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Abstract

Background Accurate diagnosis and early treatment are essential in the fight against lymphatic cancer. The appli-
cation of artificial intelligence (Al) in the field of medical imaging shows great potential, but the diagnostic accu-
racy of lymphoma is unclear. This study was done to systematically review and meta-analyse researches concern-
ing the diagnostic performance of Al in detecting lymphoma using medical imaging for the first time.

Methods Searches were conducted in Medline, Embase, IEEE and Cochrane up to December 2023. Data extrac-
tion and assessment of the included study quality were independently conducted by two investigators. Studies

that reported the diagnostic performance of an Al model/s for the early detection of lymphoma using medical imag-
ing were included in the systemic review. We extracted the binary diagnostic accuracy data to obtain the outcomes
of interest: sensitivity (SE), specificity (SP), and Area Under the Curve (AUC). The study was registered with the PROS-
PERO, CRD42022383386.

Results Thirty studies were included in the systematic review, sixteen of which were meta-analyzed with a pooled
sensitivity of 879% (95%Cl 83-91%), specificity of 94% (92-96%), and AUC of 97% (95-98%). Satisfactory diagnostic
performance was observed in subgroup analyses based on algorithms types (machine learning versus deep learning,
and whether transfer learning was applied), sample size (< 200 or> 200), clinicians versus Al models and geographical
distribution of institutions (Asia versus non-Asia).

Conclusions Even if possible overestimation and further studies with a better standards for application of Al algo-
rithms in lymphoma detection are needed, we suggest the Al may be useful in lymphoma diagnosis.
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Introduction

As a clonal malignancy of lymphocytes, lymphoma are
diagnosed in 280,000 people annually worldwide with
divergent patterns of clinical behavior and responses
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considered very aggressive (i.e., Diffuse large B-cell
lymphoma in NHL). Early and timely detection of lym-
phoma are needed to forward the qualified treatment
and improve the post-operative quality of life.

Since lymphocyte had diverse physiologic immune
function according to lineage and differentiation stage,
the classification of lymphomas arising from these
normal lymphoid populations is complicated. Imag-
ing is a useful tool in medical science and is invoked
in clinical practice to facilitate decision making for
the diagnosis, staging, and treatment [5]. Despite
advances in medical imaging technology, it is difficult
for even experienced hematopathologists to identify
different subtypes of lymphoma. Diagnosis of lym-
phoma is firstly based on the pattern of growth and
the cytologic features of the abnormal cells, then clini-
cal, molecular pathology, immunohistochemical, and
genomic features are required to finalize the identifi-
cation of certain subtypes [6]. However, clinical rou-
tine methods that enable tissue-specific diagnosis,
such as image-guided tumor biopsy and percutaneous
needle aspiration, have the shortcomings of subjectiv-
ity, costly, and poor classification accuracy [7]. Diag-
nostic features vary widely (from 14.8 to 27.3%) due to
inter-observer variability among experts using multi-
ple imaging methods such as computed tomography
(CT), magnetic resonance imaging (MRI), and Whole
Slide Image (WSI) in the same sample [8]. As diagnos-
tic accuracy of lymphoma depends largely on the clini-
cal judgment of physicians and the technical process
of tissue sections, limited health system capacities and
competing health priorities in more resource-deprived
areas may lack infrastructure and perhaps the man-
power to ensure high-quality detection of lymphoma.
Therefore, accurate, objective and cost-effective meth-
ods are required for the early diagnosis of lymphoma
in clinical settings and ultimately provide better guid-
ance for lymphoma therapies.

Artificial intelligence (AI) offers tremendous oppor-
tunities in this field. It has the ability to extend the
noninvasive study of oncologic tissue beyond estab-
lished imaging metrics, to assist automatic image
classification, and to facilitate performance of cancer
diagnosis [9-11]. As branches of AI, machine learn-
ing (ML) [12, 13] and deep learning (DL) [8, 14] have
shown promising results for detection of malignant
lymphoma. However, there are no studies systemati-
cally assessing the diagnostic performance of Al algo-
rithms in identifying lymphoma. Here, we performed
a meta-analysis to assess the diagnostic accuracy of
Al algorithms that use medical imaging to detect
lymphoma.

