to categorize 
functional ambulation ability. Recently, a similar study 
[25]  predicted LOS in pre-operative femoral neck frac-
ture patients using machine learning techniques and they 
concluded that the age, ASA score, BMI, and time from 
injury to surgery were strong predictors of prolonged 
LOS. Their results were mostly compatible with our find-
ings – we also discovered that age and physical status, 
reflected by MFAC, were strong predictors of prolonged 
LOS across various high-performing models.

Unique to our study, we have data attributes that are 
not commonly found in other geriatric fragility fracture 
databases. Most of the studies done on geriatric fragil-
ity fracture only have basic data features, such as gender 
and age [22–25], and some easily attainable data [24, 25], 
such as height, weight, and the International Classifica-
tion of Disease (10th Revision) code, etc. Our study had 
more data features to more accurately reflect the situa-
tion of each holistically. Firstly, we had scores like EMS, 
MFAC, MBI, and MoCA5 to reflect the clinical picture 
more precisely for each patient. We identified the MFAC 
as an important factor as mentioned above, and we also 
noticed the mental status of the patient, reflected by 
MoCA5, was a strong predictor for prolonged LOS in 
some models. This result is consistent with a study done 
before [26]. Besides, we also had data to reflect the social 
health, for example, the type of residence before and after 

Table 8 Network structure of our custom‑built Artificial Neural 
Network (ANN) model

Layer (Type) Output shape Param

Normalization (Normalization) (None,21) 43

Dense (Dense) (None,64) 1408

Dense_1 (Dense) (None,64) 4160

Dense_2 (Dense) (None,64) 4160

Dense_3 (Dense) (None,1) 65

Table 9 Metric details and confusion matrix of our best 
custom‑built Artificial Neural Network (ANN) model on 2‑class 
classification

Metric details
Score

logloss 0.5796

F1 0.6426

accuracy 0.7653

precision 0.7055

recall 0.5901

Confusion matrix
Predicted as false Pre-

dicted 
as true

Labeled as false 843 134

Labeled as true 223 321

Table 10 Metric details and confusion matrix of our best custom‑built Artificial Neural Network (ANN) model on 5‑class classification

Metric details
Score

logloss 1.2933

accuracy 0.4773

Confusion matrix
Predicted as 
LOS = 0–7

Predicted as 
LOS = 8–14

Predicted as 
LOS = 15–21

Predicted as 
LOS = 22–28

Pre-
dicted as 
LOS > 28

Labeled as LOS = 0–7 0 12 46 4 0

Labeled as LOS = 8–14 0 131 105 9 1

Labeled as LOS = 15–21 0 85 482 68 2

Labeled as LOS = 22–28 0 30 248 104 3

Labeled as LOS > 28 0 16 92 74 9
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admission. We discovered admission from an old age 
home was a strong predictor of prolonged LOS in our 
models, suggesting the LOS is not affected by the physi-
cal health of a patient, but also the social health com-
ponent of a patient – old age homes might not provide 
sufficient care and nutrition and not allowing adequate 
ambulation, and this might be the reason why our mod-
els indicated the type of admission before admission as a 
strong predictor of prolonged LOS.

Also unique to our study, we did not observe the rela-
tionship between surgical delay and prolonged LOS. Sev-
eral previous studies [25, 27–29] have identified surgical 
delay as a strong predictor of prolonged LOS, although 
there were studies suggesting otherwise  [26, 30]. In our 
database, our interpretation of surgical delay is defined as 
the date of first surgery minus the date of acute admis-
sion (‘Surg_1-Acute_Adm’), which shows the duration 
between the patient being admitted to the acute hospi-
tal and receiving surgery on the fracture. However, across 
different ML models, we did not observe ‘Surg_1-Acute_
Adm’ as a strong predictor of prolonged LOS. There are 

Table 11 Metric details of our best Wide & Deep model on 
2‑class classification

Metric details

Score

accuracy 0.789439

accuracy_baseline 0.655240

auc 0.843976

auc_precision_recall 0.746801

average_loss 0.489855

global_step 47600

mean 0.344759

loss 0.489683

precision 0.727354

recall 0.622648

Fig. 10 SHAP features importance analysis of our best Wide & Deep model on 2‑class classification (Beehive plot)
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several possible explanations to account for this finding. 
Firstly, this might be due to the inconsistency of our data-
base – some data entries did not have the date of the first 
surgery leading to inaccurate calculation of surgical delay. 
Secondly, this might be due to the inherent inadequacy of 
SHAP feature importance analysis, which will be further 
elaborated in the following paragraphs.

