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Abstract
Background Acute kidney injury (AKI) after coronary artery bypass grafting (CABG) surgery is associated with poor 
outcomes. The objective of this study was to apply a new machine learning (ML) method to establish prediction 
models of AKI after CABG.

Methods A total of 2,780 patients from two medical centers in East China who underwent primary isolated 
CABG were enrolled. The dataset was randomly divided for model training (80%) and model testing (20%). Four ML 
models based on LightGBM, Support vector machine (SVM), Softmax and random forest (RF) algorithms respectively 
were established in Python. A total of 2,051 patients from two other medical centers were assigned to an external 
validation group to verify the performances of the ML prediction models. The models were evaluated using the area 
under the receiver operating characteristics curve (AUC), Hosmer-Lemeshow goodness-of-fit statistic, Bland-Altman 
plots, and decision curve analysis. The outcome of the LightGBM model was interpreted using SHapley Additive 
exPlanations (SHAP).

Results The incidence of postoperative AKI in the modeling group was 13.4%. Similarly, the incidence of 
postoperative AKI of the two medical centers in the external validation group was 8.2% and 13.6% respectively. 
LightGBM performed the best in predicting, with an AUC of 0.8027 in internal validation group and 0.8798 and 0.7801 
in the external validation group. The SHAP revealed the top 20 predictors of postoperative AKI ranked according to 
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Introduction
Coronary artery bypass grafting (CABG) surgery is 
currently the main clinical treatment for serious coro-
nary heart disease (CHD) and is increasingly applied 
to patients worldwide. Postoperative complications 
of CABG include perioperative myocardial ischemia, 
arrhythmias, acute kidney injury (AKI), neurological 
complications, and bleeding. AKI is a common com-
plication after cardiac surgery with a typical incidence 
of 15-30% [1–3]. In practice, failure to identify patients 
at high risk of AKI in the early stages following CABG 
and to pre-empt treatment may cause AKI to develop to 
chronic renal failure or even end-stage renal disease, ulti-
mately increasing the risk of death. The high postopera-
tive incidence and associated high mortality make AKI 
a great concern of cardiac surgery. However, the patho-
genesis of AKI after CABG is very complex and not com-
pletely understood [4]. As such, it is urgent to identify the 
risk factors of postoperative AKI and to explore predic-
tion models of AKI after CABG.

Machine learning (ML) is a branch of artificial intel-
ligence that has been increasingly used in various fields 
to analyze massive data. With the development of infor-
mation technology recently, hospital electronic medical 
record systems generate huge amounts of data yearly, 
which have led many health and biomedical research-
ers to apply ML, especially prediction models, to extract 
valuable insights from the growing biomedical database. 
Unlike traditional statistical methods that use selected 
variables for further calculations, ML can easily combine 
a large number of variables using a computer algorithm, 
which improves the forecasting accuracy. ML-based 
models outperform traditional statistical models based 
on the logistic regression algorithm [5, 6]. However, pre-
dicting AKI in CABG patients with ML methods has not 
attracted much attention from researchers.

This study aims to use ML based on Light gradi-
ent boosting machine (Light GBM), Support vector 
machines (SVM), Softmax and random forest (RF) to 
establish models enabling early and effective prediction 
of AKI after CABG, which are needed to identify high-
risk patients and have practical guiding significance to 
clinical decision-making.

Methods
Study population
This project is a multi-center retrospective study. A total 
of 4,170 patients undergoing CABG from two medi-
cal centers of East China (the Jiangsu Province Hospi-
tal Affiliated to Nanjing Medical University, JSPH, and 
Shanghai Chest Hospital Affiliated to Shanghai Jiaotong 
University, SHCH) were enrolled. The inclusion crite-
rion was: CABG surgery for severe CHD. The exclusion 
criteria were: (1) age less than 18 years; (2) redo CABG 
surgery; (3) combined with other cardiac procedures 
(e.g., valve, ventricular aneurysm, ventricular septum); 
(4) absence of perioperative medical records; (5) preop-
erative chronic renal failure; (6) preoperative hemodi-
alysis treatment. Ultimately, 2,780 patients were enrolled 
and randomly assigned to a model training group and an 
internal validation group at a ratio of 8:2.

Another 2,414 patients from two medical centers (Qilu 
Hospital of Shandong University, QLH, General Hospital 
of Ningxia Medical University, GHN) were also enrolled, 
which were more than 500  km apart from the previ-
ous medical centers, located in North China and North 
West China respectively. According to the same inclusion 
and exclusion criteria, 2,051 patients were assigned to 
an external validation group to verify the performances 
of the ML models. The patients screening process was 
shown in Fig. 1.