Page 2 of 19

Materials and methods

The study protocol was approved on the PROSPERO
(CRD42022383386). This meta-analysis was conducted
according to the Preferred Reporting Items for System-
atic reviews and Meta-analyses (PRISMA) 2020 guide-
lines [15]. Ethical approval was not applicable.

Search strategy and eligibility criteria

In this study, we searched Medline, Embase, IEEE and the
Cochrane library until December 2023. No restrictions
were applied around regions, languages, participant char-
acteristics, type of imaging modality, AI models or pub-
lication types. The full search strategy was developed in
collaboration with a group of experienced clinicians and
medical researchers (see Additional file 1).

Eligibility assessment was conducted independently
by two investigators, who screened titles and abstracts,
and selected all relevant citations for full-text review.
Disagreements were resolved through discussion with
another collaborator. We included all published stud-
ies that reported the diagnostic performance of a Al
model/s for the early detection of lymphoma using medi-
cal imaging. Studies that met the following criteria were
included in the final group: (1) Any study that analyzed
medical imaging for diagnosis of lymphoma with AI-
based models; (2) Studies that provided any raw diagnos-
tic performance data, such as sensitivity, specificity, area
under curve (AUC) accuracy, negative predictive values
(NPVs), or positive predictive values (PPVs). The primary
outcomes were diagnostic performance indicators. Stud-
ies were excluded when they met the following criteria:
(1) Case reports, review articles, editorials, letters, com-
ments, and conference abstracts; (2) Studies that used
medical waveform data graphics material (i.e., electro-
encephalography, electrocardiography, and visual field
data) or investigated the accuracy of image segmentation
rather than disease classification; (3) Studies without the
outcome of disease classification or not target diseases;
(4) Studies that did not use histopathology and expert
consensus as the study reference standard of lymphoma
diagnosis; (5) Studies that use animals’ studies or non-
human samples; (6) Duplicate studies.

Data extraction

Two investigators independently extracted study char-
acteristics and diagnostic performance data using a pre-
determined data extraction sheet. Again, uncertainties
were resolved by a third investigator. Where possible,
we extracted binary diagnostic accuracy data and con-
structed contingency tables at the reported thresholds.
Contingency tables contained true-positive (TP), false-
positive (FP), true-negative (TN), and false-negative (FN)
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values and were used to determine sensitivity and speci-
ficity. If a study provided multiple contingency tables for
the same or for different Al algorithms, we assumed that
they were independent of each other.

Quality assessment

The quality assessment of diagnostic accuracy studies-Al
(QUADAS-ALI) criteria was used to assess the risk of bias
and applicability concerns of the included studies [16],
which is an Al-specific extension to QUADAS-2 [17] and
QUADAS-C [18].

Meta-analysis

Hierarchical summary receiver operating characteris-
tic (SROC) curves were used to assess the diagnostic
performance of Al algorithms. Hierarchical SROC pro-
vided more credibility to the analysis of small sample
size, taking both between and within study variation into
account. 95% confidence intervals (CI) and prediction
regions were generated around averaged sensitivity, spec-
ificity, and AUCs estimates in Hierarchical SROC figures.
Heterogeneity was assessed using the I statistic. We per-
formed subgroup and regression analyses to explore the
potential effects of different sample size (<200 or> 200),
diagnostic performance using the same dataset (Al algo-
rithms or human clinicians), Al algorithms (ML or DL),
geographical distribution (Asia or non-Asia), and appli-
cation of transfer learning (Yes or No). The random
effects model was implemented since the assumed differ-
ences between studies. The risk of publication bias was
assessed using funnel plot.

We evaluated the quality of included studies by Rev-
Man (Version 5.3). A cross-hairs plot was produced (R
V.4.2.1) to better display the variability between sensi-
tivity/specificity estimates. All other statistical analyses
were conducted using Stata (Version 16.0). Two-sided
p<0.05 was the threshold for statistical significance.

