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Abstract 

Background In the Diabetes domain, events such as meals and exercises play an important role in the disease 
management. For that, many studies focus on automatic meal detection, specially as part of the so-called artificial β
-cell systems. Meals are associated to blood glucose (BG) variations, however such variations are not peculiar to meals, 
it mostly comes as a combination of external factors. Thus, general approaches such as the ones focused on glucose 
signal rate of change are not enough to detect personalized influence of such factors. By using a data-driven individu-
alized approach for meal detection, our method is able to fit real data, detecting personalized meal responses even 
when such external factors are implicitly present.

Methods The method is split into model training and selection. In the training phase, we start observing meal 
responses for each individual, and identifying personalized patterns. Occurrences of such patterns are searched 
over the BG signal, evaluating the similarity of each pattern to each possible signal subsequence. The most similar 
occurrences are then selected as possible meal event candidates. For that, we include steps for excluding less relevant 
neighbors per pattern, and grouping close occurrences in time globally. Each candidate is represented by a set 
of time and response signal related qualitative variables. These variables are used as input features for different binary 
classifiers in order to learn to classify a candidate as Meal or NoN-Meal. In the model selection phase, we compare all 
trained classifiers to select the one that performs better with the data of each individual.

Results The results show that the method is able to detect daily meals, providing a result with a balanced proportion 
between detected meals and false alarms. The analysis on multiple patients indicate that the approach achieves good 
outcomes when there is enough reliable training data, as this is reflected on the testing results.

Conclusions The approach aims at personalizing the meal detection task by relying solely on data. The prem-
ise is that a model trained with data that contains the implicit influence of external factors is able to recognize 
the nuances of the individual that generated the data. Besides, the approach can also be used to improve data quality 
by detecting meals, opening opportunities to possible applications such as detecting and reminding users of missing 
or wrongly informed meal events.
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Introduction
Every day, millions are impacted globally by the chronic 
disease of diabetes [1]. Such condition is heavily associ-
ated with the control of the amount of glucose in the 
blood that should remain within a particular range. 
This implies an intrinsic type of self-management in 
the life of a person with diabetes, where managing daily 
events associated to food intake, exercises, and insulin 
plays a critical role.

To mitigate the disease burden, researchers develop 
solutions such as personalized medication recom-
mender systems or automatic insulin pumps. For that, 
data gathered from patients are crucial. Data collec-
tion becomes then a core step in the development of 
such solutions, and fortunately a major part of patients 
with diabetes is willing to provide input to research-
ers. This step can be supported by the use of wearables 
such as smartwatches, that can collect self-logged data 
through self-reports (e.g., registration of meals, mood, 
insulin shots, medication), or passively through sensors 
(e.g., collecting heart rate, displacement, steps). Such 
gathered data can serve as the basis for data-driven 
approaches  [2–5]. However, the fact of adding a new 
“task” to their routines – even if for the sake of research 
– also poses an additional burden on patients, espe-
cially for long-running studies [6].

Several factors can be taken into account when deal-
ing with blood glucose (BG) variation, and a very com-
mon and important one is meal information  [7]. This 
means that information around food intake is valu-
able, in particular accurate information on the tim-
ing of a meal event, which brings to the table a very 
error-prone scenario: during their day, patients must 
constantly inform through a device when they had a 
meal. Unfortunately, for the solutions that depend on 
it, self-reported data on meal or snack intake will not 
come without errors and uncertainty  [8]. While pure 
sensor-based approaches also have their limitations, it 
is promising to combine sensor data with self-reported 
data to correct or supplement erroneous or forgotten 
self-reports automatically.

The challenge and value in meal detection
Diabetes management systems rely on detecting BG 
variations (e.g., meal events detection). For instance, in 
artificial pancreas systems, their insulin pump control 
is able to manage the insulin injections properly and 
automatically  [9–13]. Such control systems are ideal-
ized and developed around what is called “The meal 
challenge”, which in summary can be tackled according 
to three scenarios involving meal events as input: 

1. Feed-forward control: each meal is self-reported 
to the control system by the user at the moment it 
occurs (or is about to occur).

2. Feed-back control: by keeping track of CGM data 
collected by a sensor, the control system responds to 
every large rise in glucose. This, however, has proven 
difficult in practice due to the trade-off between a 
needed quick response (to rapidly cope with the insu-
lin absorption delay) and a possible insulin overdose.

3. Discrete meal detection: through a continuous feed-
back – also keeping track of CGM data – a special-
ized algorithm triggers insulin injection when a meal 
event is detected.

Each of the scenarios could be implemented/used inde-
pendently, however a combination of 1. and 3., or 2. and 
3. could definitely exist.

It is clear that meals are a key event tied to BG value 
variation, and so inferring them becomes a valuable task. 
Meal detection approaches focusing on glucose rate of 
change do exist, however their strict focus on blood glu-
cose information lead them to error, owing first to noise 
in the signal, and secondly to events such as physical 
activities (which can increase BG) that overlap with meal 
events  [9, 10]. Thus, as factors such as stress and physi-
cal activities also affect BG and insulin sensitivity, the so-
called “Meal challenge” is now expanded, turning into an 
even more complex problem that includes multiple vari-
ables interfering in the BG signal.

