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Abstract 

Background Intelligent cardiotocography (CTG) classification can assist obstetricians in evaluating fetal health. 
However, high classification performance is often achieved by complex machine learning (ML)-based models, which 
causes interpretability concerns. The trade-off between accuracy and interpretability makes it challenging for most 
existing ML-based CTG classification models to popularize in prenatal clinical applications.

Methods Aiming to improve CTG classification performance and prediction interpretability, a hybrid model was pro-
posed using a stacked ensemble strategy with mixed features and Kernel SHapley Additive exPlanations (SHAP) 
framework. Firstly, the stacked ensemble classifier was established by employing support vector machines (SVM), 
extreme gradient boosting (XGB), and random forests (RF) as base learners, and backpropagation (BP) as a meta 
learner whose input was mixed with the CTG features and the probability value of each category output by base 
learners. Then, the public and private CTG datasets were used to verify the discriminative performance. Furthermore, 
Kernel SHAP was applied to estimate the contribution values of features and their relationships to the fetal states.

Results For intelligent CTG classification using 10-fold cross-validation, the accuracy and average F1 score were 
0.9539 and 0.9249 in the public dataset, respectively; and those were 0.9201 and 0.8926 in the private dataset, 
respectively. For interpretability, the explanation results indicated that accelerations (AC) and the percentage of time 
with abnormal short-term variability (ASTV) were the key determinants. Specifically, the probability of abnormality 
increased and that of the normal state decreased as the value of ASTV grew. In addition, the likelihood of the normal 
status rose with the increase of AC.

Conclusions The proposed model has high classification performance and reasonable interpretability for intelligent 
fetal monitoring.
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Background
Cardiotocography (CTG) is a tool for the judgment of 
fetal distress. It was introduced into fetal monitoring in 
the late 1960s and is still commonly utilized today due 
to its low cost and non-invasiveness [1]. CTG can moni-
tor the changes in fetal heart rate (FHR) and the link to 
uterine contractions (UC). However, CTG is interpreted 
by obstetricians, whose inconsistency, subjectivity, and 
inexperience may possibly cause the current growth 
in the misdiagnosed rate [2]. Therefore, it’s essential to 
develop automated CTG classification models to assist 
obstetricians.

Artificial intelligence has exploded in the medical 
industry with the emergence of digital medical data and 
machine learning technologies. Several researchers have 
introduced machine learning (ML)-based models for 
intelligent CTG monitoring studies in SisPorto 2.0 Por-
tugal by Ayresde et al. [3]. Das et al. applied a fuzzy-rule-
based method to identify the fetus status [4]. Afridi et al. 
employed a correlation-based feature selection technique 
over the dataset to remove the unnecessary attributes 
and used Naïve Bayes to classify CTG data. The results 
revealed that the Naïve Bayesian classifier achieved an 
accuracy of 0.8306 [5]. Piri et al. explored fetal health sta-
tus using an association-based classification approach, 
and the test findings showed that the associative classifier 
model created had an accuracy of 0.84 after feature selec-
tion [6]. Chen et al. established the deep forest classifier 
to solve the imbalanced data problems and improve fetal 
abnormality detection accuracy, eventually obtaining an 
accuracy of 0.9507 [7].

In general, the accuracy rates of the mostly existing 
CTG classification studies are above 80% [5–15]. How-
ever, it is challenging to trade off the performance and 
interpretability in these studies. On the one hand, simple 
algorithms, such as Baïve Bayes and decision tree, will 
sacrifice performance and result in serious bias problems. 
Still, the principles of their predictions are explainable. 
On the other hand, complex algorithms with high accu-
racy performance, such as ensemble and deep learning 
algorithms, are tough to interpret. For a practical model 
of intelligent fetal monitoring, the emphasis is not only 
on the predictive performance but also on the post hoc 
explanations.