Results

Study selection and characteristics

Our search initially identified 1155 records, of which
1110 were screened after removing 45 duplicates. 1010
were also excluded as they did not fulfill our predeter-
mined inclusion criteria. A total of 100 full-text articles
were reviewed, 70 were excluded, and the remaining 30
focused on lymphomas (see Fig. 1) [1, 8, 12—14, 19-43].
Study characteristics are summarized in Tables 1, 2 and
3.

Twenty-nine studies utilized retrospective data.
Only one study used prospective data. Six studies used
data from open access sources. Five studies excluded
low-quality images, while ten studies did not report
anything about image quality. Six studies performed
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external validation using the out-of-sample dataset, fif-
teen studies did not report type of internal validation
while the others performed internal validation using
the in-sample dataset. Seven studies utilized ML algo-
rithms and twenty-three studies used DL algorithms
to detect lymphoma. Three studies compared Al algo-
rithms against human clinicians using the same data-
set. Among the studies analyzed, six utilized samples
diagnosed with PCNSL, six involved samples with
DCBCL, four studies focused on ALL, while two stud-
ies focused on NHL. Additionally, individual studies
were conducted among patients with ENKTL, splenic
and gastric marginal zone lymphomas, and ocular
adnexal lymphoma. Furthermore, a variety of medical
imaging modalities were employed across the studies:
six studies utilized MRI, four used WSI instruments,
four employed microscopic blood images, three utilized
PET/CT, and two relied on histopathology images.

Pooled performance of Al algorithms

Among the included 30 studies, 16 provided enough
data to assess diagnostic performance and were thus
included in the meta-analysis [1, 12, 14, 20, 22-26,
28, 29, 32, 33, 35-37]. Hierarchical SROC curves for
these studies are provided in Fig. 2. When averaging
across studies, the pooled SE and SP were 87% (95%
CI 83-91%), and 94% (95% CI 92-96%), respectively,
with an AUC of 0.97 (95% CI 0.95-0.98) for all Al
algorithms.

Heterogeneity analysis

All included studies found that Al algorithms were use-
ful for the detection of lymphoma using medical imag-
ing when compared with reference standards; however,
extreme heterogeneity was observed. Sensitivity (SE) had
an =99.35%, while specificity (SP) had an I°=99.68%
(p<0.0001), see Fig. 3. The detailed results of subgroup
and meta-regression analyses are shown in Table 4. The
heterogeneity for the pooled specificity and sensitivity are
still significant within each subgroup, suggesting poten-
tial sources of inter-study heterogeneity among studies
with different sample sizes, various algorithms applied,
geographical distribution and Al algorithms-assisted cli-
nicians versus pure clinicians. However, the results of
meta-regression highlight that only difference in Al algo-
rithms and human clinicians remain statistically signifi-
cant, indicating a potential source of between-subgroup
heterogeneity. Furthermore, a funnel plot was produced
to assess publication bias, see Fig. 4. The p value of 0.49
suggests there is no publication bias although studies
were widely dispersed around the regression line.
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155 records identified
657 from Embase
247 from IEEE

154 from Medline

97 from Cochrane Library

45 duplicates removed

1164 records screened by

title and abstract
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1010 records removed due to the following reasons

Review articles, case reports, editorials, letters, comments, and conference abstracts.
Studies involving non-human samples.

Analysis using medical waveform data graphics.

Research specifically investigating the accuracy of image segmentation.

