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Abstract 

Background Heart failure is a syndrome with complex clinical manifestations. Due to increasing population aging, 
heart failure has become a major medical problem worldwide. In this study, we used the MIMIC‑III public database 
to extract the temporal and spatial characteristics of electrocardiogram (ECG) signals from patients with heart failure.

Methods We developed a NYHA functional classification model for heart failure based on a deep learning method. 
We introduced an integrating attention mechanism based on the CNN‑LSTM‑SE model, segmenting the ECG sig‑
nal into 2 to 20 s long segments. Ablation experiments showed that the 12 s ECG signal segments could be used 
with the proposed deep learning model for superior classification of heart failure.

Results The accuracy, positive predictive value, sensitivity, and specificity of the NYHA functional classification 
method were 99.09, 98.9855, 99.033, and 99.649%, respectively.

Conclusions The comprehensive performance of this model exceeds similar methods and can be used to assist 
in clinical medical diagnoses.

Keywords Heart failure, MIMIC‑ III, Deep learning, CNN‑LSTM‑SE model

Introduction
Heart failure is a syndrome with complex clinical mani-
festations. It can occur for a variety of reasons, including 
structural damage to the heart and changes in its func-
tion that prevent it from pumping blood to the body 
correctly, leaving the body without full circulation. As 
our population ages, the number of patients with heart 

failure increases yearly, with repeated hospitalization, 
reduced quality of life, and other problems. These prob-
lems highlight the need for timely diagnosis, treatment, 
and prognosis. Estimating the severity of patients with 
heart failure through its classification has important clin-
ical significance in effective treatment.

Classifying heart failure is considered the most crucial 
step in treating it. The standard for classifying heart fail-
ure severity is the New York Heart Association (NYHA) 
functional classification [1], which pays attention to 
patients’ exercise habits and disease symptoms. NYHA 
Class I indicates that the patient with heart disease is 
physically active. NYHA Class II indicates the patient is 
somewhat limited in physical activity, engages in daily 
activities, but has begun to experience structural changes 
in the heart. NYHA Class III indicates the patient is sig-
nificantly limited in physical activity, engages in little 
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daily activity, and has significant structural changes in the 
heart. NYHA Class IV indicates that the patient cannot 
do any physical activity and has a considerable structural 
change in the heart.

The electrocardiogram (ECG) is used to monitor heart 
health by detecting the heart’s change, which can provide 
a clinical reference to physicians simply and intuitively 
[2]. There are many differences between the ECG signals 
(ECGs) from patients with heart failure and ordinar-
ily healthy people. The grading of heart failure requires 
careful study of ECG recordings by experienced cardi-
ologists, a process that is tedious and time-consuming. 
In addition, there may be small changes in the ECG that 
are ignored by the naked eye. Therefore, computer-aided 
diagnosis (CAD) algorithms [3] can be used to improve 
the accuracy of diagnosis. CAD uses machine learning 
[4] and deep learning methods to diagnose and analyze 
diseases from large-scale electronic medical data [5, 6]. 
For example, Balasubramanian et  al. [7] used a method 
by combining convolutional neural network and sup-
port vector machine to segment retinal blood vessels. 
CAD can provide valuable reference results for medical 
personnel, reduce the workload of doctors, and help to 
reduce the occurrence of misdiagnosis to a certain extent.

Many researchers have used ECGs to study the classi-
fications of heart failure. Tripoliti et al. [8] dealt with the 
severity of heart failure as a second-, third-, and fourth-
level classification problem. Eleven classifiers were used 
on a heart failure dataset of 378 patients via 10-fold 
cross-validation and evaluated. The highest detection 
accuracy for the secondary, tertiary, and quaternary clas-
sification problems was 97, 87, and 67%, respectively. 
Zhang et  al. [9] constructed datasets of patients with 
heart failure. Natural language processing (NLP) was 
used according to the relevant data on NYHA classifi-
cation to classify patients with heart failure from clini-
cal data (NYHA Classes I–IV). Qu et  al. [10] extracted 
multiple features from the heart rate variability (HRV) 
of patients with heart failure. Support vector machine 
(SVM) and classification and regression tree (CART) 
were used to distinguish patients with heart failure with 
NYHA class I–III according to extracted features. The 
accuracy, sensitivity, and specificity of the SVM clas-
sifier reached 84.0, 71.2, and 83.4%, respectively, while 
the accuracy, sensitivity, and specificity of the CART 
classifier reached 81.4, 66.5, and 81.6%, respectively. 
Li et  al. [11] proposed a deep convolutional neural net-
work recursive neural network (CNN-RNN) model for 
real-time automatic classification of heart failure. Fea-
tures of ECGs were extracted and combined with other 
clinical features. The combined features were provided 
to the RNN for classification, resulting in five classifi-
cation results (typical and NYHA Classes I–IV). The 