The proposed approach
To be able to include external factors and information, a 
data-driven approach comes as a natural solution, as dif-
ferent types and sources of data can be put together, and 
they all can contribute to the solution. The premise here 
is that a model able to work with a set of information/fea-
tures could also work with an expanded and more com-
plete version of this same set. As new data and features 
come in, the developed model could turn into a potential 
better and more specialized version of itself. This is true 
for a model created from individual level generated data 
(in our case, per individual/person), or from population 
level data (from a set of individuals/people), which opens 
opportunities to the development of both personalized 
and general models [14]. While, in theory, more features 
may benefit model performance, this also calls for more 
streams of input data with additional risks for missing 
and erroneous registrations. The models created must 
therefore cope with low data availability and quality, and 
implicit uncertainty in self-logged data.

This paper focuses on evolving the idea of tackling 
the meal detection challenge through recurring meal 
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response patterns found in the data. This allows for a 
model with an adaptive behavior: it is able to identify spe-
cific (personal) types of change that must be interpreted 
as meal responses strictly from data, instead of consider-
ing pre-defined rules and change values to be applied to 
all signals/data. When put in the perspective of free liv-
ing daily events, response patterns found in the glucose 
signal can be used to detect new occurrences of such 
continuous subsequences [15]. However, finding multiple 
occurrences and distinguishing among them which one 
should be taken as a proper meal event is still left as an 
open problem. The amount of false positives tend to grow 
when more meal candidates are considered (e.g., different 
pattern matches in a day), and thus the issue remains on 
how to find the best fitting candidate among the matches.

The paper is presented as follows. In Related work section, 
we present related research and their relevant limitations. 
Details of the proposed method are presented in Meth-
ods section, together with the associated concepts. Experi-
mental setup and Results are presented in the following two 
sections. Finally, Conclusions are given and discussed.

Related work
Studies on mitigating imperfections in the collected data 
were done previously [14, 16, 17] with the aim to infer miss-
ing events – including meals – and impute them to create 
a better version of the data. In these works, the inference 
is made by calculating the likelihood of having an event 
(activity) within a chained sequence of informed events. 
For that reason, previous and/or future event information 
must be taken as input when training imputation models.

Approaches for detecting meals though BG variation 
rely on figuring out specific changes in the incoming BG 
levels to detect the events. Relying solely on the BG sig-
nal as input, such approaches would allow for less to no 
patient-device interactions, as such input can be passively 
acquired by a continuous glucose monitoring (CGM) 
sensor. This also opens opportunities for such solutions 
to be used on improving artificial pancreas applications 
and diabetes related simulators [10, 18, 19], also enabling 
“precision nutrition”.

From a data-driven perspective, the meal detection 
challenge can be tackled using different routes [13]:

• Analysis of event orders: Events are seen as a 
sequence of states that tend to happen in specific 
orders.

• Analysis of glucose variation: Change points can 
be detected using pre-determined BG rate of change 
thresholds, flagging a meal.

• Analysis of glucose signal patterns: Chunks of the 
BG signal that very often appear after meals can be 
identified as response patterns.

If isolated from the BG signal, and seen as a sequence 
of ordered activities, the meal occurrences can be seen 
and dealt with as a chain of states with probability val-
ues associated to the transition between such states, and 
this be used for predicting the occurrence of a (meal) 
activity  [14, 20–23]. Focusing on the BG signal, a value 
computed and associated to the glucose level rate of 
change can be seen as a trigger of a glycemic response to 
a meal [9, 24], and by making use of a filter, a qualitative 
representation of this same signal can be the input for a 
carbohydrate estimation algorithm [25, 26]. In the same 
manner, BG signal’s first and second derivatives can be 
tied to pre-defined (heuristic) rules able to detect unan-
nounced meals in a margin of 30 to 60 minutes after the 
event [27].

The previous approaches share a trend in making the 
meal detection based on glucose variation using prede-
termined BG rate of change thresholds. They apply such 
rules to all data without considering any individual dis-
tinction. Furthermore, there is no intrinsic considera-
tion of external factors that can only be seen in patterns 
retrieved directly from the data itself.

Methods
Our methods aim at using identified BG response pat-
terns to spot similar occurrences in signals coming 
from real CGM data, and classify them as meals. These 
response patterns originate from daily-living self-
reported meal events, such as breakfast, lunch, dinner, 
snacks, and hypo-correction (e.g., sugary drinks like juice 
or regular soda). For that, a data set containing CGM 
data together with the associated recorded meal events 
from multiple users (participants) is used as input, more 
specifically the OhioT1DM  [28] data set (to be detailed 
in Experimental setup section).

Data description
Figure  1 summarizes the data used per participant as 
input for the methods presented in the proposed work.