100 full-text articles
assessed for

eligibility

standard

10 no Al models

8 not imaging

70 records excluded
22 not target diseases

18 did not use histopathology as gold

12 no disease classification

30 studies included in

the systemic review

16 studies included in the meta-analysis

Fig. 1 PRISMA flow chart outlining the selection of studies for review

Quality assessment

The quality of included studies was summarized in Fig. 5
by using the QUADAS-AI tool. A detailed assessment
for each item based on the domain of risk of bias and
concern of applicability has also been provided as Fig. 6.
For the subject selection domain of risk of bias, fourteen
studies were considered a high or unclear risk of bias due
to unreported rational and breakdown of training/vali-
dation/test sets, derived from open-source datasets, or
not performing image pre-processing. For the index test
domain, seventeen studies were considered high or at

unclear risk of bias due to not performing external verifi-
cation, whereas the others were considered at low risk of
bias. For the reference standard domain, ten studies were
considered an unclear risk of bias due to incorrect clas-
sification of target condition.

Subgroup meta-analyses

Considering the stage of development of the algorithm
and the difference in nature, we categorized them into
ML and DL algorithms and did a sub-analysis. The results
demonstrated a pooled SE of 86% (95% CI: 80-90%) for
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Table 2 Model training and validation for the 24 included studies
First author and year Target condition Reference standard Type of internal validation External
validation
Zhou Z, 2021 MCL Histopathology Five-fold cross validation Yes
McAvoy M, 2021 PCNSL Histopathology NR No
LiD, 2020 DLBCL Histopathology NR No
Miyoshi H, 2020 DLBCL, FL Histopathology or expert Five-fold cross-validation No
consensus
Park JE, 2020 Lymphoma Histopathology NR Yes
Mohlman JS, 2020 BL, DLBCL Histopathology Leave-one-out cross-validation No
Achi HE, 2019 DLBCL, BL, SLL Histopathology NR No
ImH, 2018 Lymphoma Histopathology Random split-sample validation No
Guan Q2019 NHL Histopathology NR No
Guo R, 2021 ENKTL Histopathology NR No
Xia W, 2021 PCNSL Histopathology Five-fold cross validation No
ZhangY, 2021 PCNSL Histopathology NR No
Syrykh C, 2020 FL Histopathology NR Yes
Wang H, 2020 ENKTL Histopathology Ten-fold cross-validation No
Zhang J, 2020 NHL NR Five-fold cross validation No
Wang Q, 2017 ALL Histopathology Cross validation No
Schouten JPE, 2021 ALL Expert consensus Tenfold cross-validation No
Nakagawa M, 2018 PCNSL Expert consensus Ten-fold cross-validation No
Shafique S, 2018 ALL Expert consensus NR No
Kong Z,2019 PCNSL Histopathology Five-fold cross validation No
Weisman AJ, 2020 Lymphoma Expert consensus Five-fold cross validation No
Kim', 2018 PCNSL Histopathology Ten-fold cross-validation Yes
Styczen M, 2012 Splenic and gastric marginal Histopathology NR No
zone lymphoma
Guo J,2018 OAL Histopathology NR No
Azamossadat H, 2023 B-ALL Histopathology NR No
Chava P, 2023 DLBCL, HGL Histopathology NR Yes
Jermphiphut J, 2023 PCNSL Histopathology NR No
Hikaru A, 2023 DLBCL Histopathology Five-fold cross-validation No
Manjit K, 2023 ALL Histopathology NR No
Noriaki H, 2023 DLBCL, FL and RL Histopathology Five-fold cross-validation Yes

NR not reported, MCL mantle cell lymphoma, PCNSL primary central nervous system lymphoma, DLBCL diffuse large B-cell ymphoma, HGL high grade lymphomas,
FL follicular lymphoma, BL burkitt lymphoma, SLL small lymphocytic lymphoma, ENKTL nasal-type extranodal natural killer/T cell ymphoma, NHL non-Hodgkin's
lymphoma, ALL acute lymphoblastic leukemia, OAL ocular adnexal lymphoma, RL reactive lymphoid hyperplasia

ML and 93% (95% CIL: 88-95%) for DL, and a pooled
SP of 94% (95% CI: 92-96%) for ML and 92% (95% CI:
87-95%) for DL. Additionally, six studies adopted trans-
fer learning and ten studies did not. The pooled SE for
studies that used transfer learning was 88% (80-93%),
and 85 (80—-89%) for studies that did not. The SP was 95%
(92-97%) and 91% (88-93%), respectively.