proposed CNN-RNN model has a classification accuracy 
of 97.6%, sensitivity of 96.3%, and specificity of 97.4%. Li 
et al. [12] divided ECGs into 2 s segments and proposed 
a new multi-scale residual network (ResNet) to distin-
guish heart failure patients with different NYHA classes 
(NYHA Classes I–IV). The experimental results showed 
that the average positive predictive value, sensitivity, and 
accuracy of the proposed ResNet-34 were 93.49, 93.44, 
and 93.60%, respectively. D’Addio et al. [13] extracted fea-
tures from Poincaré plot,which was generated from 24 h 
ECG recordings. They used machine learning algorithms 
to distinguish heart failure patients with different NYHA 
classes (NYHA Classes I–III). The machine learning algo-
rithms used by the author included AdaBoost, k-Nearest 
neighbors (KNN), and naive Bayes (NB). The accuracy 
of the three algorithms was greater than 80%, and the 
area under the receiver operating curve was greater than 
0.7. Sandhu et al. [14] analyzed 13 clinical medical data 
records on 299 patients with heart failure and classified 
these patients as NYHA Class III or IV. The SVM-GA 
model was proposed to classify the grade of patients with 
heart failure and calculate the importance of features. 
The accuracy, positive predictive value, and recall of the 
proposed SVM-GA model were 91.49, 94.25, and 93.6%, 
respectively. Tsai and Morshed [15] used BIDMC con-
gestive heart failure (CHF) datasets, including the ECG 
of NYHA Class III and IV patients. Twenty-eight features 
were extracted from the ECG data. Machine learning 
models (including SVM, KNN, ensemble tree, decision 
tree, naive Bayes, and logistic regression) were used to 
realize automatic real-time, high-precision classifica-
tion of patients. KNN was the most accurate, with 99.4% 
accuracy; the accuracy of SVM, ensemble tree, decision 
tree, naive Bayes, and logistic regression was 99.4, 98.2, 
99.4, 98.7, and 99.2%, respectively.

The above studies showed that the severity of heart 
failure is primarily based on the NYHA classification 
standard. In comparison, few studies classified heart 
failure into four categories. Zhang et al. [9] and Sandhu 
et  al. [14] used the patients’ medical data as the data-
sets, and D’Addio et  al. [13] used the Poincaré chart as 
their experimental data. ECG or HRV [16] was used as 
experimental data in other literatures [8, 10–12, 15]. This 
demonstrates that many kinds of computer data are used 
in the research of heart failure grading and that there is 
no universal automatic assessment model of heart failure 
yet. Therefore,we studied an objective and convenient 
heart failure classification model, which only uses ECGs 
to evaluate the severity of heart failure. Our model is 
essentially a multi-classification task, and the framework 
of our model is shown in Fig. 1. The model can classify 
the severity of heart failure of patients, and the higher the 
NYHA grade represents the higher the severity of heart 
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failure. The specific details about the proposed deep 
learning model of Fig. 1 are elaborated in Section III.

The main contributions in this paper are as follows:

1. Construct a deep learning model for heart fail-
ure classification using CNN and Long short-term 
memory (LSTM) to extract the spatial and tempo-
ral characteristics of the ECGs of patients with heart 
failure, and incorporate the attention mechanism to 
make the model focus on the key features of ECGs in 
patients with heart failure automatically.

2. The CNN-LSTM-SE model proposed in this paper 
has the characteristics of simple structure and light-
weight. Noise filtering, feature extraction and selec-
tion techniques are not required.

3. Discuss the effect of different length ECGs of patients 
with heart failure on heart failure classification, and 
find out the best partition. Train and verify the per-
formance of the proposed CNN-LSTM-SE deep 
learning model that automatically divides cases of 
heart failure into four categories according to the 
NYHA classification standard based on the best ECG 
segment signals of patients with heart failure.

4. Conduct an interpretability analysis of the proposed 
deep learning model, overlaying the ECG with the 
heat maps generated using Gradient-weighted Class 
Activation Mapping (Grad-CAM) for visualization. 
By comparing ECGs of 4 different severity grades of 
heart failure, it was observed that for NYHA Class I 
ECG, the proposed model mainly focus on the QRS 
segment. For NYHA Class II-IV heart failure, the 
proposed model’s attention is mostly concentrated 
on the ST-T segment. This has some indicative effect 
on the decision of the assistant clinician.

5. The proposed model in this paper has been tested on 
different datasets of heart failure and achieved good 
results, indicating that the proposed model has good 
robustness.

Data
Database
The Medical Information Mart for Intensive Care III 
(MIMIC - III) is an extensive, freely available database of 
health-related data associated with over 40,000 patients 
who stayed in critical care units of the Beth Israel Dea-
coness Medical Center between 2001 and 2012 [17]. 
MIMIC-III includes mainly clinical and waveform data-
sets. The clinical datasets contain 26 data tables, which 
record and store patient demographic information, vital 
signs, laboratory results, surgical information, medica-
tion, nursing records, in-hospital mortality, electronic 
medical records, and other information. The waveform 
data centrally record the patient’s ECG signal data, res-
piratory data, heart rate variability data, blood pressure 
data, and blood oxygen saturation data.