Informed consent
This study was conducted in accordance with the Decla-
ration of Helsinki (revised 2013). Approval was obtained 
from the hospital ethics committees (No. 2023-SR-229 
from JSPH; No. IS23002 from SHCH; No. KYLL-202204-
016 from QLH; No. KYLL20230330 from GHN). Writ-
ten informed consent was waived for this retrospective 
analysis because all the protected health information was 
anonymized.

Definition and endpoints
According to the Kidney Disease Improving Global Out-
come (KDIGO) clinical practice guidelines [7], AKI is 
defined when any of the following three criteria is met: 
increase in serum creatinine (Scr) by ≥ 0.3 mg/dl (≥ 26.5 
umol/l) within 48 h or an increase in Scr by ≥ 1.5 times 
from the baseline, which is known or presumed to have 

the importance, and the top three features on prediction were the serum creatinine in the first 24 h after operation, 
the last preoperative Scr level, and body surface area.

Conclusion This study provides a LightGBM predictive model that can make accurate predictions for AKI after CABG 
surgery. The LightGBM model shows good predictive ability in both internal and external validation. It can help 
cardiac surgeons identify high-risk patients who may experience AKI after CABG surgery.

Keywords Acute kidney injuries, Prediction model, Machine learning, Coronary artery bypass grafting
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occurred within the preceding 7 days; or a urine vol-
ume < 0.5 ml/kg/h for 6  h. Baseline creatinine level was 
defined as the preoperative value obtained closest to the 
date of the operation (within 48 h before the operation). 
Because of the application of diuretics and the difficulty 
in collecting clinical records, urine volume was not used 
to diagnose preoperative AKI. The preoperative esti-
mated glomerular filtration rate (eGFR) was calculated 
with the CKD-EPIscr Eq. [8]. Proposed KDIGO staging 
of AKI was as follows: stage 1 was defined as increase 
in Scr by 1.5–1.9 times from the baseline or ≥ 0.3 mg/dl 
(26.5 µmol/l); Stage 2 was defined as increase in Scr by 
2.0-2.9 times from the baseline; Stage 3 was defined as 

increase in Scr by 3 times from the baseline or ≥ 4.0 mg/
dl (353.6 µmol/l) or initiation of renal replacement ther-
apy [9].

The study outcome was the occurrence of postopera-
tive AKI.

Feature selection
Features were selected by referring to the Euro-
pean System for Cardiac Operative Risk Evaluation II 
(EuroSCORE II), which was improved on the basis of 
EuroSCORE. It not only better predicts the mortality 
risk of CABG, but also applies to Chinese patients [10–
14]. Therefore, to comprehensively reflect the specific 

Fig. 1 Flowchart of patient selection. (JSPH: Jiangsu Province Hospital, the First Affiliated Hospital of Nanjing Medical University; SHCH: Shanghai Chest 
Hospital of Shanghai Jiao Tong University; QLH: Qilu Hospital of Shandong University; GHN: General Hospital of Ningxia Medical University; CABG: Coro-
nary artery bypass grafting)
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circumstances of patients, the risk factors selected here 
were based on relevant EuroSCORE II items. A total of 
26 variables were collected according to relevant studies 
and clinical availability (Table 1). All data for the included 
variables were extracted from inpatient electronic medi-
cal records.

Machine learning modeling
Light gradient boosting machine (LightGBM)
In 2017, a team at Microsoft introduced a new efficient 
gradient boosting algorithm based on decision trees, 
named LightGBM. Building upon the foundation of 
GBDT, LightGBM incorporates the Histogram algorithm 
and a leaf-wise growth strategy [15].

The basic idea of Histogram algorithm is illustrated in 
Fig.  2 (A) and the process is as follows. For continuous 

Table 1 Baseline clinical characteristics of modeling group and validation groups
Model-
ing Group 
(n = 2224)

Internal Vali-
dation Group 
(n = 556)

P value External Validation Group
QLH(n = 1648) P value GHN(n = 403) P 

value
Age(y) 66(12) 66(11) 0.053 66(12) <0.001 63(10) <0.001

Gender(male) (n, %) 1694(76.17) 426(76.61) 0.824 1181(71.66) 0.002 275(68.23) 0.001

Weight (kg) 68.00(14.00) 69.00(14.00) 0.061 70.00(15.00) <0.001 69.01(14.00) <0.001

Height (cm) 168.00(12.00) 168.00(12.00) 0.163 170.00(12.00) <0.001 166.26(12.00) <0.001

BMI (kg/m2) 24.65(3.85) 24.91(3.44) 0.611 24.65(4.44) 0.091 24.95(4.41) 0.050

BSA (m2) 1.86(0.22) 1.86(0.21) 0.886 1.90(0.22) <0.001 1.86(0.22) 0.063

Morbid obesity (n, %) 113(5.10) 20(3.60) 0.143 101(6.12) 0.158 18(4.47) 0.602

NYHA IV (n, %) 52(2.33) 6(1.08) 0.063 83(5.04) <0.001 16(3.17) 0.058

CAD classification 0.001 <0.001 <0.001

Stable angina (n, %) 559(25.13) 167(30.03) 111(6.74) 36(8.68)