Three studies presented the diagnostic accuracy
between Al algorithms and human clinicians in the same
dataset. The pooled SE was 91% (86-94%) for Al algo-
rithms, and human clinicians had 70% (65-75%). The
pooled SP was 96% (93-97%) for Al algorithms, and 86%
(82—89%) for human clinicians.

Five studies had sample sizes above 200, and eleven
studies used samples that were less than 200. For sam-
ple sizes under 200 and over 200, respectively, the
pooled SE was 88% (84—92%) and 86% (78-91%), and
the SP was 91% (87-94%) and 95% (92—97%).

Ten studies were geographically distributed in Asia
and six studies were geographically distributed out-
side Asia. The pooled SE among studies in Asia was
88% (83-91%), whereas non-Asian studies exhibited a
SE of 83% (72—-90%). The pooled SP was 94% (92-96%)
for studies in Asia, and 91% (82-96%) in non-Asian
studies.
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Fig. 2 Hierarchical SROC curves for studies included in the meta-analysis (16 studies with 124 tables)

Discussion

To our knowledge, this is the first systematic review and
meta-analysis on the diagnostic accuracy of Al in lym-
phoma using medical imaging. After careful selection
of studies with full reporting of diagnostic performance,
we found that Al algorithms could be used for the detec-
tion of lymphoma using medical imaging with an SE
of 87% and SP of 94%. We were strictly in line with the
guidelines for diagnostic reviews, and conducted a com-
prehensive literature search in both medical databases,
engineering and technology databases to ensure the rigor
of the study. More importantly, we assessed study quality
using an adapted QUADAS-AI assessment tool, which
provides researchers with a specific framework to evalu-
ate the risk of bias and applicability of Al-centered diag-
nostic test accuracy.

Although our results were largely consistent with pre-
vious research, confirming the worries that premier jour-
nals have recently raised [5, 44—46], none of the previous
studies were done specifically on lymphoma. To fulfil
this research gap, we strive to identify the best available
AT algorithm and then develop it to enhance detection of
lymphoma, and to reduce the number of false positives
and false negatives beyond that which is humanly pos-
sible. Our findings revealed that Al algorithms exhibit
commendable performance in detecting lymphoma.

Our pooled results demonstrated an AUC of 97%, align-
ing closely with the performance of established conven-
tional diagnostic methods for lymphoma. Notably, this
performance was comparable to emerging radiation-free
imaging techniques, such as whole-body magnetic reso-
nance imaging (WB-MRI), which yielded an AUC of 96%
(95% CI, 91-100%), and the current reference standard,
18F-fluorodeoxyglucose positron emission tomography/
computed tomography (18F-FDG PET/CT), with an AUC
of 87% (95% CI, 72-97%) [47]. Additionally, the SE and
SP of Al algorithms surpassed those of the basic method
of CT, with SE=81% and SP=41% [48]. However, the
comparison between AI models and existing modalities
was inconsistent across studies, potentially attributed to
the diverse spectrum of lymphoma subtypes, variations
in modality protocols and image interpretation methods,
and differences in reference standards [49].