Assuming individual (per participant) data is avail-
able to the study, and each participant is associated to a 
unique identifier (id), each participant dataset Xid can be 
denoted by the tuple:

where Tid and Eid are time series of BG and meal events, 
respectively, sharing the same time space, Pid  1 the set 
of response patterns found, and Did a set containing the 
distance profiles [29] generated using each of the identi-
fied patterns as queries applied to Tid . For short, Xid can 

(1)Xid = (Tid ,Eid ,Pid ,Did)

1 Patterns are found using the training subset only.
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be referenced as X = (T ,E,P,D) , as the following sec-
tions cover methods always applied on a participant level 
data, and able to be used on any participant, allowing id 
to be seen as an implicit/hidden variable. The sections 
to follow cover all elements of the participant data tuple, 
explaining how they fit the methodology, and also the 
concepts behind them.

Event responses
In a continuous BG signal over time (CGM), responses 
to events that trigger variations can be seen as changes 
in the flow of such signal. Making use of both CGM and 
logged meal events data, it is possible to pinpoint in the 
BG signal when each known logged meal happened, 
considering both data (time series) were acquired alto-
gether. The continuous chunk of the BG time series that 
comes after a logged meal can be seen as a response to 
that meal.

Definition 1 (Meal Response) Given a BG time 
series T = t1, t2, . . . , tm , and a logged meal events time 

series E = e1, e2, . . . , ek , a response Ti,n , to a given 
logged meal event, ek , is a continuous subset of length 
n ≤ m composed by contiguous positions from T, 
that is a subsequence Ti,n = ti, ti+1, . . . , ti+n−1 , where 
1 ≤ i ≤ m− n+ 1 , and i is the data point associated to 
the logged meal event ek.

It is worth mentioning that in our study, the response 
size is a pre-defined time interval �response , which 
means that while varying in form, every subsequence 
Ti,n taken as a response to a meal event ek gathered from 
the data has the same length. In particular, in our data 
analysis, we opted to rely on such easy to adjust con-
stant that ensures that CGM responses within a period 
after a meal are used to train (and later apply) a model 
for automatic meal identification.

Response patterns and candidates selection
Taking as basis the work done in [15], for a set of meal 
responses taken from a given E and T, a set of response 
patterns P = {p0, p1, . . . , pi} is identified, as well as 
the associated distance profiles D = {d1, d2, . . . , di} in 

Fig. 1 Diagram of the participant data tuple. The diagram presents the pieces of data that form a participant data tuple used as input 
for the methods
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regard to T, being D the core of the pattern occurrence 
search – in other words, the selection of matches.

It is fair to assume that the task of selecting matches 
has a critical role in the method, and also that there 
is an implicit issue regarding the top-n approach 
used in  [15]. Aiming at attenuating the previous top-
n approach’s limitation, an alternative selection pro-
cedure was developed: the selection of candidates, 
incorporated into the proposed method as a direct 
improvement over the former. The new procedure 
selects a dynamic number of matches to the patterns 
(in opposition to the top-n selection) while filtering 
them, creating this way better suitable subsequences to 
be taken as meal responses, i.e., better candidates for 
classification. The proposed selection approach relies 
on the use of two new introduced parameters: dcutoff  , 
a filtering threshold that avoids selecting candidate 
subsequences with low similarity to the identified pat-
terns; and �valley , which controls the distance kept over 
neighbor selected candidate subsequences to maintain 
diversity over time.

The details for the steps here covered, from the iden-
tification of the response patterns to the selection of 
candidates, are given in Additional file  1. It includes 
details covering both selection procedures, present-
ing their respective algorithms in sections Looking 
for Matches (Algorithm  1) and Candidates Selection 
(Algorithm 2).

Candidates classification
The BG signal can also be seen as a set of meal 
responses: each data point marks the start of a subse-
quence that can represent a potential response to a 
meal. Nonetheless, a potential meal response would 
exist for every single data point in the signal, which 
would lead to an extensive search space of possible 
responses to be analyzed.

When translating the BG signal into binary classified 
response entries (Meal or Non-meal) to be used as 
input for training, the amount of negatives would exceed 
the number of positives in a heavily unbalanced propor-
tion, which would make the task of training the classifiers 
more difficult [30]. Hence, reducing such search space is 
needed to allow for a better positives × negatives balance. 
For that, the already detailed selection of candidates 
come as a filtering/selection tool. All meal responses 
within the BG signal are taken, and from it, only the 
selected candidates are used as training data for binary 
classifiers  [13]. Then, the trained classifiers will be able 
to tell if a new incoming candidate must be classified as 
Meal or Non-meal.

Preprocessing pipeline
To supply data for the training step of the classifiers, 
specific transformations applied to the training data are 
made to translate it into a set of meal response candi-
dates. This is done by using as input the participant data 
tuple defined in Data description section of Methods. For 
an existing participant data tuple X = (T ,E,P,D) , the 
pipeline for the training set can be defined as: 

1. Gather the BG (5-minute frequency) signal, T, 
including existing gaps.

2. Synchronize the logged meal events E with the BG 
signal, by associating the logged meal time stamps to 
the nearest BG data points.