In this study, a hybrid model was proposed to meet 
the challenge of the trade-off between performance and 
interpretability. On the intelligent CTG classification 
task, we established a stacked ensemble classifier to lever-
age the capabilities of several high-performing algorithms 
and achieve classification results that outperform indi-
vidual algorithms. After obtaining the prediction results, 
we employed the Kernel SHapley Additive exPlanations 
(SHAP) framework for interpretation. Kernel SHAP is a 

model-independent method capable of interpreting vari-
ous ML-based algorithms [16]. Our main contribution 
consists of two parts: (1) performing a stacked ensemble 
strategy learning mixed features to improve CTG clas-
sification performance; (2) firstly applying Kernel SHAP 
framework to solve the interpretability problem for com-
plex intelligent CTG classification models.

The rest of the paper is organized as follows: Methods 
section presents the CTG datasets and the overall meth-
odologies. The corresponding results which validated 
the proposed model are presented in Results section. 
These findings are further analyzed in Discussion section. 
Finally, Conclusions section concludes the work.

Methods
This section describes the CTG datasets and the design 
flow of the hybrid model. The procedure is illustrated in 
Fig. 1 and consists of the following major steps: (1) CTG 
feature preprocessing, (2) stacked ensemble classifier 
establishment, (3) classification performance evaluation, 
and (4) model interpretability. In step 1, the CTG fea-
tures were processed by zeros-mean normalization. Step 
2 showed that a stacked ensemble strategy with mixed 
features was used to construct the proposed hybrid 
model in CTG classification part. In step 3, 10-fold 

Fig. 1 Design flow of the hybrid model. This figure illustrates 
the steps involved in the proposed model, including feature 
preprocessing, the establishment of a stacked ensemble classifier, 
evaluation of classification performance, and the analysis of model 
interpretability
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cross-validation was used for evaluation. Finally, the 
predictive results were interpreted based on the Kernel 
SHAP framework in step 4.

Datasets
The scientificity and validity of the approaches presented 
in this research were verified using the public and private 
CTG datasets.

The public CTG dataset
The public dataset is obtainable at the Machine Learning 
Repository of University of California [3]. It is one of the 
most authoritative datasets utilized for CTG retrospec-
tive studies. In the retrospective cohort, 2126 cardiotoco-
graph signals with gestational weeks ranging from 29 to 
42 weeks were processed, and the 21 structured features 
were calculated employing the SisPorto2.0 program. 
These signals were analyzed by three expert obstetricians 
based on Federation International of Gynecologie and 
Obstetrigue (FIGO) criteria, and each of them was given 
a consensus categorization label for fetal states (NSP, 
N=normal, S=suspicious, P=pathologic). In total, 1655, 
295, and 176 cases are identified as normal, suspicious, 
and pathologic, respectively (Table 1).

The private CTG dataset
In this retrospective study, 23,500 fetal morning cases 
from pregnant women with 28-42 weeks gestational ages 
were acquired in the collaborating hospitals between 
2016 and 2018. Each fetal monitoring case contains fetal 
heart rate signal, uterine contraction signal, and clinical 
data of pregnant women. The signals were sampled at 
1.25 Hz with SRF618A pro fetal monitor. The collection 
process of these private CTG data was approved by the 
local ethics committee and participants’ informed con-
sent. Following the interpretation by three obstetricians 
as normal, suspicious, and pathologic statuses accord-
ing to the ninth edition of the Chinese Obstetrics and 
Gynecology Fetal Monitoring Guidelines [17], 16,355 
cases with consistent interpreting results were included 
in the private dataset for research. Therein, 11,998, 4,326, 
and 31 instances were judged as normal, suspicious, and 
pathologic, respectively. The pathologic class was rela-
tively rare in the real-world clinic data and could not 
satisfy the classification criteria for experiments. Hence, 
the pathologic and the suspicious cases were merged into 
the abnormal category. Considering the clinical knowl-
edge and remote fetal monitoring demands, 26 features 
(24 CTG features and two pregnant women’s characteris-
tics) were employed as the classification inputs (Table 2). 