Similar to previous research in the field of image-based
Al diagnostics for cancers [5, 50, 51], we observed sta-
tistically significant heterogeneity among the included
studies, which makes it difficult to generalize our results
with larger sample sizes or in other countries. Therefore,
we conducted rigorous subgroup analyses and meta-
regression for different sample sizes, various algorithms
applied, geographical distribution and Al algorithms-
assisted clinicians versus pure clinicians. Contrary to
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No. of studies Pvalue® Pvalue
Overall 16 Sensitivity Pvalue?® 1%(95%Cl) Specificity Pvalue 12 (95%Cl)
Algorithm 0.11 0.83
Deep Learning 13 0.86 (0.80-0.90) <0.05 9941 (99.37-99.47) 094 (0.92-0.96) <0.05 99.71(99.70-99.72)
Machine Learning 3 0.93 (0.88-0.95) <0.05 9147 (88.74-94.21) 0.92 (0.87-0.95) <0.05 87.72(83.33-92.10)
Transfer Learning Applied 0.92 0.55
Yes 6 0.88 (0.80-0.93) <0.05 99.67 (99.65-99.69) 0.95(0.92-097) <0.05 99.85(99.84-99.85)
No 10 0.85(0.80-089) <005  91.29(89.67-9291) 091(0.88-093) <005 9239(91.04-93.75)
Human Clinicians 0.01 <0.05
versus Algorithms
Clinicians 3 0.70 (0.65-0.75) <0.05 77.53 (69.54-85.53) 0.86(0.82-0.89) <0.05 84.09 (78.94-89.23)
Algorithms 13 091 (0.86-0.94) <0.05 99.60 (99.58-99.62) 096 (0.93-0.97) <0.05 99.81(99.80-99.82)
Sample size 045 039
<200 11 0.88(0.84-0.92) <0.05 98.71 (98.55-98.86) 091(0.87-0.94) <0.05 99.02(98.91-99.13)
> 200 5 0.86 (0.78-0.91) <0.05 99.47 (99.43-99.50) 0.95(0.92-0.97) <0.05 99.77 (99.76-99.78)
Geographical distribution 067 0.51
Asia 10 0.88(0.83-091) <0.05 99.34 (99.30-99.38) 094 (0.92-096) <0.05 99.71(99.70-99.72)
Non Asia 6 0.83(0.72-0.90) <0.05 99.23 (99.09-99.36) 091(0.82-0.96) <0.05 9940 (99.31-99.50)

2. P-Value for heterogeneity within each subgroup

b P-Value for heterogeneity between subgroups with meta-regression analysis

earlier findings [52], our results displayed that stud-
ies with smaller sample sizes and conducted in Asian
regions had higher SE compared with other studies.

Significant between-study heterogeneity emerged within
the comparison of Al-assisted clinicians and pure clini-
cians. Despite this, other sources of heterogeneity could
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not be explained in the results, potentially attributed to
the broad nature of our review and the relatively limited
number of studies included.

Unlike ML, DL is a young subfield of AI based on artifi-
cial neural networks, which are known to have the capa-
bilities to automatically extract characteristic features
from images [53]. Moreover, it offers significant advan-
tages over traditional ML methods in the early detec-
tion and diagnostic accuracy of lymphoma, including
higher diagnostic accuracy [8, 14], more efficient image
analysis [13], and the greater ability to handle complex
morphologic patterns in lymphoma accurately [1]. Most
included studies in this review investigating the use of
Al in lymphoma detection employed DL (n=18), with
only six studies using ML. For leukemia diagnosis, the
convolutional neural networks (CNN) of DL have been
used, e.g., to distinguish between cases with favourable
and poor prognosis of chronic myeloid leukemia [54], or

to recognize blast cells in acute myeloid leukemia [55].
However, it requires far more data and computational
power than ML methods, and is more prone to overfit-
ting. Some included studies that used data augmentation
methods adopting affine image transformation strategies
such as rotation, translation, and flipping, to make up for
data deficiencies [13, 26]. The pooled SE using ML meth-
ods was higher compared with studies using DL methods
(93% VS 86%), while equivalent SP was observed between
these two methods (92% VS 94%). We also discovered
that AI models using transfer learning had greater SE
(88% VS 85%) and SP (95% VS 91%) than models that did
not. Transfer learning refers to the reuse of a pre-trained
model on a new task. In transfer learning, a machine
exploits the knowledge gained from a previous task to
improve generalization about another. Therefore, various
studies have highlighted the advantages of transfer learn-
ing over traditional Al algorithms including accelerated
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Fig. 6 Detailed assessment for each item based on the domain of risk of bias and concern of applicability across the 30 included studies
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learning speed, reduced data requirements, enhanced
diagnostic accuracy, optimal resource utilization, and
improved performance in early detection and diagnostic
precision of lymphoma [13, 56]. McAvoy et al. [20]. also
reported that implemented transfer learning with a high-
performing CNN architecture is able to classify GBM
and PCNSL with high accuracy (91-92%). Within this
review, no significant differences were observed between
studies employing transfer learning and those that did
not, as well as studies using ML or DL models, potentially
indicating limitations stemming from the restricted size
of datasets examined in these studies.