3. Extract meal response subsequences, and identify 
meal response patterns P.

4. Generate the distance profiles D for each of the iden-
tified patterns in P.

5. Select candidates using the distance profiles in D.
• Exclude non-contiguous candidates, i.e., candidates 

defining responses that contain one or more gaps.
6. For each selected candidate, store extra information 

associated to their response.

Each candidate instance contains a set of qualitative vari-
ables that are formed by features extracted from their 
response subsequence. The premise is that such qualita-
tive representation may be more relevant for detecting 
significant differences and changes  [31–35] among the 
set of candidates. The types of extracted information 
associated to each candidate can be seen in Table 1.

It is important to mention that for a candidate to be 
flagged as a Meal, we consider how distant it is to the 
closest logged meal event, i.e., if an event was reported as 
happening at time t, and δmargin is the used margin value, 
the start of the candidate’s response must be placed 
within the interval [t − δmargin, t + δmargin] . For instance, 
with δmargin = 1 hour, candidates are marked as Meal if 
placed within 1 hour before or after a self-reported meal, 
and as Non-Meal otherwise.

It is worth noting that, while the focus of the presented 
work is on diabetic data, the features extracted from 
the BG responses are not peculiar to this domain, in 
fact this same types of features could be extracted from 
signal responses coming from data of other domains, 
and applied in the same manner to similar problems, 
e.g., instead of BG responses to meal events, heart rate 
responses extracted from PPG sensor signals to identify 
exercise events or emotion variations.

Classification model selection
By using the preprocessed data, a set of binary classifi-
ers [36] are trained and compared (N.B. per participant). 
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This type of classifier fit well the problem on hands, as 
each trained model must be able to discern on which 
candidate must be classified as Meal or Non-Meal. In 
addition, these instances of classifiers allow for ensem-
ble methods, i.e., more complex classifiers made out of 
a combination of other binary estimators  [37], leaving 
room for better adaptation/optimization for the prob-
lem, data, and domain where the method will be applied. 
The comparison is made over the results of the evaluated 
metrics applied to each participant’s validation set.

Experimental setup
Candidates selection parameters
The proposed method requires a set of parameters, and 
Table 2 contains all values used for the method applica-
tion. In summary:

• When analyzing BG responses in CGM data, meals 
tend to interfere to the signal with some delay  [9, 
10] due to overlapping external factors (e.g., exer-
cises, and insulin). In our data-driven strategy, such 
interferences are not given explicitly as inputs to the 
model, they are considered implicit to the response 
signal, and to cover that a value of �response = 2 hours 

was taken as a reasonable response size, a value able 
to keep the approach on par with previous ones [18, 
26, 27, 38, 39].

• The fact that participants could have logged their 
entries in the beginning of their meals, during, 
or after adds more uncertainty to the top of the 
aforementioned BG response delay. This results in 
an implicit error regarding the timestamp of the 
self-logged meal event. To take this into account, 
δmargin = 1 hour was used: a candidate is considered 
a positive if it is placed within δmargin from a reported 
meal.

• The study performed in  [15] shows that 3 response 
patterns are able to capture enough relevant occur-
rences regarding the BG signals of the OhioT1DM 
participants, which led to the same choice in the 
work here proposed ( |P| = 3).

Binary classifiers
For the classification task within the proposed method, 
binary classifier types were chosen. The main metrics 
used for such choice were that each classifier should (i) 
be well known out-of-the-box methods, (ii) allow for 
reaching model instances of relatively usable state requir-
ing minimal data preparation, and optimization, and 
finally (iii) provide ensemble capabilities [36, 40–44]. The 
types selected are listed and briefly described as follows: 

AdaBoost  Use majority vote of a set of 
“week” estimators applied to 
modified versions of the input 
data.

Decision Tree  Based on simple decision rules, 
a tree is created, able to com-
pare values of a set of features 
leading to a certain decision.

Table 1 Classification features. Features associated to a candidate and used by the classifiers to identify a Meal 

a This flag represents the binary Meal, NoN-Meal classes, and only exists in candidates used for the training phase

Feature Description Unit

Blood Glucose (BG) BG value from CGM mg/dl

BG derivative Estimated derivative of the BG value mg/dl/min

Elapsed Hours Amount of hours passed since 00:00 of the data point’s timestamp day hours

Response Min Minimum BG value within the subsequence starting from the data point mg/dl

Response Minutes to Min Number of minutes needed to go from the start of the subsequence to its minimum value minutes

Response Derivative to Min BG/minutes rate from the start of the subsequence to its minimum value

Response Max Maximum BG value within the subsequence starting from the data point mg/dl

Response Minutes to Max Number of minutes needed to go from the start of the subsequence to its maximum value minutes

Response Derivative to Max BG/minutes rate from the start of the subsequence to its maximum value

Meala Flag set if response is associated with an existing logged meal {0,1}

Table 2 Parameters set for candidates selection method. 
Description and values of the parameters used when applying 
the proposed candidates selection method

Description Parameter Value

Response size �response 2 hours

Success margin δmargin 1 hour

Number of patterns |P| 3

Distance cutoff dcutoff 4

Valley size �valley 2 hours
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Gradient Boosting  Additive model, aiming at opti-
mizing a loss function by con-
secutively fitting new models 
(base-learners) to be maximally 
correlated with minimization of 
the loss values.