Data‑set establishment
Based on the MIMIC-III v1.4 database, heart failure 
classification is studied by combining deep learning 
with ECG signal. First, all ICD-9 codes relevant to heart 
failure was identified from the DIAGNOSES_ICD table 
within the data set. A total of 25 codes for heart failure 
conditions were found in the table, including: congestive 
heart failure, systolic heart failure, diastolic heart failure 
and so on. Patients’ diagnosis results were recorded in 
DRGCODES.csv file of the MIMIC-III data set. A total 
of 10,436 patients with heart failure were screened from 
DRGCODES.csv file according to ICD-9 coding, among 
which 644 patients with heart failure were labeled with 
NYHA grading results. Finally, by cross-referencing 
patient IDs, multi-lead ECG data was collected from 
the waveform data set for 268 heart failure patients. Not 
every one of these 268 patients had a complete multi-
lead ECG. For data consistency, we used the lead II 
ECG as the data set for this article. The resulting sever-
ity grading distribution of heart failure is presented in 
Table 1, while examples of the ECGs of the four NYHA 

Fig. 1 The framework of our method
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grades are shown in Fig.  2, the abscissa represents the 
sampling point and the ordinate represents the ampli-
tude of the ECG.

Not every patient in the waveform datasets had ECG 
recordings, so there was an imbalance in the distribu-
tion of the datasets. To solve the problem of unbal-
anced data distribution, we adopted the method of 
setting initial weights, dividing the training set, and 
test set according to the data distribution proportions, 
and employing cross-validation [18].

Pre‑processing
The data used in this study included 30 min lead II ECGs 
of patients with different heart failure grades, which 

needed to be segmented before they were entered into 
a deep learning network. The sampling frequency of 
the original ECG signal was 125 Hz. We used the origi-
nal sampling frequency and recorded the whole ECG 
signal in segments of 2–20 s. Some studies indicate that 
irregular R-R intervals may indicate cardiac functional 
abnormalities [19]. To ensure that the proposed deep 
learning model captures information from continuous 
wave peaks, we performed R-peak detection on ECG 
segments of different durations for data preprocessing 
[19]. Segments without at least 2 R-peaks were excluded, 
ensuring that each segment contained at least two 
complete QRS waves. The algorithm involves dynamic 
threshold computation, peak detection, sliding window, 
and QRS wave validation. Figure 3 illustrates the R-peak 
detection results for 2-second and 3-second ECG seg-
ments, showing that Fig.  3(1) contains two complete 
QRS waves, while Fig. 3(2) contains four complete QRS 
waves. Similar results can be obtained for other dura-
tions in Table 2. Results for other durations are not pre-
sented here for brevity.

The amounts of data after performing R-peak detection 
for data cleaning on ECG segments of different durations 
are presented in Table 2.

Table 1 Data used in this study

Type No. of Patients Proportion

NYHA Class I 8 2.99%

NYHA Class II 47 17.54%

NYHA Class III 115 42.91%

NYHA Class IV 98 36.57%

Total 268 100%

Fig. 2 Example ECGs for different classes
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Thirty minutes of ECGs could not be evenly segmented 
by 7, 11, 13, 14, 16, 17, and 19 s intervals, so they were 
excluded. We modeled and tested the datasets of the 
remaining ECG recordings to find the partitioning with 
the best effect.

Finally, to speed up the optimal gradient descent solu-
tion [20], we conducted Z-score standardization process-
ing on the datasets. The formula is as follows:

(1)x′ =
xi − µ

σ
,

where x′ represents the normalized ECG segments, xi is 
the sampled ECG signal, μ is the mean, and σ is the vari-
ance of the population data.

Deep learning model
One‑dimensional convolutional neural networks
Convolutional neural network (CNN) is feedforward neu-
ral network with deep structure, convolution calculation, 
and a representative deep learning algorithm [21]. The 
study of CNN began in the 1980s, LeNet-5 being one of 
the earliest [22]. After improved deep learning theory and 

Fig. 3 The results of R‑peak detection
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computing equipment were introduced in the 2000s, CNN 
developed rapidly and were applied to computer vision, 
natural language processing, and other fields. Since the 
ECG datasets in this study are one-dimensional, unlike the 
two-dimensional image input to a standard CNN, we used 
a one-dimensional CNN for better results [11].

A one-dimensional CNN includes a one-dimensional 
convolution layer, a pooling layer, and a fully connected 
layer [21]. A one-dimensional CNN learns the spatial fea-
tures of data automatically without artificial feature selec-
tion. Therefore, we used the CNN as a feature extractor. An 
ECG signal contains strong temporal characteristics, and a 
simple CNN cannot extract the features of temporal signals 
well. It must be combined with other deep learning net-
works that are good at processing temporal signals.

This study used a nine-layer deep CNN, including three 
one-dimensional convolution layers, three pooling layers, 
and three full connection layers. Adding a pooling layer 

behind the convolution layer reduces the feature map’s size, 
and the full connection layer outputs features for the final 
classification task.