Evidence also suggested that Al algorithms had supe-
rior SE (91%) and SP (96%), which manifested better
performance than independent detection by human cli-
nicians (70 and 86%). Moreover, these differences were
the major source of heterogeneity in the meta-regression
analysis. Though Al offers certain advantages over physi-
cian diagnosis evidenced by faster image processing rates
and continuous work, it does not attach importance to
all the information that physicians rely on when evaluat-
ing a complicated examination. Of the included studies,
only three compared the performance of integrating Al
with clinicians and pure algorithms, which also restricts
our ability to extrapolate the diagnostic benefit of these
algorithms in medical care delivery. In the future, the AI
versus physicians dichotomy is no longer advantageous,
and an Al-physician combination would drive develop-
ments in this field and largely reduce the burden of the
healthcare system. On one hand, future non-trivial appli-
cations of Al in medical settings may need physicians to
combine pieces of demographic information with image
data, optimize the integration of clinical workflow pat-
terns and establish cloud-sharing platforms to increase
the availability of annotated datasets. On the other, Al
could perhaps serve as a cost-effective replacement diag-
nostic tool or an initial method of risk categorization to
improve workflow efficiency and diagnostic accuracy of
physicians.

Though our review suggests a more promising future of
Al upon current literature, some critical issues in meth-
odology needed to be interpreted with caution:

Firstly, only one prospective study was identified, and
it did not provide a contingency table for meta-analysis.
In addition, twelve studies used data from open-accessed
databases or non-target medical records, and only eleven
were conducted in real clinical environments (e.g., hos-
pitals and medical centers). This is well known that pro-
spective studies would provide more favorable evidence
[57], and retrospective studies with data sources in sili-
con might not include applicable population character-
istics or appropriate proportions of minority groups.
Additionally, the ground truth labels in open-assessed
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databases were mostly derived from data collected
for other purposes, and the criteria for the presence or
absence of disease were often poorly defined [58]. The
reporting around handling of missing information in
these datasets was also poor across all studies. Therefore,
the developed models might lack generalizability, and
studies utilizing these databases may be considered as
studies for proof-of-concept technical feasibility instead
of real-world experiments evaluating the clinical utility of
Al algorithms.

Second, in this review, only six studies performed
external validation. For internal validation, three studies
adopted the approach of randomly splitting, and twelve
used cross-validation methods. The performance judged
by in-sample homogeneous datasets may potentially lead
to uncertainty around the estimates of diagnostic perfor-
mance, therefore it is vital to validate the performance
using data from a different organization to increase the
generalizability of the model. Additionally, only five stud-
ies excluded poor-quality images and none of them were
quality controlled for the ground truth labels. This may
render the Al algorithms vulnerable to mistakes and uni-
dentified biases [59].

Third, though no publication bias was observed in this
review, we must admit that the researcher-based report-
ing bias could also lead to overestimating the accuracy
of Al Some related methodological guides have recently
been published [60-62], while the disease-specific Al
guidelines were not presented. Since researchers tend
to selectively report favorable results, the bias might be
likely to skew the dataset and add complexity to the over-
all appraisal of Al algorithms in lymphoma and its com-
parison with clinicians.