Unstable angina (n, %) 1349(60.66) 296(53.23) 1483(89.99) 225(55.83)

AMI (n, %) 274(12.32) 94(16.91) 52(3.16) 66(16.38)

Hypertension (n, %) 1532(68.89) 411(73.92) 0.021 1023(62.08) <0.001 253(62.78) 0.016

Diabetes (n, %) 747(29.51) 211(37.95) 0.053 562(34.10) 0.738 152(37.72) 0.108

Cerebrovascular disease (n, %) 340(15.29) 60(10.79) 0.007 175(10.62) <0.001 36(8.93) 0.001

Preoperative Scr (µmol/l) 76.70(26.00) 80.00(26.00) 0.514 72.00(20.00) <0.001 74.63(24.30) <0.001

Preoperative eGFR (mL/min/1.73 m2) 77.32(34.11) 75.26(33.16) 0.047 84.63(30.31) <0.001 90.11(34.69) <0.001

Preoperative LVEF (%) 62.00(8.88) 62.00(8.88) 0.071 60.00(13.00) <0.001 59.13(16.99) <0.001

Number of diseased vessels (n, %) <0.001 <0.001 0.022

1 106(4.77) 40(7.19) 15(0.91) 9(2.23)

2 244(10.97) 87(15.64) 176(10.68) 35(8.68)

3 1874(84.26) 429(77.16) 1457(88.41) 359(89.08)

Peripheral vascular disease (n, %) 206(9.26) 143(25.72) <0.001 40(2.42) <0.001 141(34.99) <0.001

Surgical status (n, %) 0.217 <0.001 <0.001

Emergency 64(2.89) 10(1.80) 1(0.06) 1(0.25)

Rescue 22(0.98) 3(0.53) 2(0.12) 0(0.00)

Valvular disease (n, %) 271(12.18) 66(11.87) 0.839 50(3.03) <0.005 27(6.70) 0.001

IABP implantation (n, %) 73(3.28) 26(4.68) 0.113 55(3.34) 0.925 17(4.22) 0.342

COPD (n, %) 111(4.99) 38(6.83) 0.084 9(0.55) <0.001 28(6.95) 0.106

Atrial fibrillation (n, %) 71(3.19) 21(3.78) 0.491 30(1.82) 0.006 13(3.23) 0.972

Pulmonary hypertension (n, %) 95(4.27) 43(7.73) 0.001 95(5.76) 0.084 3(0.74) 0.001

Previous PCI (n, %) 209(9.40) 36(6.47) 0.030 85(5.16) <0.001 40(9.93) 0.739

Bypass graft number(n) 3.00(1.00) 3.00(1.00) 3.00(1.00) 3.00(1.00)

Cardiopulmonary bypass (n, %) 129(5.80) 61(10.97) <0.001 121(7.34) 0.054 4(0.99) <0.001

AKI (n, %) 352(15.82) 22(3.96) <0.001 135(8.19) <0.001 55(13.64) 0.266

Stage 1 233(10.47) 18(3.23) 97(5.89) 37(9.18)

Stage 2 73(3.28) 2(0.36) 29(1.76) 12(2.98)

Stage 3 46(2.07) 2(0.36) 9(0.55) 6(1.49)
Abbreviation: QLH, Qilu Hospital of Shandong University; GHN, General Hospital of Ningxia Medical University; BMI, body mass index; BSA, body surface area; NYHA, 
New York heart association; CAD, coronary artery disease; AMI, acute myocardial infarction; Scr, Serum creatinine; eGFR, estimated glomerular filtration rate; LVEF, 
left ventricular ejection fraction; IABP, intra-aortic balloon pump; COPD, chronic obstructive pulmonary disease; PCI, percutaneous coronary intervention; AKI, acute 
kidney injuries
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features, convert them into N distinct values, and then 
build a histogram that spans these N values. In the case of 
discrete features, place each unique value into a specific 
bin. If the number of unique values exceeds the available 
bins, less frequent values are ignored. When travers-
ing the data, the statistical information is accumulated 
in the histogram using the discretized values as indices. 
This accumulation ensures that after one traversal, the 
histogram contains the necessary statistical data, which 
is subsequently used to determine the best split point by 
traversing the discretized values of the histogram.

The basic idea of the leaf-wise growth strategy is illus-
trated in Fig.  2 (B), the process is as follows. For each 
splitting process of a leaf node, identify the leaf node with 
the highest splitting gain in the current layer (the green 
node), then split it, and so on.