Gaussian Naive Bayes  Simple predictive model based 
on conditional independence 
between pairs of features.

MLP  Multi-layer Perceptron is a 
basic form of a neural network, 
commonly used as a model 
for non-linear classification 
problems.

RandomForest  Uses a random portion of the 
features to generate decou-
pled decision trees instances 
used for voting, thus avoiding 
overfitting.

The application of a fundamental models such as these 
can be taken as waypoints to more complex models that 
derive from the same concepts. For instance, complex 
neural network models that – due to sharing concepts 
and structure – could be a direct and natural choice over 
MLP.

All binary classifiers used were instantiated using their 
most standard set of parameters, due to the fact that 
in our method, each classifier serves only as a tool that 
could be easily replaced in the pipeline. The main goal 
was to experiment with different types in order to vali-
date the application of binary classification in our trans-
formed participant data tuples.

As part of the implementations done in our experi-
ments, Scikit-learn2 and stumpy3 packages [45, 46] 
were used, both open source projects related to machine 
learning (for classifiers) and distance profile (for MASS) 
implementations, respectively.

Used dataset and preprocessed data
Briefly introduced in  Methods section, the dataset used 
in our experiments is the OhioT1DM. This is a dataset 
made publicly available4 to facilitate research involving 
diabetic data, and more specifically blood glucose level 
prediction modeling  [5]. It contains data from continu-
ous glucose monitoring (measured every 5 minutes) of 
12 participants (Type-I diabetic patients), as well as daily 

self-reported events. As the focus of this paper is on 
meal events, together with the BG signal, we retrieved 
from the dataset events such as breakfast, lunch, dinner, 
snacks, and hypo-correction. For the modeling phase, 
training and testing subsets already defined by the Ohi-
oT1DM authors were respected. Keeping the splitting 
as standard as possible is a general request by the same 
authors as a way to allow replicability of methods and 
further unbiased comparison of developed models based 
on such dataset. However, due to our model selection 
step, a validation subset is needed, and for that the last 
part of the training subset was used. The validation sub-
set has the same size as testing, resulting in a training - 
validation - testing splitting of approximately 50% - 25% 
- 25%.

The data is transformed before being used as input to 
the proposed method. This is done by applying the pre-
process pipeline, described in Preprocessing pipeline sec-
tion of Methods section, on each of the participants’ data 
tuples. Figure 2 shows the entries used during the train-
ing phase.

There is an important peculiarity regarding the pre-
processed training data: the set of positives is composed 
by not only the Meal candidates, but by the logged 
meals that were matched by them as well. This is done 
as a form of maintaining the ground truth intact when 
training the classifiers. However, note that, for some par-
ticipants, the number of positives is different from the 
sum of meals and matches. This happens since, due to 
the nature of the selection procedure, more specifically 
to the similarity threshold with dcutoff  , it might happen 
that there are regions in the BG time series where no 
candidates are placed around any meals. These types of 
dangling reported meals – without matching candidates 
– are not included in the training set, as the classifiers are 
supposed to be trained for candidates classification, and 
these types of meal events do not support any candidates.

Results
By making use of the data described in the previous sec-
tion, the outcomes of the application of the method steps 
are explored in this section.

Training and validation: classifiers
Six different classifiers were trained in order to differ 
candidates that must be seen as a meal, and the ones that 
must not. Fβ-score, a well known performance measure 
for binary classifiers  [47, 48], was taken as the selection 
metric with β = {1, 2} , and the F2-score used to identify 
the one to be used. This specific accuracy related metric 
measures the balance between the precision (PPV) and 
recall (TPR) of the test, and ranges from 0 to 1, where 
1 indicates perfect precision and recall. The β value 

2 https:// github. com/ scikit- learn/ scikit- learn
3 https:// github. com/ TDAme ritra de/ stumpy
4 https:// smart health. cs. ohio. edu/ OhioT 1DM- datas et. html

https://github.com/scikit-learn/scikit-learn
https://github.com/TDAmeritrade/stumpy
https://smarthealth.cs.ohio.edu/OhioT1DM-dataset.html
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indicates the degree of importance of the recall over the 
precision. Table 3 presents a summary of the evaluation 
results for the classifiers trained and validated for each of 
the participants.

Table 4 displays a summary of the evaluation results 
for a single participant (588). Each classifier has a spe-
cific number of predicted meals, and this impacts the 
number of false alarms (FP), as well as detected meals 
(TP). When looking at aggregated results such as this, 

it is difficult to realize how harmful the number of false 
alarms are, or how good the detection is. For that, in 
Table  5 the results of the application of the method 
using the selected classifier for this participant (Ada-
Boost) is shown, but now with results for each of the 
tested days.

