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Abstract 

Non-small cell lung cancer (NSCLC) is a malignant tumor that threatens human life and health. The development 
of a new NSCLC risk assessment model based on electronic medical records has great potential for reducing the risk 
of cancer recurrence. In this process, machine learning is a powerful method for automatically extracting risk factors 
and indicating impact weights for NSCLC deaths. However, when the number of samples reaches a certain value, it 
is difficult for machine learning to improve the prediction accuracy, and it is also challenging to use the characteristic 
data of subsequent patients effectively. Therefore, this study aimed to build a postoperative survival risk assessment 
model for patients with NSCLC that updates the model parameters and improves model accuracy based on new 
patient data. The model perspective was a combination of particle filtering and parameter estimation. To demonstrate 
the feasibility and further evaluate the performance of our approach, we performed an empirical analysis experiment. 
The study showed that our method achieved an overall accuracy of 92% and a recall of 71% for deceased patients. 
Compared with traditional machine learning models, the accuracy of the model estimated by particle filter param-
eters has been improved by 2%, and the recall rate for dead patients has been improved by 11%. Additionally, this 
study outcome shows that this method can better utilize subsequent patients’ characteristic data, be more relevant 
to different patients, and help achieve precision medicine.

Keywords NSCLC, Risk assessment model, Particle filtering, Parameter estimation

Background
Lung cancer is one of the leading causes of death 
worldwide, and approximately 1.8 million people died 
of this disease in 2020 [1]. Radical resection is usu-
ally the first choice for non-advanced metastases in 
treating common types of lung cancer, particularly 
non-small cell lung cancer (NSCLC) [2, 3]. However, 
the postoperative recurrence rate of NSCLC is high, 
reaching approximately 34%, which seriously influ-
ences patient prognosis. There are clear differences in 
the prognosis of different stages of NSCLC. To reduce 
the damage caused by this disease, comprehensive 
treatment after surgery is a necessity, and after stage 
I–V NSCLC, the tumor, node, and metastasis (TNM) 
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system is usually used to guide the specific program. 
Nevertheless, the TNM staging is generic, and other 
factors affecting the NSCLC prognosis, including dif-
ferentiation type, vascular tumor thrombus, nerve 
invasion, and the number of lymph node dissections, 
are excluded [4–6]. Hence, it is essential to build a pre-
cise postoperative risk assessment model for NSCLC 
by considering other detailed factors to provide a 
reference for differentiated treatment and improved 
prognosis [7].

In exploring the NSCLC prognosis, traditional stud-
ies have mainly been based on retrospective analysis 
of large data samples from electronic medical records 
(EMR). Many studies have conducted risk factor 
exploration based on Kaplan–Meier one-way analysis 
of variance (ANOVA) or Cox regression multifactor 
ANOVA, which have achieved good results in summa-
rizing influencing factors [8]. Similarly, EMR provides 
a good foundation for developing prognostic survival 
models for patients with NSCLC and adjuvant post-
operative differential therapy [9, 10]. However, tradi-
tional methods only describe risk factors and cannot 
provide the weight of risk factors and patient survival 
rate under the influence of each factor, which has an 
adverse effect on the precise prognosis and treatment 
of NSCLC.

Currently, machine learning (ML) is a state-of-the-
art method in the field of NSCLC prognostic risk 
assessment modeling. Many ML approaches, includ-
ing logistic regression, artificial neural networks, 
decision trees, and SVM, have been established using 
EMR-extracted tumor marker data and have shown 
promising outcomes [11, 12]. However, ML methods 
frequently do not go through a single finite training 
process, requiring a steady stream of new training data 
to ensure the model’s predictive accuracy over time. If 
the risk evaluation model is not periodically retrained 
as the real-world variables evolve, the model’s accuracy 
will naturally decline over time, also known as data 
drift, concept drift, or model decay [13]. Traditional 
methods, including active detection, significantly 
improve the data drift problem by replicating part of 
the initial training data and adding unused data to 
form a new dataset for the manual training and updat-
ing of the model. However, these methods require drift 
detection and constant monitoring of the model per-
formance [14], and the optimal correction period may 
have been missed when a decline in model capability is 
detected.