In the context of the relationship between the Histo-
gram algorithm and the leaf-wise growth strategy, they 
work in tandem. The histogram algorithm prioritizes 
speed and memory efficiency, while the Leaf-wise growth 
strategy focuses on accuracy optimization. Together, 
these strategies form a harmonious partnership. And the 
specific process of the model was shown in Fig. 2 (C).

In addition, in this study, the SHapley Additive exPla-
nation (SHAP) method was used to explain the Light-
GBM model. SHAP, a unified approach for explaining 
the outcome of any machine learning model, was used to 
provide consistent and locally accurate attribution val-
ues for each feature within the ML model. In SHAP, all 

features are considered as contributors, and the model 
generates a prediction value (SHAP value) indicating the 
contribution of the feature for each prediction sample. 
SHAP values are very different from traditional variable 
screening methods (e.g., subset selection methods, coef-
ficient compression methods, dimensionality reduction 
methods), which rely on model judging metrics. The 
SHAP value is a game-theoretic approach to interpret 
the output of any ML model, and interprets the model-
predicted value as the sum of the inputted values of each 
feature, where the imputed values are the SHAP values. 
It has several advantages: (1) SHAP can explain the out-
put of a single sample, not just the global importance; 
(2) SHAP can explain the effects of each feature on the 
model output, including positive and negative effects; (3) 
SHAP values can be used to visually interpret the output 
of an ML model [16].

Support vector machines (SVMs)
Support Vector Machines (SVMs) began as binary classi-
fiers but have since expanded to multi-class classification 
using strategies like “one-vs-one” (OvO) and “one-vs-
rest” (OvR). In essence, SVMs find a hyperplane in the 
feature space that best divides data into classes. For non-
linear data, the “kernel trick” allows SVMs to map data 
into a higher dimension, making it linearly separable.

In our work, we used hinge loss to maximize the mar-
gin between data points and the hyperplane. The kernel 
function, a pivotal component of SVMs, must meet the 

Fig. 2 The introduction of (A) histogram algorithm, (B) leaf-wise strategy and (C) the specific process of LightGBM
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Mercer condition to ensure the kernel matrix’s positive 
semi-definiteness, crucial for SVM’s numerical stability. 
Our chosen kernel function is the standard dot product, 
emphasizing our model’s interpretability in multi-class 
scenarios [17].

Softmax regression
Softmax regression, also known as multinomial logistic 
regression, distinguishes itself by employing a discrimi-
native vector instead of the Sigmoid function found in 
standard logistic regression. Specifically designed for 
multi-class classification, this model predicts a probabil-
ity for each category through a linear function. The Soft-
max function then steps in to convert these scores into 
normalized probabilities, ensuring the sum of probabili-
ties across all classes is unity.

The primary objective of this model is to minimize 
the cross-entropy loss, serving as a measure of disparity 
between the predicted and actual probability distribu-
tions. Owing to its straightforward structure, rapid classi-
fication speed, and minimal space requirements, Softmax 
regression frequently serves as a benchmark model for 
multi-class classification problems [18].

Random forest (RF)
Random Forest is a supervised machine learning algo-
rithm rooted in decision tree methodologies. Unlike 
single decision trees, RF constructs an ensemble of trees, 
each representing a distinct instance of either classifica-
tion or regression based on input data. For classification 
tasks, the RF output is the class chosen by the major-
ity of the trees. For regression tasks, it offers the mean 
or average prediction of the individual trees. A unique 
characteristic of RF is its use of both bagging and feature 
randomness, ensuring an uncorrelated forest of decision 
trees, setting it apart from other tree-based models. This 
approach affords RF a flexibility and adaptability to han-
dle nonlinear data with remarkable accuracy. While both 
RF and LightGBM employ decision trees as base learners, 
their construction, optimization, and overall methodolo-
gies differ significantly. We have chosen to evaluate both 
to provide a comprehensive comparison and understand-
ing of their performances in our specific application and 
also make RF as a benchmark model [19].

Statistical and technical specifications
Categorical variables were expressed as total numbers 
and percentages, and differences between groups were 
compared using χ2 test or Fisher’s exact test. Continu-
ous variables were shown as mean ± standard deviation 
(SD) and median with 95% confidence interval (CI). 
Continuous variables in normal distribution and skewed 
distribution were analyzed with Student’s t-test and 

Mann–Whitney U-test respectively (P < 0.05 was consid-
ered significant).

Receiver’s operating characteristics (ROC) curve and 
the area under the ROC curve (AUC) were used to mea-
sure the discrimination ability of ML models. Sensitivity 
analysis was performed to examine the predictive power 
of ML models. The analyses included sensitivity, specific-
ity, positive and negative predictive values.