Table 1 Attribute information of the public CTG dataset

Attribute Description Mean Min Max

LB FHR baseline (beats per minute) 133.3 106 160

AC number of accelerations per second 0.00 0 0.02

ASTV percentage of time with abnormal short-term variability 47.0 12 87

ALTV percentage of time with abnormal long-term variability 9.8 0 91

MLTV mean value of long-term variability 8.2 0 50.7

MSTV mean value of short-term variability 1.3 0.2 7

DP number of prolonged decelerations per second 0.00 0 0.005

DS number of severe decelerations per second 0.00 0 0.001

DL number of light decelerations per second 0.00 0 0.02

Min minimum of FHR histogram 93.6 50 159

Max maximum of FHR histogram 164.0 122 238

Mode histogram mode 137.5 60 187

Mean histogram mean 134.6 73 182

Median histogram median 138.1 77 186

Nmax number of histogram peaks 4.1 0 18

Nzeros number of histogram zeros 0.3 0 10

Width width of FHR histogram 70.4 3 180

Variance histogram variance 18.8 0 269

UC number of uterine contractions per second 0.00 0 0.02

FM number of fetal movements per second 0.01 0 0.5

Tendency histogram tendency Left-asymmetric=165 ; Symmetric=1115 ; Right-asymmet-
ric=846

Label NSP (N : Normal; S : Suspicious; P : Pathologic) N = 1655 ; S = 295 ; P = 176
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These 24 CTG features, such as FHR baseline and accel-
erations, were extracted from the CTG signals using 
SRF618A pro fetal monitor.

Feature preprocessing
Each feature in the CTG datasets has different value 
ranges and units. Hence, numerical characteristics were 
automatically processed using zeros-mean normaliza-
tion. The equation is as follows:

A stacked ensemble strategy learning mixed features
The stacking algorithm is a powerful hierarchical ensem-
ble learning algorithm. It employs a meta-learning algo-
rithm to learn how to integrate the predictions from 
several base-learning algorithms, allowing it to tap into 
various high-performing classifiers to achieve results that 
outperform any single classifier.

(1)x ∗=
x − µ

σ

During the stacking, the probability value of each cat-
egory was implemented as the output by the base learn-
ers instead of their category labels for extracting more 
detailed CTG information. Then, these probability val-
ues and the CTG features were mixed as the input to the 
meta learner. In the proposed stacked ensemble strategy, 
the final predictions of the meta learner depend not only 
on the deep-level features extracted by the base learners 
but also on the original features of CTG data. The stack-
ing algorithm with mixed features is shown in Fig. 2.

In the establishment, support vector machines (SVM), 
extreme gradient boosting (XGB), and random forests (RF) 
were utilized as base learners, and backpropagation (BP) 
was used as the meta learner. The selection of base learn-
ers is based on their complementary strengths, address-
ing specific challenges encountered in CTG classification 
strategically. SVM excels in solving nonlinear problems, 
RF effectively handles imbalanced datasets, while XGBoost 
mitigates high bias issues through boosting. The meta 
learner plays a crucial role in integrating the predictions 
from the base learners and CTG features to make the final 