Long short‑term memory
Long short-term memory (LSTM) is a type of recurrent 
neural network (RNN) that is often used to predict infor-
mation containing time sequences [23]. RNN is connected 
to evaluating the current information based on the previ-
ous period’s data, so it performs well in predicting timing 
problems. However, an RNN is prone to gradient disappear-
ance with increased network layers. Based on RNN, LSTM 
increased the screening of memory information, retained 
useful information for the model, and solved the RNN 
problem of gradient disappearance and explosion [24].

Figure 4 shows the internal structure of an LSTM mem-
ory block. Ct and Ct − 1 are the neuronal states of the current 
moment and the previous moment, respectively. ht and ht − 1 
are respectively the output of the unit at the current time 
and the unit at the previous time, and Xt is the input to the 
network. The LSTM forget gate is ft, which controls forgot-
ten information through the sigmoid function. it is the input 
gate, which sets the threshold value and implements the 
tanh function to determine the state of the neuron. Ot is the 
output gate, which controls the output information through 
the sigmoid function. The formulas are as follows:

(2)ft = Sigmoid Kf · [ht−1,Xt ]+ Zf ,

(3)it = Sigmoid (Ki · [ht−1,Xt ]+ Zi),

(4)Ot = Sigmoid (KO · [ht−1,Xt ]+ ZO)

(5)C ′

t = tanh (Kc · [ht−1,Xt ]+ Zc)

Table 2 Summary of the amounts of data segmented by 
different durations

Split seconds Number

2 s 225,619

3 s 149,714

4 s 111,863

5 s 89,210

6 s 74,119

8 s 55,316

9 s 49,049

10s 44,055

12 s 36,563

15 s 29,099

18 s 24,122

20s 21,654

Fig. 4 Internal structure of LSTM block
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where Kf, Ki, Ko, and Kc represent the weight matrix cor-
responding to the amnesia gate, input gate, output gate, 
and neuron state matrix, respectively, and Zf, Zi, Zo, 
and Zc represent the offset for each door.

The neuron’s current state and the cell’s output are 
expressed as follows:

and

Channel attention module
A problem arises when training a neural network. With 
the deepening of network layers, the final classification 
effect decreases instead of increasing, and even the accu-
racy of the training set stagnates. This happens because 
although increasing the network layers may obtain deeper 
features, the network cannot select these features well. 
We integrate a channel attention mechanism into a CNN 
to amplify the features of a particular part while ignoring 
irrelevant features and fully using the existing convolu-
tional layer without increasing the depth of the network.

The squeeze-and-excitation network (SE-Net) [25] is a 
channel attention mechanism. It is a new image recog-
nition structure unveiled by autonomous driving com-
pany Momenta in 2017. The modeling of the correlation 
between feature channels is the excitation network. 
The central ideas of SE-Net are to learn feature weights 
through the network according to a loss function, to 
enlarge the effective feature map weight, and to reduce 
invalid or small-effect feature map weights for bet-
ter results. The internal structure of SE-Net is shown in 
Fig. 5. The first step of SE-Net is to change the elements 
in each channel into scalars through global average pool-
ing, called Squeeze operation. The second step is to pass 
the scalar value through the two fully connected (FC) 
layers to obtain a weight between 0 and 1. The process 
obtains the new feature map by multiplying each element 

(6)Ct = ft · Ct−1 + it · C
′

t

(7)ht = Ot · tanh (Ct).

of the original H × W by the weight of the corresponding 
channel. This step is called excitation. Finally, channel-
by-channel weighting recalibrates the original features in 
the channel dimension.

We added the SE-block after the second and third con-
volution layers of the CNN to automatically select related 
features and ignore irrelevant ones, resulting in a better 
classification of heart failure.

CNN‑LSTM‑SE model integrating attention mechanism
The structure of our proposed CNN-LSTM-SE model 
with an integrated attention mechanism is shown in 
Fig.  6. We performed an ablation experiment [26] to 
determine the optimal network structure proposed in this 
paper. The proposed network contains 20 layers which 
includes 3 convolutional layers, 2 SE-Blocks, 10 LSTM 
layers, 3 global average pooling layers, and 2 fully con-
nected (FC) dense layers. First, one-dimensional CNN 
was used to extract the spatial features of ECGs. Second, 
the LSTM layer was added before the FC layer of the CNN 
to make the model learn the sequential characteristics of 
the ECGs. Finally, the attention mechanism SE-block was 
added behind the second and third convolution layers of 
the CNN-LSTM model to realize automatic focusing of 
the relevant features and to ignore irrelevant features.

From one-dimensional CNN model to the CNN-LSTM 
model and finally to the CNN-LSTM-SE model, the 
accuracy, specificity, sensitivity, and positive predictive 
value were successively improved. The CNN-LSTM-SE 
model provided the best results, which shows that the 
integration of LSTM and attention mechanism in one-
dimensional CNN model can improve the effect of heart 
failure classification. The test results of three models are 
described in Section V.

Implementation details
The software environment for this experiment was Ten-
sorflow2.3.0 and Python 3.8, and the hardware environ-
ment was an NVIDIA GeForce GTX 1060.