The net reclassification index (NRI) and integrated 
discrimination improvement (IDI) were used to further 
assess the predictive power of the two models concern-
ing postoperative AKI [20, 21]. If the values of NRI and 
IDI were positive, then the first model showed a positive 
improvement over the other model. Conversely, it implies 
a negative improvement.

Calibration (statistical precision) of models was ana-
lyzed by Hosmer–Lemeshow (H-L) goodness-of-fit 
statistic. When P is larger than 0.05, the predicted post-
operative AKI rate and the actual postoperative AKI rate 
were in good agreement.

Bland-Altman plots were used to estimate the agree-
ment of models in pairs [22]. If the difference between 
the two models lies within the consistency bounds, it sug-
gests good agreement. A higher agreement between the 
two models means the solid line representing the mean 
of the differences is closer to the dashed line with a zero 
value. About 95% of the difference between the values of 
the two models falls within the range of values described 
by the consistency limits, indicating that the two models 
are in good agreement.

In addition, decision curve analysis (DCA) was per-
formed to assess the utility of the model in decision-mak-
ing by quantifying the net utility at different threshold 
probabilities. Clinical net benefit was defined as the mini-
mum probability of the disease, when further interven-
tion was warranted [23].

The current study was designed following the transpar-
ent report of a ML architecture and the Strengthening 
the Reporting of Observational Studies in Epidemiology 
(STROBE) reporting guideline [24, 25]. All statistical 
analyses, including descriptive statistics, inferential tests, 
and specific data preprocessing steps, were performed 
using SPSS (R23.0.0.0) and GraphPad Prism (version 
8.2.1). Python (open-source Scipy python package) was 
utilized for developing machine learning models based 
on the LightGBM, SVM, Softmax, and RF algorithms.

Results
Baseline characteristics
The model training group included 2,224 patients total, 
with a mean age of 66.00 ± 12.00 years, including 1,694 
men (76.17%) and 530 women (23.83%). The preopera-
tive renal functions of all patients were generally nor-
mal, with all eGFR ≥ 30 ml/min/1.73 m2, mean eGFR of 
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77.32 ± 33.16 ml/min/1.73 m2. There were 556 patients in 
the internal validation group. Due to the random assign-
ment, the differences in the main clinical characteristics 
between the two groups were not significant (Table 1).

The external validation group was formed by 1,648 
patients from QLH and 403 patients from GHN. The 
baseline characteristics of each group were also listed in 
Table 1.

Explanation of LightGBM model with the SHAP method
The SHAP algorithm was used to obtain the importance 
of each predictor variable to the outcome predicted by 
the LightGBM model. The top 26 importance of variables 
for predicting postoperative AKI were shown in Fig.  3. 
Scr in the first 24 h after surgery had the strongest pre-
dictive value for all prediction horizons, followed quite 
closely by the last preoperative Scr level, the body surface 
area (BSA), pulmonary hypertension, and preoperative 
eGFR. Furthermore, to detect the positive and negative 
relationships of the predictors with the target result, 
SHAP values were applied to uncover the postoperative 

AKI risk factors. As shown in plot B in Fig. 3, the hori-
zontal location showed whether the effect of a value was 
associated with a higher or lower prediction, and the 
color indicated whether a variable was high (in red) or 
low (in blue) for that observation. For example, Scr in the 
first 24 h after surgery had a positive impact and pushed 
the prediction toward postoperative AKI. Figure 4 shows 
the individual plots for patients who did not suffer post-
operative AKI and suffered postoperative AKI. The SHAP 
values indicated risk factors and their contribution to the 
prediction of postoperative AKI. Where f(x) was the pre-
dicted value of postoperative AKI, red indicated risk fac-
tors that increased postoperative AKI, and blue indicated 
risk factors that decreased postoperative AKI, where lon-
ger arrows indicated a greater degree of impact on post-
operative AKI.

Model evaluation
Within the model training group, the LightGBM, SVM, 
Softmax and RF models were established, and the AUCs 
with the internal validation group were 0.8027 (95% 

Fig. 3 (A) The weights of variable importance and (B) the SHapley Additive exPlanation (SHAP) values of variables (Scr: serum creatinine; BSA: body sur-
face area; eGFR: estimated glomerular filtration rate; LVEF: left ventricular ejection fraction; NYHA: New York Heart Association Class; BMI: body mass index; 
IABP: intra-aortic balloon pump; CAD: coronary heart disease; COPD: chronic obstructive pulmonary disease; PCI: percutaneous coronary intervention)
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CI: 0.7511–0.8542), 0.7805 (0.7277–0.8333), 0.7568 
(0.7042–0.8094) and 0.7292 (0.6725–0.7858), respectively 
(Table 2; Fig. 5). The LightGBM model showed the larg-
est AUC with a sensitivity of 70.11% and specificity of 