Regarding the technical machine learning aspect, our 
study experimented with 3 types of machine learning 
approaches and models. Referring to similar machine 
learning studies [9–13] on predicted LOS in other topics 
under different specialties, we attainted models with sim-
ilar performance. The most remarkable model, which has 
not been employed in other studies but has been opti-
mized with our study, is Google’s Wide & Deep learning 
model, which performs better than the other two models. 
Like our artificial neural network models, Google’s Wide 
& Deep models use neural networks with loss optimiza-
tion techniques to perform the supervised learning clas-
sification task. However, instead of a deep feed-forward 
architecture, the Deep & Wide model combines a deep 
feed-forward architecture for its deep component and 
a generalized linear model for its wide component. By 
doing this, it can combine the benefits of memorization 
using the deep component and generalization using the 
wide component, which easily handles the challenge 
of overfitting and underfitting. For data analysis and AI 
application in the medical field, where the goal usually 
focuses on generalization, yet the data are seldom linearly 
correlated, we recommend adding Google’s Wide & Deep 
learning model to the toolset for supervised learning on 
numerical and categorical data in medical AI research 
use case.

Regarding SHAP feature importance analysis, inter-
pretation of such analysis must be cautiously made since 
it only indicates that the ML model regards that feature 
with high importance and changes in the feature’s value 
significantly impact the model’s output prediction. A fea-
ture having a high feature importance does not equate 
to having a significant statistical correlation, especially 
when the accuracy of the model is not significantly close 
to 100%. Upon doing basic statistics with Pearson’s and 
Spearman’s correlation, no significant correlation exists 

between any features and the LOS with p < 0.05, indicat-
ing no significant univariate correlation. In our study, 
we observed that we got highly different feature impor-
tance from our different frameworks, indicating the low 
reliability of feature importance from machine learn-
ing models with an accuracy of about 0.7–0.8 as in our 
study. Past empirical and theoretical studies indicate that 
feature importance reliability is highly correlated with 
model accuracy  [31]. We conclude that without a high 
model accuracy of close to 100%, it is inappropriate to 
draw clinical significance and clinical decisions just from 
the feature importance of machine learning studies with 
the lack of traditional statistical correlation.

Limitations
There is a need for additional resources to further 
develop our ML models to achieve predictions with 
higher precision.

We face several limitations in the model develop-
ment process. Inconsistency in data collecting process 
makes the data pre-processing stage challenging. A lack 
of manpower in the data collection process yields a data-
base with missing data. Our study uses assessment tools 
such as MFAC, MBI, etc. to evaluate the patient’s con-
dition. However, it is extremely difficult to collect data 
from every single patient as both the evaluating process 
and the data collecting process are manpower-intensive 
and error-prone. Some of the values were left blank since 
our staff often forgot to write down the value or simply 
did not have time to conduct the test on the patient. The 
development of the ML model has thus been hampered.

Due to data privacy, the standard data collection 
forms cannot be taken away from the hospital premises. 
Research assistants must visit the Orthopaedic Rehabil-
itation Wards in Tai Po Hospital to collect data in per-
son. The schedule was affected by the rapidly changing 
COVID-19 pandemic situation. We plan to facilitate the 
communication channel between us and the related staff 
at Tai Po Hospital by setting up regular face-to-face and 
Zoom meetings with different stakeholders in this pro-
ject. We aim to monitor the study progress to ensure eve-
rything is on schedule.

The algorithm we are developing requires a large 
amount of consistent and longitudinal data. Missing 
data in the database would cause deviations in the algo-
rithm results. We try to request medical records for those 
records with a considerable amount of missing data.

Future work
In the future, there are several directions that we would 
like to embark on with our project. As mentioned in the 
introduction part, the mortality rate in fragility fracture is 

Table 12 Comparison of the performance of different models

logloss accurary precision AUC 

Light Gradient Boosting 0.59993 0.67857 0.73684 0.73344

ANN (2 class classifier) 0.5796 0.7653 0.7055 /

ANN (5 class cassifier) 1.2933 0.4773 / /

Wide & Deep 0.48968 0.78944 0.72735 0.84398
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high and we would like to address this problem with ML 
technique as well. Our existing database already has the 
hospital number of every patient, and we could retrieve 
the mortality information to predict the chance of death 
based on the patients’ static features.

Inspired by the major obstacles faced in data collection, 
we would like to launch a web app to allow our staff to 
input the data directly into our database. Not only would 
this implementation lessen the chance of handwritten 
error, but this could also benefit our research assistant 
in data collection by not having to manually convert the 
handwritten forms into digital format. The web app could 
also provide an instant prediction of the LOS for reference.

Conclusion
We speculate machine learning will increase the accuracy 
in predicting the length of hospital stay leading to better 
hospital resource allocation. Machine learning has a mul-
titude of benefits to the length of hospital stay for fragility 
fracture patients. ML brings advantages to various stake-
holders. Family members of patients can plan for the 
patients after discharge, e.g., arrange accommodations at 
old age homes, or hire a domestic helper. By identifying 
patients with a higher probability of lengthy LOS, doc-
tors can allocate more resources and time to them. This 
can make better use of limited resources and proactively 
manage them to allow risk-stratified care management. 
Hospital administrative staff can have better resource 
allocation planning by learning each patient’s estimated 
discharge destination and making data-driven decisions.
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