Fig. 5 Internal structure of SE‑Net
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A five-fold cross-validation method was adopted to 
evaluate the robustness of the proposed model [27]. This 
method divided the datasets randomly into five parts, 
four of which were trained and one tested. The cycle 
was repeated five times to build five models. Datasets 
divided into 2–20 s segments were modeled separately. 
Twelve modeling test results are described in Section V. 
The evaluation indexes of each fold were accuracy, sen-
sitivity, and specificity. Finally, the accuracy, sensitivity, 
specificity, and positive predictive value of the five mod-
els were averaged to get the final evaluation index results. 
The average training time for each model is 226 seconds, 
and the total training time for five-fold cross-validation 
is 18 minutes. The average time taken for model testing is 
0.65 seconds.

We chose the Adam optimizer with backpropagation, 
set the learning rate of 0.001 for each round of training 
fold, trained for 60 epochs, and set the maximum mass 
size to 32.

Results and discussion
For unbalanced samples, using only accuracy did not help 
to comprehensively evaluate the model’s performance. 
Therefore, four objective standard indexes were used to 
evaluate the classification performance of the proposed 
mode: accuracy (Acc), positive predictive value (PPV), 
specificity (Spe), and sensitivity (Sen). Acc, PPV, Spe, and 
Sen are defined as follows (true positive [TP], false posi-
tive [FP], true negative [TN], and false negative [FN] are 
used in the formula):

Acc refers to the percentage of predicted correct results 
of the total samples:

(8)Acc =
TP+ TN

TP+ TN + FP+ FN
.

PPV refers to the probability of actual positive samples 
among all predicted positive samples:

Spe refers to the probability of being predicted as a 
negative sample in the actual negative samples:

Sen refers to the probability of being predicted as a 
positive sample in the actual positive sample:

We adopted two kinds of schemes in the training. 
Scheme A is a trained network without any dropout and 
is introduced as reference to examine the effect between 
a regular network and dropout network. The other is 
dropout scheme. In Scheme B, 20% of the recurrent and 
input connections of the LSTM layer are dropped out. 
The accuracy and loss curves for each of these schemes 
are presented in Fig. 7. It can be observed from Fig. 7 that 
the dropout network has little fluctuation in the accu-
racy curve compared to the regular network. Both the 
validation curve and the training curve steadily increase 
and eventually stabilize at around 99% at 60 epochs. The 
validation set loss curve of the conventional network 
oscillates significantly. At 60 epochs, the accuracy of the 
training set stabilizes at 99%, while the accuracy of the 
validation set is 98%. The accuracy of the validation set of 
the Scheme A is 1% lower than that of the Scheme B.

The test results of three models (CNN, CNN-LSTM, 
CNN-LSTM-SE) generated by the ablation experiment are 
shown in Table 3. The datasets used were patients’ ECGs 

(9)PPV =
TP

TP+ FP
.

(10)Spe =
TN

TN + FP
.

(11)Sen =
TP

TP+ FN
.

Fig. 6 Architecture diagram of the proposed CNN‑LSTM‑SE model
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divided into 12 s segments. Table  3 shows that by adding 
the LSTM layer to the CNN (CNN-LSTM model), the Acc, 
PPV, Sen, and Spe of the model increase by 0.69, 1.441, 
0.4165, and 0.2155%, respectively. By incorporating the 
attention mechanism into the CNN-LSTM model (CNN-
LSTM-SE model), the Acc, PPV, Sen, and Spe of the model 
increase by 0.452, 0.3845, 0.7795, and 0.1835%, respectively.

Twelve datasets, divided into 2–20 s intervals, were 
modeled separately. The results of 12 CNN-LSTM-
SE network modeling tests incorporating an attention 
mechanism are shown in Table  4. The accuracy, posi-
tive predictive value, sensitivity, and specificity of the 
model divided into 12 s segments are 99.09, 98.9855, 
99.033, and 99.649%, respectively. Compared with other 

Fig. 7 Accuracy and loss plots for the various schemes during training
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segmentation methods, this model (12 s segments) has 
the highest accuracy, positive predictive value, specific-
ity, and third-highest sensitivity. The sensitivity of the 
model divided by 12 s sementation is 0.001% lower than 
that divided by 9 s segmentation (ranking second), and 
0.077% lower than that divided by 15 s segmentation 
(ranking first). The sensitivity of the model divided by 
12 s segmentation is almost equal to that of the second 
best. Therefore, the proposed CNN-LSTM-SE model has 
the best comprehensive performance when the datasets 
are divided into one segment every 12 s.

The confusion matrixes of the CNN-LSTM-SE model 
divided into 12 s segments are shown in Fig. 8. As shown 
in Fig. 8, the model is more likely to confuse all grades of 
heart failure with those of neighboring grades, and less 
likely to confuse those of different grades. For example, 
in Fig. 8(1), 16 patients with NYHA Class III heart fail-
ure were misclassified as NYHA Class II, 15 cases were 
misclassified as NYHA Class IV, and only 1 case was mis-
classified as NYHA Class I. In Fig. 8(5), 16 patients with 
NYHA Class IV heart failure were misclassified as NYHA 
Class III and only 1 was misclassified as NYHA Class 
II. This suggests that there is greater similarity between 
adjacent grades of heart failure ECGs than that of differ-
ent grades, making the models difficult to distinguish.