78.89%, while the RF model had the smallest AUC with 
a sensitivity of 71.89% and specificity of 62.22%. Simi-
lar results were also present in the two external valida-
tion groups. In the QLH external validation group, the 

Table 2 Performance of each model for prediction
Cutoff AUC Sensitivity Specificity Positive predictive value Negative predictive value

Internal validation group

LightGBM 0.0715 0.8027 0.7011 0.7889 0.3739 0.9790

SVM 0.2000 0.7805 0.8197 0.6111 0.3957 0.9161

Softmax 0.1192 0.7568 0.6459 0.7667 0.2918 0.9319

RF 0.1754 0.7292 0.7189 0.6222 0.2995 0.9079

External validation group of QLH

LightGBM 0.0916 0.8798 0.8354 0.8000 0.3025 0.9791

SVM 0.1409 0.8819 0.9113 0.7037 0.4113 0.9718

Softmax 0.0954 0.8411 0.8414 0.6791 0.3588 0.9704

RF 0.1592 0.7861 0.8916 0.6000 0.4239 0.9611

External validation group of 
GHN

LightGBM 0.0795 0.7801 0.7759 0.6909 0.2138 0.9070

SVM 0.1331 0.7504 0.7874 0.6545 0.3302 0.9327

Softmax 0.0600 0.6941 0.5776 0.7091 0.2806 0.9394

RF 0.1932 0.6777 0.8649 0.4182 0.4600 0.9039
Abbreviation: AUC, area under the curve; SVM, support vector machine; RF, random forest

Fig. 5 Receiver’s operating characteristic (ROC) curves of the risk evaluation models in (A) the internal test group and in external test groups of (B) QLH 
and (C) GHN (SVM: support vector machine; RF: random forest)

 

Fig. 4 The individual SHAP force plots for patients who (B) did not suffer postoperative AKI and (A) suffered postoperative AKI
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LightGBM exhibited robust discriminatory power with 
an AUC of 0.8798 (95% CI: 0.8446–0.9150), showcas-
ing a sensitivity of 83.54% and a specificity of 80.00%. 
On the other hand, the SVM model demonstrated supe-
rior performance, achieving the highest AUC of 0.8819 
(0.8483–0.9156), along with a sensitivity of 91.13% and 
a specificity of 70.37%. In the GHN external validation 
group, the LightGBM model outperformed the other 
three models with an AUC of 0.7801 (0.7128–0.8475), 
demonstrating a sensitivity of 77.59% and a specificity of 
69.09%. (Table 2).

The H-L goodness-of-fit statistic was used to verify the 
calibration of two ML models. Only the SVM model was 
poorly calibrated in the internal validation group with a 
P equal to 0.046. The calibration of the remaining three 
models was good. In the external validation group of 
QLH, SVM and Softmax models were poorly calibrated 
with P less than 0.05. In comparison, LightGBM and RF 
models performed better with P above 0.05. In the exter-
nal validation group of GHN, all four models showed P 
larger than 0.05.

NRI and IDI are two new evaluation metrics to 
assess the degree of improvement in one model over 
another one. Compared with SVM, RF and Softmax 
models, the NRIs of the LightGBM model were 0.5852 

(95%CI: 0.3651–0.8053), 0.8988 (0.6860–1.1116) and 
0.6847 (0.4665–0.9028) in the internal validation group, 
respectively; the corresponding IDIs were 0.0144 
(-0.0022-0.0311), 0.1632 (0.1168–0.2097) and 0.1082 
(0.0708–0.1455) respectively. The LightGBM model 
also showed positive gains in all two external validation 
groups compared to the other three ML models (Table 3).

DCA was performed for four ML models to com-
pare the net benefit of the best model and alternative 
approaches for clinical decision-making. The DCA plot 
can visually display the clinical net benefits of the models 
under certain threshold probability. Because the research 
population varied in characteristics, treatment methods 
guided by any of the four ML models outperformed the 
default strategy of treating all or no patients. The net ben-
efit of the LightGBM model surpassed those of the other 
ML models at 0–50% threshold probability in the internal 
validation group. In the QLH external validation group, 
LightGBM and SVM outperformed RF and Softmax at 9 
− 21% threshold probability. Similarly, in the GHN exter-
nal validation group, LightGBM and SVM have similar 
net benefits at 2–34% threshold probability and both out-
performed the other two ML models (Fig. 6).