Table 2 Attribute information of the private CTG dataset

Attribute Description Mean Min Max

LB FHR baseline (bpm) 141.52 112 181

AC number of accelerations 4.09 0 22

AA acceleration amplitude 18.56 0 75

AD duration of accelerations 14.81 0 41

STV short term variability 7.78 1.48 27.48

SD number of severe decelerations 0.00 0 1

VA variability of FHR 15.13 4 48

VD number of variable decelerations 0.02 0 5

LD1 number of light decelerations 0.00 0 1

LD2 number of late decelerations 0.04 0 7

ED number of early decelerations 0.00 0 1

DVHF duration of variability in high frequency 11.00 0 50

DAD duration of accelerations and decelerations 10.42 1 39

DVD duration of variation decelerations 0.91 0 106

DUC duration of uterine contractions 33.31 0 142

DVLF duration of variability in low frequency 0.68 0 20

DC number of decelerations 0.03 0 5

DL data loss (%) 0.89 0 39

PD number of prolonged decelerations 0.00 0 1

PV periodic variation of FHR 3.88 1 11

TUC interval time of uterine contractions 137.8 0 2559

IUC intensity of uterine contractions 30.32 0 118

UC number of uterine contractions 1.04 0 10

FM number of fetal movements 8.4 0 49

GA gestational age (week) 36.3 28 46

AGE age of pregnant woman (year) 27.2 24 54

Label Normal; Abnormal Normal fetal state= 11,998 ; Abnormal fetal state= 4,357
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ensemble prediction. Backpropagation (BP) is chosen as 
the meta-learner for its ability to perform nonlinear map-
ping. This allows BP to effectively transform the predic-
tions from the base learners, resulting in more accurate and 
robust ensemble predictions.

Evaluation metrics
The following metrics were utilized to measure the per-
formance of the classification results: accuracy, precision, 
recall (sensitivity), and the F1 score.

Accuracy is computed as the ratio of the sum of true pos-
itive (TP) and true negative (TN) predictions to the total 
number of instances:

Precision measures the ratio of true positive predic-
tions to the sum of true positive and false positive (FP) 
predictions:

(2)Accuracy =
TP + TN

TP + FP + TN + FN

(3)Precision =
TP

TP + FP

Recall (or Sensitivity) measures the ratio of true posi-
tive predictions to the sum of true positive and false neg-
ative (FN) predictions:

The F1 score is determined as the harmonic mean of 
precision and recall, providing a balanced evaluation 
under the imbalanced CTG classification task:

Kernel SHAP‑based interpretability method
Kernel SHAP (SHapley Additive exPlanations) is a 
method that employs a specialized weighted linear 
regression function to compute the Shapley values, which 
estimates the contribution of each feature [16]. In the 
present study, Kernel SHAP was utilized to interpret the 
predictions made by the stacked ensemble classifier. The 
linear regression function g is defined as below:

(4)Recall (Sensitivity) =
TP

TP + FN

(5)F1 score =
2× Precision× Recall

Precision+ Recall

Fig. 2 Stacking algorithm with mixed features. This figure describes how category probability values from base learners and CTG features are 
combined as input for the meta learner in the stacking ensemble strategy
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Here g is the explanation function, and z′ is a feature 
coalition (1 = feature present in coalition, 0 = feature 
absent in coalition). M is the number of the CTG fea-
tures. ∅i is the Shapley value for each CTG feature. Kernel 
SHAP aims to minimize the loss function L as below:

Here f represents the classification model to be 
explained and h(z′) maps a feature coalition into a feature 
set on which the model can be assessed. f (h(z′)) is used 
to calculate the effect of features in present and absent. 
π(z

′
) is the weight assigned to the coalition (formula (8)). 

|z
′
| is the number of non-zero elements in z′.

By fitting the explanation linear regression function g 
in formula (6), the Shapley value ∅i is ultimately calcu-
lated to interpret the contributions of CTG features.

Results
The internal CTG classification performance comparisons
In this section, 10-fold cross-validation was employed 
for model evaluation. The evaluation results from 10 
iterations will be averaged to obtain the final evaluation 
scores, effectively reducing overfitting and provide more 
reliable performance metrics.

Comparison of different stacking strategies
Table  3 shows the accuracy of four different stacking 
ensemble strategies under the public and private data-
sets, where Strategy 4 is the proposed stacking strat-
egy. For metal learners’ input with different stacking 
strategies, Strategy 1 used the category labels, Strategy 
2 replaced the category labels with the category prob-
ability values of the three base learners, and Strategy 
3 applied a mixture of the category labels and origi-
nal CTG features, respectively. In Table  3, the result 

(6)g(z
′

) = ∅0 +
M
i=1 ∅iz

′

i , z
′

i ∈ {0, 1}M

(7)L(f , g ,π) =
∑

z
′
∈Z

[

f (h(z
′

))− g(z
′

)

]2
π(z

′

)

(8)π(z
′

) =
(M − 1)

(M choose|z
′
|)|z

′
|(M − |z

′
|)

indicates that the proposed stacking strategy outper-
formed the others, which benefits from the mixture of 
CTG features and the probability value of each category 
of base learners.