The average number of FP is 1.7, meaning that if in a 
scenario where a daily tracking application makes use of 
the method, the participant would receive around one or 

Fig. 2 Data points, positives, and negatives. Number of data points in the preprocessed training set, positives (candidates classified as Meal), 
and negatives (candidates classified as NoN-Meal) entries
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Table 3 Model Selection metrics for all participants. Resulting values of the model selection metrics of the models validated on the 
data of each of the participants

FP false positives, FN false negatives, TP true positives, PPV (precision) positive predictive value, TPR (recall) true positive rate

ID Classifier Meals Predictions FP FN TP PPV TPR F1-score F2-score

540 Decision Tree 23 9 4 18 5 0.56 0.22 0.31 0.25

544 Random Forest 31 43 15 3 28 0.65 0.90 0.76 0.84

552 MLP 3 14 13 2 1 0.07 0.33 0.12 0.19

559 Gaussian NB 25 32 18 11 14 0.44 0.56 0.49 0.53

563 Decision Tree 25 34 19 10 15 0.44 0.60 0.51 0.56

567 Gradient Boosting 1 6 5 0 1 0.17 1.00 0.29 0.50

570 Random Forest 29 40 19 8 21 0.52 0.72 0.61 0.67

575 MLP 46 53 17 10 36 0.68 0.78 0.73 0.76

584 Decision Tree 15 20 11 6 9 0.45 0.60 0.51 0.56

588 AdaBoost 43 49 17 11 32 0.65 0.74 0.70 0.72

591 AdaBoost 40 65 35 10 30 0.46 0.75 0.57 0.67

596 Gradient Boosting 44 54 25 15 29 0.54 0.66 0.59 0.63

Table 4 Model Selection metrics. Resulting values of the model selection metrics of the models validated on participant 588 data 
sorted by Fβ-score 

FP false positives, FN false negatives, TP true positives, PPV (precision) positive predictive value, TPR (recall) true positive rate

ID:588 Meals: 43

Classifier Predictions FP FN TP PPV TPR F1-score F2-score

AdaBoost 49 17 11 32 0.65 0.74 0.70 0.72

Random Forest 41 12 14 29 0.71 0.67 0.69 0.68

Gradient Boosting 47 17 13 30 0.64 0.70 0.67 0.68

Decision Tree 38 13 18 25 0.66 0.58 0.62 0.60

MLP 38 13 18 25 0.66 0.58 0.62 0.60

Gaussian Naive Bayes 36 15 22 21 0.58 0.49 0.53 0.50

Table 5 Validation results per day for participant 588. Resulting values per day of the selected classifier (AdaBoost) validation on 
participant 588 data

FP false positives, FN false negatives, TP true positives, PPV (precision) positive predictive value, TPR (recall) true positive rate

ID:588 Classifier: AdaBoost

Day Meals Predictions FP FN TP PPV TPR F1-score F2-score

2021-10-05 4 6 2 0 4 0.67 1.00 0.80 0.91

2021-10-06 4 6 2 0 4 0.67 1.00 0.80 0.91

2021-10-07 4 5 2 1 3 0.60 0.75 0.67 0.71

2021-10-08 5 4 1 2 3 0.75 0.60 0.67 0.62

2021-10-09 3 5 3 1 2 0.40 0.67 0.50 0.59

2021-10-10 3 2 1 2 1 0.50 0.33 0.40 0.36

2021-10-11 5 6 2 1 4 0.67 0.80 0.73 0.77

2021-10-12 6 4 2 4 2 0.50 0.33 0.40 0.36

2021-10-13 4 6 2 0 4 0.67 1.00 0.80 0.91

2021-10-14 5 5 0 0 5 1.00 1.00 1.00 1.00

Average 4.3 4.9 1.7 1.1 3.2 0.64 0.75 0.68 0.71



Page 10 of 15F. de Carvalho et al. BMC Medical Informatics and Decision Making          (2023) 23:282 

two notifications/reminders that would be ignored. For 
the FN, the average is 1.1, hence, for each day, a single 
meal would not be detected. On the other hand, the user 
would be notified correctly regarding 3 detected meals 
(TP) per day in average, being able to “forget” such meals 
as the system would remind him/her.

Testing: full selection and classification
For a more illustrative explanation on how the selected 
candidates are classified, all steps regarding such proce-
dure will be given following the results of the same previ-
ously used participant (588), however now covering the 
method applied to the testing set, and Table  6 presents 
the first of the associated results.

Figure 3, which has sample days from the testing set of 
the same previously used participant (588), can be used 
to describe the full procedure of selecting and classify-
ing the candidates through an illustrative explanation. 
The classification proceeds in the same way for each day, 
and thus it can be followed through any of the depicted 
samples.

For every sample day, the top plot contains the BG sig-
nal together with the reported meals, where the latter is 
marked by vertical dashed lines colored in gray. The dis-
tance profiles are plotted in the bottom, and as already 
mentioned, each associated to one of the used patterns P. 
In addition, the distance cutoff value used ( dcutoff = 4 ) is 
depicted as a horizontal gray line.