The Bland-Altman analysis can assess the degree of 
agreement between two ML models. As shown in the 

Table 3 Comparison of NRI and IDI between LightGBM model and the other three models (SVM, RF, Softmax)
NRI IDI
Value 95%CI P Value 95%CI P

Internal validation group

LightGBM-SVM 0.5852 0.3651 to 0.8053 0 0.0144 -0.0022 to 0.0311 0.0895

LightGBM-RF 0.8988 0.686 to 1.1116 0 0.1632 0.1168 to 0.2097 0

LightGBM-Softmax 0.6847 0.4665 to 0.9028 0 0.1082 0.0708 to 0.1455 0

External validation group of QLH

LightGBM-SVM 0.4398 0.2651 to 0.6146 0 0.0101 -0.0008 to 0.021 0.0696

LightGBM-RF 1.0959 0.9317 to 1.2601 0 0.2017 0.1673 to 0.02361 0

LightGBM-Softmax 0.3704 0.1966 to 0.5441 0 0.019 -0.0133 to 0.0513 0.2489

External validation group of GHN

LightGBM-SVM 0.2237 -0.004 to 0.4514 0.0541 -0.027 -0.0558 to 0.0019 0.067

LightGBM-RF 0.6735 0.4017 to 0.9452 0 0.1012 0.0494 to 0.153 0.0001

LightGBM-Softmax 0.4722 0.1919 to 0.7525 0.0009 0.0248 -0.0153 to 0.0649 0.2259
Abbreviation: NRI, net reclassification improvement; IDI, integrated discrimination improvement;

Fig. 6 Decision curve analysis (DCA) of the four prediction models plotting the net benefit at different threshold probabilities. (A) DCA of the four models 
in the in the internal test group; (B) DCA of the four models in the QLH external test group; (C) DCA of the four models in the GHN external test group
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Bland-Altman plots, in the internal validation group, the 
mean of the differences between the probabilities pre-
dicted by LightGBM model and by SVM, Softmax and 
RF were − 0.001 ± 0.153, 0.019 ± 0.129 and 0.023 ± 0.061 
respectively. Only 4%, 6% and 4% points fell outside 
the 95% limits of agreement (95% LoA), suggesting the 
agreement between the LightGBM and the other three 
ML models was good (Fig. 7). Similarly, the consistency 
between LightGBM and the other three ML models also 
performed relatively well in the two external validation 
groups (Fig. 7).

Discussion
In this multicenter retrospective cohort study, four ML 
models were developed and validated using 26 features to 
predict AKI after CABG surgery. The LightGBM model 
performed the best in prediction both in the internal 
and external validation group, whereas the SVM model 
exhibited the largest AUC in the QLH external validation 
group. In multiaspect comprehensive evaluations, ML 

models especially the LightGBM model are feasible and 
practical in prediction of AKI after CABG surgery.

AKI is a syndrome of sudden loss of renal excretory 
function, and is usually accompanied by oliguria, which 
happens over the course of a few hours to a few days [7]. 
The pathogenesis of postoperative AKI is multifactorial, 
including ischemia–reperfusion injury, operative trauma 
inflammation and oxidation [26, 27]. AKI is a relatively 
common complication after CABG surgery. A recent 
retrospective study involving 32,013 patients reported a 
14.3% incidence of AKI after CAGB surgery [28], which 
is similar to the present study. CHD is one manifesta-
tion of systemic atherosclerosis in coronary artery. Many 
CHD patients also suffer renal vascular diseases. More-
over, the haemodynamic instability and hypoperfusion 
syndrome reduced renal perfusion and raised the risk 
of pre-renal AKI, which, if left untreated, may lead to 
nephrogenic AKI [29]. Despite technological advances 
in renal replacement therapy, AKI is still associated with 
a poor outcome [30] and dramatically impacts operative 

Fig. 7 The Bland-Altman plots for postoperative AKI prediction. Consistency tests between LightGBM and (A) SVM, (B) Softmax, or (C) RF in the internal 
validation dataset; Consistency tests between LightGBM and (D) SVM, (E) Softmax, or (F) RF in the QLH external test group; Consistency tests between 
LightGBM and (G) SVM, (H) Softmax, or (I) RF in the GHN external test group
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mortality, intensive care unit resources, and hospital 
length of stay. Currently, there is no a widely-recog-
nized model in China that can predict AKI after cardiac 
surgery.

In clinical practice, some medical centers had tried to 
establish some risk prediction models for AKI after car-
diac surgery, such as the AKI following cardiac surgery 
score, Cleveland Clinic score, Mehta score, and simpli-
fied renal index score [31]. Nevertheless, discrimination 
and calibration of those models are barely satisfactory 
and not convincible or applicable. Therefore, AKI predic-
tion models that are suitable for clinical practice and have 
predictive efficiency are urgently needed.