The performance of the proposed stacked ensemble strategy
Here, six ML-based algorithms, including logis-
tic regression (LR), naïve bayes (NB), support vector 
machines (SVM), backpropagation (BP), random for-
ests (RF), and extreme gradient boosting (XGB) were 
selected as comparison models. The metrics and com-
parison models were shown in Table  4, it can be seen 
that The proposed strategy is significantly better com-
pared to other algorithms. When compared to the best 
single model SVM, the recall and precision in the pro-
posed stacking were 0.0546 and 0.0362 higher, respec-
tively. Since the F1 score could balance precision and 
recall, it was used to evaluate the performance of the 
classification results under imbalanced CTG data. The 
score of the proposed stacking was 0.9249, which was 
among the greatest overall comparison.

From Table 5, it can be also seen that the classification 
results of the stacking integration obtained better perfor-
mance than without the integration in the overall com-
parison under the private dataset. The findings validated 
the predictive ability of the proposed stacked ensemble 
classifier with mixed features in real-world CTG data.

Table 3 Accuracy of different stacking strategies

Strategies the public dataset the 
private 
dataset

Strategy 1 0.9430 0.9129

Strategy 2 0.9513 0.9054

Strategy 3 0.9429 0.9130

Strategy 4 0.9539 0.9201

Table 4 The experimental results in the public dataset

Classifiers Accuracy Precision Recall Average F1

LR 0.8881 0.8053 0.7729 0.7847

NB 0.7198 0.6616 0.7439 0.7003

SVM 0.9315 0.8992 0.8621 0.8782

BP 0.9210 0.8680 0.8393 0.8514

RF 0.8949 0.8743 0.7170 0.7718

XGB 0.9314 0.9070 0.8610 0.8794

Proposed strategy 0.9539 0.9354 0.9167 0.9249

Table 5 The experimental results in the private dataset

Classifiers Accuracy Precision Recall Average F1

LR 0.8936 0.8737 0.8403 0.8548

NB 0.8481 0.8257 0.7546 0.7792

SVM 0.9125 0.8903 0.8781 0.8839

BP 0.9137 0.8920 0.8797 0.8856

RF 0.9054 0.9063 0.8402 0.8663

XGB 0.9130 0.8947 0.8737 0.8834

Proposed strategy 0.9201 0.9056 0.8816 0.8926
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Kernel SHAP‑based interpretability
The Shapley values quantify the impact of each feature 
on the model’s predictions. After computing the Shapley 
values, we utilize the SHAP summary plot and the SHAP 
force plot to display the interpretability of the stacked 
ensemble classifier’s predictions. The summary plot dis-
plays a summary of feature importance for all instances 
in the dataset, which provides a comprehensive view of 
how each feature contributes to the model’s predictions 
across the entire dataset. The force plot is another visu-
alization tool for interpreting individual predictions of 
machine learning models.

Summary plot of public dataset
The SHAP summary plot provides a global understand-
ing of feature importance and their impact on the model’s 
predictions across the entire dataset. On the plot, fea-
tures are ranked in descending order of importance on 
the y-axis, with the most crucial features displayed at the 
top.

Figure  3 presents the summary plots for the normal, 
suspicious, and pathologic categories, showcasing the 
top ten features contributing to the fetal status predic-
tions. Each point on the plot represents a Shapley value 
for a feature of an instance, with colors indicating the 
magnitude of the value. Red denotes high feature values, 
and blue represents low feature values. Shapley values 
provide contribution scores for CTG features in the pre-
dicted results, revealing their positive and negative influ-
ences on the model’s predictions. These summary plots 
offer valuable insights into the model’s behavior, facilitat-
ing the identification of the most influential features for 
each fetal status category.