Using �valley = 2 hour, the full resulting set of selected 
candidates C are marked by crosses: blue indicating 
candidates that are within the success margin (for this 
example, must be seen as meals if within 1 hour from the 
logged meal event), and red for the ones outside. One 
can note that the valleys shown in the plotted distance 

profiles below the dcutoff  threshold are in-sync with the 
marked candidates, which is a very important aspect of 
the selection. The filtered version of the candidates C, 
resulting from the agglomerative clustering step (see 
Algorithm  2, Additional file  1), are marked by triangle 
shaped markers. The elements of each agglomeration 
made by the dendogram presented in the middle of the 
figure are marked right above the x axis of the bottom 
plot by vertical bars. Each bar color is the same associ-
ated to the agglomerations. During this step, the num-
ber of selected candidates is reduced significantly, for 
instance, by 10 on day 2021-10-21, going from 24 to 14, 
i.e., 10 elements of C were ignored because they are close 
enough to other candidate(s) more similar to the pattern.

With every – now filtered – selected candidate at hand, 
the classification takes place. From the trained classifiers, 
the estimator taken as the general best for the partici-
pant is used, this being the result of the evaluation done 
using the participant’s validation set during the model 
selection. AdaBoost was the model of choice for partici-
pant 588, and thus all positive predictions made by this 
classifier for the filtered version of the candidates C are 
marked with a capital P.

In Fig.  3, each sample day has a different number of 
logged meals E, and the objective is to match them with 
the predicted P’s. The plots show that a meal was cor-
rectly predicted (true positive) when a P marks a blue 
cross, a false alarm (false positive) happens when a P 
marks a red cross, and an overlooked meal event (false 
negative) when no P marks any blue cross around a 
logged meal. For instance, in the first day plotted, 2021-
10-16, only 1 of the meals was correctly predicted, with 2 
false alarms, and 1 overlooked meal event. On day 2021-
10-21, 4 out of 4 meals were matched by the predicted, 

Table 6 Test results per day for participant 588. Resulting values of the selected model (AdaBoost) tested on participant 588 data

FP false positives, FN false negatives, TP true positives, PPV (precision) positive predictive value, TPR (recall) true positive rate

ID:588 Classifier: AdaBoost

Day Meals Predictions FP FN TP PPV TPR F1-score F2-score

2021-10-15 5 4 3 4 1 0.25 0.20 0.22 0.21

2021-10-16 2 3 2 1 1 0.33 0.50 0.40 0.45

2021-10-17 4 8 6 2 2 0.25 0.50 0.33 0.42

2021-10-18 3 2 1 2 1 0.50 0.33 0.40 0.36

2021-10-19 4 7 3 0 4 0.57 1.00 0.73 0.87

2021-10-20 4 6 2 0 4 0.67 1.00 0.80 0.91

2021-10-21 4 4 0 0 4 1.00 1.00 1.00 1.00

2021-10-22 2 5 3 0 2 0.40 1.00 0.57 0.77

2021-10-23 2 3 1 0 2 0.67 1.00 0.80 0.91

2021-10-24 4 8 4 0 4 0.50 1.00 0.67 0.83

Average 3.4 5.0 2.5 0.9 2.5 0.51 0.75 0.59 0.67
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Fig. 3 Classification data. Classified candidates used as predicted/detected meal flags for participant 588 events on days 2021-10-16, 2021-10-21, 
and 2021-10-23
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and no false flags happened, meaning a perfect predic-
tion. On the other hand, for 2021-10-23, 2 out of 2 meals 
were predicted correctly, however a false flag happened 
between the marks of 06:00 and 09:00.

Let us take the false flag around the mark of 07:00 for 
both 2021-10-16 and 2021-10-23. Considering its times-
tamp and how similar the candidates are to the pattern 
(valleys in their associated distance profiles), this false 
flags can be associated with meal events not reported, 
which would mean that the participant indeed had the 
meals, however they were not logged by him/her. Also, 
the fact that the same participant has logged a meal 
around the same timestamp on 2021-10-21 – as well in 
other days –, enforces such assumption. Thus, what is 
now being seen as a prediction mistake from the model’s 
perspective, could be seen as an on-point inference for 
data quality improvement, or even a reminder for a log 
entry not made by a participant.

The displayed example emphasizes the possibility of 
applying our method to detect meals in order to improve 
gathered data quality. Another important aspect is the 
level of personalization of the model: all the detection 
steps are made using data coming from one participant 
(588), meaning that the analysis and models created are 
data-driven and personalized (from individual patterns 
identified per participant).

Table  7 displays the results of the method application 
on the data of each of the participants. The model results 
per participant are displayed in each row, also highlight-
ing the classifier that achieved the best performance. 
Such results are depicted to show that in the classification 
step of the pipeline, multiple types and/or instances of 
classifiers can be used, allowing for model selection to be 
applied, this way providing room to dynamically define 
which classifier fits better each of the participants (data). 