With advances in medical informatics, ML as a branch 
of artificial intelligence has become a promising tool for 
clinical predictive models [32, 33]. Although predictive 
models based on traditional statistics have been reported, 
ML models specifically those for AKI after CABG sur-
gery have not been established. The fundamental distinc-
tion from ML is that the first step in traditional statistics 
is to build an important relationship between variables 
and specific outcomes. Then an equation or function that 
links them together is generated. This makes the predic-
tive models based on traditional statistics understandable 
and more interpretable. In contrast, ML methods pre-
suppose a meaningful relationship between a set of inde-
pendent variables and the dependent variable, and then 
directly find the path that most strongly connects the 
two variables. Due to the inherent power of capturing the 
nonlinear relationships with ML algorithms, some car-
diac surgeons advocate new ML-based models to predict 
cardiac surgery-associated AKI rather than traditional 
clinical scoring tools [34]. However, ML methods gener-
ate algorithms that are more often ‘black boxes’ of opac-
ity to varying degrees. The nature of black-box is difficult 
to explain, which partially hampers their use in clinical 
practice.

Considering the imperative facets of model interpret-
ability alongside its efficacy in the realm of classifica-
tion, this research exercise made a deliberate selection to 
employ the lightGBM, SVM, Softmax, and RF algorithms 
for the purpose of constructing predictive models. These 
models are well-known for their strong predictive perfor-
mance and have been widely used in various prediction 
tasks, including those of medical relevance [34–38].

In recent years, more and more researchers have tried 
to explain ML models by using the feature attribution 
framework of SHAP. With SHAP to explain the Light-
GBM model, several variables associated with AKI after 
CABG surgery were identified. In this study, the Scr in 
the first 24 h after surgery and the last preoperative Scr 
level were recognized as the most important predic-
tor variables. As an accepted laboratory indicator for 
the diagnosis of kidney injury, the preoperative Scr is 

reportedly the key predictor of cardiac surgery-asso-
ciated AKI with ML algorithms [34, 39]. Preoperative 
eGFR as an independent risk factor for AKI after CABG 
surgery has been confirmed by some studies [3, 40, 41]. 
Charat et al. listed eGFR as an important risk factor in 
their ML model for predicting postoperative AKI of car-
diac surgery [42]. Nevertheless, more research is needed 
to determine if body surface area (BSA) is an indepen-
dent risk factor for postoperative AKI of CABG surgery, 
although there is no doubt that eGFR, Scr, and BSA are 
inextricably linked. In fact, BSA and Scr are incorporated 
in the Cockcroft-Gault (CG) equation for estimating 
eGFR [43]. Our previous study shows that the CG equa-
tion has significantly high discriminatory power to pre-
dict in-hospital mortality in patients undergoing CABG 
[8]. Therefore, there is logical reason to believe that these 
factors also play important roles in the occurrence of 
postoperative AKI. Notably, pulmonary arterial hyper-
tension (PAH) is ranked as the fourth significant variable. 
PAH is an important risk factor for AKI after transcathe-
ter aortic valve implantation [44] and is closely related to 
right heart function [45, 46]. Reportedly, right ventricu-
lar failure is associated with severe postoperative AKI of 
cardiac surgery [47] and PAH is one of the top five risk 
factors, providing a new viewpoint on clinical decision 
making.

GBDT (Gradient Boosting Decision Tree), a long-
lasting model in ML, mainly aims to use weak classifiers 
(decision trees) to iteratively train and get the optimal 
model that has good training effect and less overfitting. 
LightGBM, a framework to implement GBDT, supports 
efficient parallel training, and has faster training speed, 
lessr memory consumption, higher accuracy, support-
ing distributed and rapid processing of massive data 
[15]. For the first time, this study utilized LightGBM to 
develop prediction models of AKI after CABG surgery. 
It achieved optimal predictive performance, and outper-
formed the SVM, Softmax and RF models.

Limitations
There are several limitations. First, urine output crite-
ria are not used due to missing records, while standard 
diagnosis of AKI is Scr or urine output criteria. Second, 
there are patients with impaired GFR but normal SCr 
levels before the operation, which are called occult renal 
impairment in clinical practice [48]. Thus, relying only on 
Scr may lead to bias in diagnosis [49]. Third, this observa-
tional study has a long duration, so there may be factors 
that affect our results due to improvements in surgical 
techniques and perioperative care. Fourth, a noteworthy 
limitation of our study is the exclusion of 885 patients 
from JSPH, constituting a significant proportion of the 
registered patients. Although these exclusions were 
applied consistently across both medical centers, they 
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could potentially introduce selection bias and impact the 
generalizability of our findings. Fifth, in this retrospective 
study, we did not have access to physician assessments as 
direct comparisons for our predictive models.

Conclusions
This study provides a LightGBM-based predictive model 
that can accurately predict AKI after CABG surgery. 
This ML-based model shows good predictive ability in 
both internal and external validation. It may help car-
diac surgeons to intervene early in patients undergo-
ing CABG with high risk of AKI and reduce associated 
complications.
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