It could be found that percentage of time with abnor-
mal short-term variability (ASTV), mumber of accel-
erations per second (AC), histogram mean (Mean), and 
percentage of time with abnormal long-term variability 
(ALTV) most significantly contributed to the normal and 
suspicious category discrimination (Fig. 3A & B). In addi-
tion, ASTV, AC, Mean, and number of prolonged decel-
erations per second (DP) had the most impact on the 

Fig. 3 Summary plot of normal (A), suspect (B) and pathologic (C) category in the public dataset. This figure displays the top ten features 
contributing most to the prediction of fetal status for normal, suspicious, and pathological categories. Each point on the graph represents a Shapley 
value for a feature, with colors indicating the magnitude of the value
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pathologic category (Fig. 3C). Specifically, as the values of 
ASTV and DP increased and the values of AC and Mean 
decreased, the probability of pathologic risk grew.

Force plot of public dataset
The SHAP force plot provides insights into how specific 
features influence individual predictions, allowing obste-
tricians to understand why the model made a particular 
prediction for a given instance. In the plot, the base value 
represents the average prediction of the model calculated 
in a non-feature input condition of the explanation func-
tion. The final output f(x) for the instance is the sum of 
the base value and the contributions from each feature.

Three force subplots in Fig.  4 showed that a sample 
randomly selected in the public dataset was interpreted 
as normal, suspicious, and pathologic status in sequence. 
The Shapley value of each feature pushes the base value 
to the ultimate output f(x). The features that drive the 
output value higher are highlighted in red, while those 
that drive the value down are highlighted in blue. The 
classification model predicts the corresponding category 
outcome when a category f(x) surpasses the base value. 
As shown in the third subplot, the f(x) was 2.91, with 
main positive contributions from ASTV, AC, baseline 
beats per minute (LB), and number of uterine contrac-
tions per second (UC) and negative contributions from 

DP and Mean. Since the base value under the pathologic 
category interpretation was -2.788, the f(x) exceeded the 
base value and the sample was interpreted as pathologic 
status by the stacked ensemble classifier.

Summary plot of private dataset
Kernel SHAP was applied to the private data to verify 
explainability further. According to Fig.  5, AC, duration 
of accelerations (AD), and short term variability (STV) 
have the greatest influence on classifying fetal state as 
normal; the lower the value of these three characteris-
tics, the more likely the fetal status would be judged as 
abnormal.

Force plot of private dataset
Two force subplots in Fig.  6 showed that a sample ran-
domly selected in the private dataset was interpreted as 
normal and abnormal status in sequence. As shown in the 
second subplot, the f(x) was 3.09, with principal features 
of AC, STV, and AD playing positive roles in determining 
the classification results. Compared with the base value 
of -1.863 under the abnormal category interpretation, the 
f(x) was much higher. Thus, this sample was classified as 
an abnormal category.

Fig. 4 Interpretability of an individual case in the public dataset. This figure demonstrates how important features impact and explain predictions 
for normal, suspicious, and pathological categories for a given instance. Features driving the base value higher are highlighted in red, while those 
driving it down are highlighted in blue
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Discussion
Comparison with existing ML based‑models
In terms of internal comparisons (Table  3 & Table  4 & 
Table 5), the proposed strategy has a greater advantage. 
Additionally, to carry out an objective and comparative 
evaluation with the existing intelligent CTG classification 
models, we partition the public CTG dataset using the 
hold-out method. The public dataset was selected 70% 
randomly for training and the remaining 30% for test-
ing. The confusion matrix of the stacked ensemble clas-
sifier constructed in this paper showed that the achieved 
accuracies were 0.9779, 0.8977, and 0.9434 in the nor-
mal, suspicious, and pathologic categories, respectively 
(Table 6). In particular, the misclassification rate between 

suspicious and normal was reduced considerably. To 
some extent, it could avoid the serious repercussions of 
postponing therapy owing to misjudging the suspicious 
class as the normal class.