Fourth, the majority of studies included were per-
formed in the absence of Al-specific quality assessment
criteria. Ten studies were considered to have low risk in
more than three evaluation domains, while nine stud-
ies were considered high risk under the Al-specific risk
of bias tool. Previous studies most commonly used the
quality assessment of diagnostic accuracy studies (QUA-
DAS-2) tool to assess bias and applicability encouraged
by current PRISMA 2020 guidance [63], which does not
address the particular terminology that arises from Al
diagnostic test studies. Furthermore, it did not take into
account other challenges that arise in Al research, such as
algorithm validation and data pre-processing. QUADAS-
Al provided us with specific instructions to evaluate
these aspects [16], which is a strength of our systematic
review and will help guide future relevant studies. How-
ever, it still faces several challenges [16, 64] including
incomplete uptake, lack of a formal quality assessment
tool, unclear methodological interpretation (e.g., vali-
dation types and comparison to human performance),
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unstandardized nomenclature (e.g., inconsistent defini-
tions of terms like validation), heterogeneity of outcome
measures, scoring difficulties (e.g.,uninterpretable/inter-
mediate test results), and applicability issues. Since most
of the relevant studies were more often designed or con-
ducted prior to this guideline, we accepted the low qual-
ity of some of the studies and the heterogeneity between
the included studies.

This meta-analysis has some limitations that merit
consideration. Firstly, a relatively small number of
studies were available for inclusion, which could have
skewed diagnostic performance estimates. Additionally,
the restricted number of studies addressing diagnostic
accuracy in each subgroup, such as specific lymphoma
subtypes and medical imaging modalities, prevented a
comprehensive assessment of potential sources of het-
erogeneity [65, 66]. Consequently, the generalizability of
our conclusions to diverse lymphoma subtypes and var-
ied medical imaging modalities, particularly without the
integration of Al models at this current stage, could be
limited. Secondly, we did not conduct a quality assess-
ment for transparency since current diagnostic accuracy
reporting standards (STARD-2015) [67] is not fully appli-
cable to the specifics and nuances of Al research. Thirdly,
several included studies have methodological deficiencies
or are poorly reported, which may need to be interpreted
with caution. Furthermore, the wide range of imag-
ing technology, patient populations, pathologies, study
designs and Al models used may have affected the esti-
mation of diagnostic accuracy of Al algorithms. Finally,
this study only evaluated studies reporting the diagnostic
performance of Al using medical image, which is difficult
to extend to the impact of AI on patient treatment and
outcomes.

To further improve the performance of Al algorithms
in detecting lymphoma, based on the aforementioned
analysis, focused efforts are required in the domains of
robust designs and high-quality reporting. To be specific,
firstly, a concerted emphasis should be directed towards
fostering an augmented landscape of multi-center pro-
spective studies and expansive open-access databases.
Such endeavors can facilitate the exploration of various
ethnicities, hospital-specific variables, and other nuanced
population distributions to authenticate the reproduc-
ibility and clinical relevance of the AI model. Therefore,
we suggest the establishment of interconnected networks
between medical institutions, fostering unified stand-
ards for data acquisition, labeling procedures and imag-
ing protocols to enable external validation in professional
environments. Additionally, we also call for prospective
registration of diagnostic accuracy studies, integrating a
priori analysis plan, which would help improve the trans-
parency and objectivity of reporting studies. Second,
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we would encourage Al researchers in medical imaging
to report studies that do not reject the null hypothesis,
which might improve both the impartiality and clarity of
studies that intend to evaluate the clinical performance
of AI algorithms in the future. Finally, though time-
consuming and difficult [68], the development of “cus-
tomized” Al models tailored to specific domains, such
as lymphoma, head and neck cancer [69], or brain MRI
[70], emerges as a pertinent suggestion. This tailored
approach, encompassing meticulous preparations such
as feature engineering and Al architecture, alongside
intricate calculation procedures like segmentation and
transfer learning, could yield substantial benefits for both
patients and healthcare systems in clinical application.

Conclusions

This systematic review and meta-analysis appraised
the quality of current literature and concluded that Al
techniques may be used for lymphoma diagnosis using
medical images. However, it should be acknowledged
that these findings are assumed in the presence of poor
design, methods and reporting of studies. More high-
quality studies on the AI application in the field of lym-
phoma diagnosis with adaption to the clinical practice
and standardized research routines are needed.
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