The model test results for the five-fold cross-validation 
are shown in Table 5. Table 5 shows that, except for the 
third fold model, the Acc is 98.76%, and the classification 
effect is slightly poor. The Acc of the other-fold heart fail-
ure grade classification models is above 99%. The aver-
age PPV was 98.9855%, close to 99%, the average Sen was 
99.033%, and the average Spe was 99.649%, close to 100%. 
It indicates that the model divided by 12 s segmentation 
is relatively excellent in all indicators.

To further verify the performance of the proposed 
CNN-LSTM-SE model, we tested the performance of our 
model on two other datasets (Data-sets A and B). The 
Data-set A were obtained from public datasets (Phys-
ioBank) namely the Beth Israel Deaconess Medical Cen-
tre (BIDMC) Congestive Heart Failure Database [28] 
and Fantasia Database [29]. The Data-set B was obtained 
from the Intercity Digital ECG Alliance (IDEAL) study of 
the University of Rochester Medical Center Telemetric 
and Holter ECG Warehouse (THEW) archives [30]. The 
details of ECG signals obtained from various databases 
is presented in Table  6. The BIDMC database contains 
ECGs from 15 patients with CHF, classified according to 
the NYHA classification standard, without distinguishing 
between NYHA classes III and IV. The Fantasia database 
includes ECGs from 18 healthy individuals. The THEW 
database contains ECGs from 50 patients with CHF, 
categorized into 1–4 severity grades, although the clas-
sification standard used for this categorization are not 
explicitly stated.

We used Data-set A (BIDMC + Fantasia) to perform 
a binary test for diagnosis of heart failure in patients 
with our model, and Data-set B (THEW) to perform a 
separate four-class classification test for assessment of 
heart failure severity in patients with our CNN-LSTM-
SE model alone. The results are shown in Table 7. From 
Table 7, it can be seen that the binary classification model 
using Data-set A achieved an accuracy of 99.35%, preci-
sion of 99.35%, sensitivity of 99.37%, and specificity of 
99.37%. The four-class classification model using Data-
set B achieved the Acc of 98.91%, PPV of 98.39%, Sen of 
99.06%, and Spe of 99.57%. Except for the Acc (98.91%) 
and PPV (98.39%) of the model using Data-set B, all other 
metrics of the proposed models constructed using Data-
sets A and B are above 99%. The CNN-LSTM-SE model 
proposed in this paper also performs well on above two 
datasets, indicating that our model has strong robustness.

To further verify the performance of the proposed 
CNN-LSTM-SE model, the proposed model is compared 
with other existing heart failure classification methods 
(e.g. SVM, CNN, Natural Language Processing(NLP), 
Resnet, etc.). The performance indicators of each model 
are shown in Table  8. The current research on the clas-
sification of heart failure mainly includes two-, three-, 

Table 3 Comparison of different model performance on ECG 
datasets divided by 12 s

Model Acc(%) PPV(%) Sen(%) Spe(%)

CNN 97.948 97.16 97.837 99.25

CNN‑LSTM 98.638 98.601 98.2535 99.4655

CNN‑LSTM‑SE 99.09 98.9855 99.033 99.649

Table 4 Performance comparison of CNN‑LSTM‑SE model on 
ECG datasets divided by different durations

Bold font indicates the top three best evaluation parameters

Split seconds Acc(%) PPV(%) Sen(%) Spe(%)

2 s 97.472 97.471 97.426 99.043

3 s 97.748 97.4675 97.936 99.1595

4 s 98.114 97.891 98.254 99.2805

5 s 98.332 98.356 98.4665 99.3655

6 s 98.65 98.491 98.7575 99.4845

8 s 98.942 98.967 98.9565 99.5945
9 s 98.812 98.7465 99.034 99.5525

10s 98.706 98.917 98.704 99.4965

12 s 99.09 98.9855 99.033 99.649
15 s 98.938 98.937 99.11 99.597
18 s 98.778 98.433 98.682 99.5405

20s 98.37 97.969 97.7495 99.4055
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four-and five-grades classification. Traditional shallow 
machine learning methods (e.g. SVM, CART, Adaboost, 
etc.) are mostly used to model the two-grades and three-
grades studies of heart failure classification. However, the 
limitations inherent in shallow machine learning, such as 
manual feature extraction and inherent model character-
istics, make it difficult to achieve high accuracy rates in 
heart failure classification. The Acc of the heart failure 
classification of the machine learning model is around 

Fig. 8 The confusion matrixes of the CNN‑LSTM‑SE model divided into one segment by every 12 s

Table 5 Five‑fold cross‑validation of CNN‑LSTM‑SE model

Fold Acc(%) PPV(%) Sen(%) Spe(%)