Fig. 5 Summary plot of abnormal category in the private dataset. This figure displays the top ten most influential features affecting the model’s 
prediction when classifying fetal status as abnormal

Fig. 6 Interpretability of an individual case in the private dataset. This figure demonstrates how important features impact and explain predictions 
for the normal category in an individual instance

Table 6 The experimental results in the public dataset

Real

Normal Suspicious Pathologic

Predict

Normal 0.9779 0.0795 0.0377

Suspicious 0.0161 0.8977 0.0189

Pathologic 0.0060 0.0227 0.9434
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In Table 7, it can be seen that the performance of the 
proposed strategy has significantly improved compared 
with several existing CTG classification models [7–9], 
especially in detecting normal and suspicious categories. 
Compared with Probabilistic Neural Networ (PNN) [8], 
the F1 value of the suspicious class was further enhanced 
by 0.1596. In comparison with random forest [9], the F1 
value of the suspicious class was further increased by 
0.0717. Moreover, compared with Deep Forest (DF) [7], 
the suspicious F1 value grew by 0.0406. The results sug-
gested that our classification model could significantly 
help prevent serious misdiagnosis problems, such as the 
misdiagnosis leading to postponing therapy.

Model interpretability analysis of fetal status
As summarized in the interpretability results, the analy-
sis suggested that AC and ASTV were key determinants 
impacting on fetal states in both the public and private 
datasets. Specifically, the probability of abnormality 
increased and that of the normal state decreased as the 
value of ASTV grew. In addition, the likelihood of the 
normal status rose with the increase of AC. According to 
the international fetal guidelines [18, 19], one of the most 
important conditions for normal state is that the AC rises 
at least 15 seconds when the increase of FHR baseline 
exceeds 15 beats per minute and this appeared more than 
twice in 15 minutes. Street discovered that STV was sig-
nificantly associated with metabolic acidosis and a dead 
fetus in the uterus [20]. Huang concluded that AC and 

ASTV have more significant impacts on fetal status by 
combining the experimental results of Spearman corre-
lation, data visualization, and association rules [21]. J.A. 
found that STV and long-term variability (LTV) are vital 
features in CTG by analyzing the correlation of STV, LTV 
[22], and decelerations (DC) [23] and heart rate variabil-
ity (HRV) with fetal status. Santo conducted experiments 
to show that AC and DP are essential features [24]. These 
studies provide references for the validity of the inter-
pretable results in this paper.

Limitation
The CTG features for the experimental models in this 
study were extracted from the CTG signals, so there are 
still existing some non-negligible measurement errors. 
Despite deep learning (DL) can achieve end-to-end intel-
ligent CTG classification, its interpretability could be 
even more complex. In the future, we plan to implement 
an intelligent CTG classification model based on DL and 
combined with Deep SHAP [16] to solve the problem of 
DL-based models that are difficult to interpret.

Conclusions
As machine learning algorithms are increasingly being 
deployed in the healthcare domain, there is growing 
emphasis not only on predictive accuracy but also on 
techniques for explaining these black boxes. In this study, 
we presented a hybrid model to meet the challenge of 
the trade-off between performance and model interpret-
ability. Both the public and private datasets were used to 
verify the model’s operability and applicability. The exper-
imental results showed that the proposed model had 
superior classification performance, which is crucial for 
assisting obstetricians in assessing fetal health. Moreover, 
it enables the post hoc explanations of predictive results. 
Specifically, the contributions of different features in pre-
dicting fetal states have been elaborated. Therefore, our 
approaches contribute to the prenatal clinical application 
and implementation of intelligent fetal monitoring.
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Random Forest [9] Normal 0.9730 0.8996 0.9480
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Pathologic 0.9000

DF [7] Normal 0.9700 0.9201 0.9507
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Proposed strategy Normal 0.9779 0.9345 0.9639
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LTV  Long-term variability
DC  Number of decelerations
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GRNN  Generalized Regression neural network
PNN  Probabilistic neural network
DF  Deep forest
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