It is worth noting that, for the used set of classifiers, the 
classification task does not perform well for all the par-
ticipants. Restricting the attention to participants with F 2
-score lower than 0.5, it is possible to note that the num-
ber of meals reported are lower in the testing set than in 
their own training and validation sets. The proportion of 
meals distributed in the dataset plays an important role 
on the quality of the results achieved. It is not clear from 
this study if such fact happens due to a poor reporting 
in the later days of the data gathering – and the model 
is detecting meal events that were supposed to be there, 
and are taken into account as mistakes –, or if there is a 
behavior change from the participant and the model was 
not able to cope with it.

Conclusions
The work presented in this paper explores a data-driven 
method of selecting and classifying segments of a glucose 
signal (CGM) as responses to meal events self-reported 
by people with diabetes. In the proposed method, the BG 
signal is translated into a sequence of candidates, where 
each of them is formed by a set of qualitative variables 
associated to their contained response shape. This is a 
form of qualitative representation of the entire BG signal, 
i.e., a translation of the data into features that contain the 
needed amount of information.

Existing diabetes management systems could incor-
porate the proposed detection method to aid users in 
their daily events routines. By identifying patterns and 
detecting specific BG variations associated to events, the 
system could extract the features from the data, classify 
events that happened, and provide room for specifically 
signalizing, notifying, and/or nudging towards a bet-
ter condition management and care. While applica-
ble to meal detection and quality improvement of data 

Table 7 Test results for all  participantsa. Resulting values of the selected model tested on the data of each of the participants

FP false positives, FN false negatives, TP true positives, PPV (precision) positive predictive value, TPR (recall) true positive rate

 aPatient 567 was not included due to the lack of logged meal events

ID Classifier Meals Predictions FP FN TP PPV TPR F1-score F2-score

540 Decision Tree 20 9 8 19 1 0.11 0.05 0.07 0.06

544 Random Forest 32 38 9 3 29 0.76 0.91 0.83 0.87

552 MLP 14 18 12 8 6 0.33 0.43 0.38 0.41

559 Gaussian NB 23 31 20 12 11 0.35 0.48 0.41 0.45

563 Decision Tree 23 28 18 13 10 0.36 0.43 0.39 0.42

570 Random Forest 31 37 13 7 24 0.65 0.77 0.71 0.75

575 MLP 37 42 18 13 24 0.57 0.65 0.61 0.63

584 Decision Tree 20 34 23 9 11 0.32 0.55 0.41 0.48

588 AdaBoost 34 50 25 9 25 0.5 0.74 0.6 0.67

591 AdaBoost 37 64 38 11 26 0.41 0.7 0.51 0.61

596 Gradient Boosting 45 59 27 13 32 0.54 0.71 0.62 0.67
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consisting of nutritional self-reports, the novel methods 
of this paper also pave the way to be used for detection 
and improvement of other events and related data. This 
aspect also allows for the use of multiple signals together, 
e.g., originated by different sensors such as photoplethys-
mogram (PPG) or galvanic skin response. That even 
expands it to a multi-variate approach, while still making 
use of the same pipeline now composing different in-par-
allel extracted features.

The novel procedure for selection of candidates 
proved to suit well the dynamics of the problem: pat-
terns are associated to different response shapes, hence, 
the number of times they occur can – and probably will 
– also differ. Assigning a static value to the number of 
occurrences (pattern matches) is a non-optimized and 
arbitrary choice that works well as a starting point for 
model specification, however does not suit well for 
more dynamic and complex scenarios. The dynamic 
selection approach then gives the opportunity for pat-
terns with more matching occurrences to mark more 
candidates, as (i) only matches with high values of simi-
larity will stay after applying the distance cutoff, and 
(ii) the GetValleys procedure will return only candi-
dates closer to the lower points. This resulted in a lower 
amount of matches, while maximizing their similarity to 
the patterns.

The approach – as a modular pipeline – provided the 
possibility to use different classifiers for the classification 
step. The goal was to show that any binary classifier that 
fits better the data/problem faced can be used, and for 
that no optimization was performed nor was it investi-
gated which type of classifier would fit better in a general 
manner, and why. For that, as a future work, a more spe-
cialized study to analyze the performance of classifiers in 
detail is intended to be performed.

The uncertainty in the data makes the problem tack-
led fit well the “chicken or the egg” causality dilemma. 
The approach tries to improve data quality by detect-
ing meals, and a possible application of such detection 
is to remind users of missing or wrongly informed meal 
events. However, the models are trained on real data 
(not synthetically generated through simulators [19, 49]), 
which are very likely to contain the same type of issues: 
potentially wrong reported and missing values. This 
means that ideally, the first data batch used for modeling 
must have a certain level of reliability in order to gener-
ate the models. Although preferable, and somehow limit-
ing, this point was not taken as a requirement, and the 
method could still handle such data uncertainty when 
generating fitting models. This also opens the oppor-
tunity to first create more general models from better 
quality data, and then use such models as base for oth-
ers. In this way, the base models would be more reliable, 

and could be evolved with new incoming data to reach 
an individualized version of it. In addition, although 
individual models were the scope of choice, a compari-
son between modeling in population and individual lev-
els in the same fashion as the one done in [15] is a future 
step to be taken in the research, including specific analy-
sis over how much data is necessary to train the models 
while maintaining accuracy.
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