First Fold 99.11 98.835 99.17 99.67

Second Fold 99.25 99.2975 99.1175 99.715

Third Fold 98.76 98.0475 98.875 99.5325

Fourth Fold 99.14 99.3175 98.8875 99.665

Fifth Fold 99.19 99.43 99.1175 99.6625

Average 99.09 98.9855 99.033 99.649
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80–90%, which is generally about 10% lower than that of 
our CNN-LSTM-SE model. For the fourth-grades and 
five-grades heart failure classification problems, almost all 
the models are constructed by deep learning methods. For 
the four-grades heart failure classification problem, Zhang 
et al. [9] adopted the NLP method, and the patient’s clini-
cal data was used as the input of the model. The Ppv of 
the model was 94.99%. Li et al. [12] improved ResNet-34 
by adding multi-scale residual block to the Resnet-34. 
The Acc of heart failure classification obtained by the 
above model reached 94.29%, and the Ppv was 94.16%. 

Table 6 The details of ECG signals obtained from various databases

Database Diagnosis Number of ECG records Number of 
12 seconds ECG 
segments

BIDMC CHF 15 (NYHA III‑IV) 22,500

Fantasia Normal 18 46,380

THEW CHF 50 (Severity of CHF Treatment 1–4) 7500

Table 7 Results on the data‑sets A and B

Data‑set Acc(%) PPV(%) Sen(%) Spe(%)

Data‑set A
(BIDMC+Fantasia)

99.35 99.35 99.37 99.37

Data‑set B
(THEW)

98.91 98.39 99.06 99.57

Table 8 Summary of performance comparison for different methods

Classification problem Model Number of data Performance

Two classes SVM‑GA [14] Clinical Data
NYHA class III: 1365
NYHA class IV: 2522

Acc – 91.49%
Ppv – 94.25%
Recall–93.60%

11‑layer CNN [31] 5‑seconds ECG segment
CHF: 30000
Normal: 70308

Acc – 98.97%
Sen – 98.87%
Spe – 99.01%

Three classes CART [10] RR interval segment (N = 300)
NYHA class I: 1416
NYHA class II: 3088
NYHA class III: 6181

Acc – 81.40%
Sen – 66.50%
Spe – 81.60%

AdaBoost [13] Poincaré plot
NYHA class I: 22
NYHA class II: 116
NYHA class III: 61

Acc – 82.5%
Ppv – 77.8%
Sen – 58.3%
Spe – 92.9%

Four classes NLP [9] Clinical note
NYHA class I: 1367
NYHA class II: 2502
NYHA class III: 1790
NYHA class IV: 515

Ppv – 94.99%
Recall–92.10%

Multi‑scale
ResNet‑34[12]

5‑seconds ECG segment
NYHA class I: 3720
NYHA class II: 7440
NYHA class III: 11940
NYHA class IV: 6240

Acc – 94.29%
Ppv – 94.16%
Sen – 93.79%
Spe – 97.89%

Our work 12‑seconds ECG segment
NYHA class I: 1200
NYHA class II: 7050
NYHA class III: 17250
NYHA class IV: 14700

Acc – 99.09%
Ppv – 98.98%
Sen – 99.03%
Spe – 99.64%

Five classes CNN‑RNN [11] 2‑seconds ECG segment
Normal: 5160
NYHA class I: 2520
NYHA class II: 4680
NYHA class III: 3150
NYHA class IV: 6240

Acc – 97.60%
Ppv – 97.10%
Sen – 96.30%
Spe – 97.40%
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Most heart failure classification techniques using deep 
learning largely rely on CNN for extracting the spatial 
features of ECG, neglecting the temporal characteristics. 
This paper presents an alternative method that incorpo-
rates LSTM to capture sequential features of ECG signal 
and the attention mechanism to focus important features 
associated with heart failure. Therefore, the effect of our 
CNN-LSTM-SE model is better than that of literature [9] 
and literature [12]. For the five-grades heart failure clas-
sification problem, the Acc of heart failure classification 
obtained by the CNN-RNN [11] model was 97.6%. The 
model focuses on both temporal and spatial features of 
the ECG, but the method proposed in this paper incor-
porates attention mechanisms to make the model more 
focused on key features related to heart failure, so the 
performance of our CNN-LSTM-SE model is better than 
the CNN-RNN model. The literature [11] only discussed 
the effect of dividing ECG according to 2 s and 5 s, while 
we discusses the impact of varying ECG segment lengths 
on heart failure classification and reveals that the 12 s 
ECG segment results in optimal accuracy. Our model is 
designed to tackle the four-grades heart failure classifica-
tion problem, has yielded noteworthy results.

We analyzed the data used in this experiment and visu-
alized the results of ECG signal analysis. The violin dia-
gram [32] of the ECG amplitude for each severity level of 
heart failure is shown in Fig. 9. The amplitude distribu-
tion of ECGs according to the severity of heart failure is 
more intuitively understood by observing the violin dia-
gram. As shown in Fig. 9, the ECG signal amplitudes of 
NYHA Class I are all concentrated between 0 and 1. The 
amplitudes of the ECGs of NYHA Classes II, III, and IV 
are relatively dispersed, with the amplitudes of the ECGs 
of NYHA Class II being between − 2 and 2, of NYHA 
Class III being between − 2 and 2.8, and of NYHA Class 
IV being between − 2.8 and 2.2. However, the amplitudes 

of ECGs of NYHA Classes II, III, and IV are mainly con-
centrated between 0 and 1, except for a few distributed 
outliers. The distribution of the four categories is similar, 
with the maximum distribution around 0.5 and the num-
ber of distributions gradually decreasing to 0 and 1. In 
this case, some simple characteristics, such as amplitude, 
cannot be relied on to distinguish the type of heart fail-
ure. Therefore, building a deep learning model to distin-
guish between the four levels is necessary.

In addition, to enhance the interpretability of our 
model, we applied gradient-weighted class activation 
mapping (Grad-CAM) to obtain the heat maps of the last 
convolutional layers to highlight the area of the model’s 
focus. To visualize them, we displayed the heat maps 
for all four grades of heart failure. Figure  10 shows the 
heat maps of ECGs in heart failure NYHA Class I-IV, 
which are overlaid with heat maps of the last convolu-
tion layer calculated by the Grad-CAM method. The 
color bar ranging from blue to red indicating the degree 
of model attention, from low to high. From Fig. 10(1), it 
can be observed that the model focuses on the QRS of 
the ECG. Moreover, in Fig.  10(2)–(4), it is evident that 
the model predominantly concentrates on the ST seg-
ment of the ECG, which is known to exhibit abnormal 
changes in the ECG of heart failure patients [33]. As the 
disease progresses, the changes in the ST-T segment (the 
region of the ST and T waves) become more pronounced, 
which has a strong correlation with the severity of heart 
failure and serves as a reliable indicator. We can see that 
the ST-T segment of most ECGs is more red than other 
segments, and the results show that the model pays more 
attention to the ST-T segment location of the character-
istic ECGs, which has some indicative effect on the deci-
sion of the assistant clinician.

The above experimental results show that our deep 
learning model simultaneously extracts the spatial and 
temporal characteristics of the ECGs of patients with 
heart failure. The model focuses on the key features of 
the signals by incorporating the attention mechanism. 
These results show that the proposed model achieves a 
good classification result and that its comprehensive per-
formance is better than similar methods.

Conclusion
This paper proposes a deep learning model, CNN-LSTM-
SE. The model uses a CNN, LSTM, and integrating atten-
tion mechanism. This model classifies heart failure into 
four levels automatically according to the ECG data of 
patients with heart failure.

We used a CNN to extract the spatial characteristics 
of ECGs. LSTM obtained the time series characteristics 
of ECGs. The attention mechanism was incorporated 
into the model to focus on the key features of ECGs to 

Fig. 9 Violin diagram of ECG amplitudes for four severe levels 
of heart failure
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Fig. 10 Visual interpretation of the CNN‑LSTM‑SE model
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improve classification accuracy. We divided the ECGs 
into fragments of different lengths to construct the cor-
responding datasets and then assessed the model perfor-
mance of different partitioning methods on the datasets. 
The datasets constructed with 12 s ECG signal segmen-
tation provided the best classification with the proposed 
model. The comprehensive performance of the deep 
learning model described in this paper is better than the 
current shallow machine learning and similar deep learn-
ing models. It can assist medical staff in clinical diagno-
sis and has good application prospects. In medicine, all 
kinds of heart diseases need to process and analyze ECGs 
[34–37]. Therefore, this method is not limited to the field 
of heart failure classification, but can also be extended 
to other fields such as arrhythmia [38–40] and coronary 
artery disease [41–44].

The limitations of our CNN-LSTM-SE model are as follows:

1. The ECG segments input by the model should con-
tain at least one complete ECG beat (P wave, PR seg-
ment [45–47], QRS complex, ST-T segment, U wave) 
to ensure more accurate classification results of the 
model. From the interpretability visualization results 
of the model, it can be known that if the input ECG 
segment does not contain a complete ECG beat, it 
may lead to the loss of some important features asso-
ciated with four grades of heart failure, which affects 
the decision results of the model.

2. Our model belongs to the monomodal method based 
on ECGs for heart failure classification, without con-
sidering other clinical health data of heart failure 
patients, and there is still room for improvement in 
classification performance.

The further work based on the proposed model are as 
follows:

1. The proposed model is developed using imbalance 
dataset, we will work with hospitals to improve exist-
ing datasets, especially by adding data for NYHA Class 
I patients, to further refine the model’s performance.

2. Multimodal [48] network will be constructed to 
classify heart failure. On the basis of the deep learn-
ing model based on monomodal data in this paper, 
patient data from other modalities related to heart 
failure will be added to further improve the objectiv-
ity of heart failure classification results and the inter-
pretability of related diseases. For example, adding 
clinical indicators such as blood pressure and blood 
glucose of patients to the model proposed in this 
paper can further explore the relationship between 
heart disease and underlying diseases [49] (such as 
hypertension, hyperglycemia, etc.).
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