In the data assimilation process, both prediction 
and update processes involve the calculation of inte-
gration, and the Monte Carlo algorithm is often intro-
duced to solve integration in practical problems. This 

algorithm converts the integral into its expected form 
by generating samples that obey the target distribu-
tion function and weighing the average to obtain the 
integral result. The Ensemble Kalman Filter (EnKF) is 
a classical data assimilation algorithm, which is a com-
bination of ensemble forecasting and Kalman filtering 
methods from the mid-1990s. The algorithm is based 
on the Monte Carlo method to calculate the forecast 
error covariance of states, and the problem of difficulty 
in estimating and forecasting the background error 
covariance matrix in practical applications is solved by 
the idea of an ensemble. The EnKF is easy to implement 
and can be computed in parallel; however, filter scatter-
ing often occurs in practical applications, which shows 
that the analysis value will be closer to the background 
field as the assimilation time increases, and eventually, 
the observation data will be completely rejected.

A particle filter, also known as the sequential Monte 
Carlo filter, was developed based on the idea of 
sequential importance sampling filtering. The algo-
rithm finds a set of random samples propagating in 
the state space to approximate the probability density 
function and replaces the integration operation with 
the sample mean to obtain the state minimum variance 
estimate. As the number of particles increases, the 
probability density function of the particles gradually 
approximates the probability density function of the 
state. Finally, the effect of optimal Bayesian estimation 
can be achieved.

In this study, we propose a novel particle filter-based 
NSCLC risk assessment ML method that is capable of 
continuous learning by incorporating new data streams 
from the production environment. First, structured data 
are extracted from the EMR, and dimensionality reduc-
tion is performed. The prognosis model of patients with 
NSCLC was then established using a logistic regres-
sion model. Next, the coefficients and intercepts of the 
model are used as parameters to be estimated, and the 
principle of particle filtering in data assimilation is used 
to realize the model update according to the addition of 
data. This approach is expected to fit EMR data better 
while improving the accuracy of risk assessments. The 
results showed that the accuracy, recall, and F1 value 
of the improved model were enhanced, and the deci-
sion curve analysis showed that the risk assessment 
model had better clinical utility 23. Therefore, it inno-
vatively solves the data drift problem, in which model 
accuracy naturally decreases with time without human 
intervention.

The remainder of this paper is organized as follows. In 
Section 2, we describe the process of building a model 
of high-risk patient characteristics and focus on the 
process of parameter estimation using particle filtering. 
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Section  3 shows the model calculation results for the 
same test set and compares the model improvement 
effects before and after the model, and section  4 sum-
marizes the entire article and discusses the issues that 
require further discussion.

Construction and content
Parameter estimation direct filtering algorithm
Algorithm proposed
In the study of the NSCLC risk assessment model, 
most models have low utilization for new patient data. 
Based on logistic regression, this study attempts to 
improve the overall effect of the model using regres-
sion coefficients and intercepts as parameters for 
parameter estimation.

The idea of updating parameters by continuously 
introducing new data is similar to the principle of 
particle filtering in data assimilation [15]; therefore, 
according to the logistic regression risk assessment 
model, this study proposes a parameter estimation 
method based on the particle filtering process, the 
parameter estimation direct filtering algorithm. The 
method regards the parameter process as the only tar-
get state in the filtering problem, constructs a filtering 
algorithm that only inferentially estimates the param-
eters themselves, and transforms the measurement 
equation into a combination of the original observa-
tion function and system model function to form an 
integrated observation function. The parameters are 
updated with the measured values until a steady state 
is attained, and the final parameters are substituted 
into a logistic regression relation to evaluate the model 
results after parameter estimation.

Design ideas
Particle filtering includes two processes as follows: 
prediction and updating processes. The state predic-
tion value at the time k + 1 is obtained from the state 
equation  xk + 1 = f(xk) +  vk; the observed value at time 
k is obtained according to the measurement equation 
 yk + 1 = h(xk + 1) +  wk + 1. Subsequently, the state predic-
tion is updated with error compensation to obtain the 
optimal estimate at time k. Particle filtering parameter 
estimation typically starts with the augmentation of the 
state, combining the parameters that are to be estimated 
with the state equations as a combined augmentation 
process, which is used as the target state of the filter-
ing process for prediction update [16]. This common 
approach considers the parameters a constant process 
and tends to cause filter degradation [16].

The parameter estimation direct filtering algorithm 
in this study is an inferential estimation of the param-
eter itself, taking parameter θ as the only state to be 
estimated. When the state equation is a very high-
dimensional model, and parameter θ is a relatively 
low-dimensional vector, the number of dimensions in 
the direct filtering algorithm is the same as the param-
eter θ dimension, which can be regarded as a dimen-
sionality reduction strategy to solve the problem of 
dimensional catastrophe in the parameter estimation 
of incremental filtering. Transformation of the equa-
tion of state in particle filtering to a zero-dynamic 
sequence

where ϵk is the artificial dynamic noise, and θ0 is the 
initial value of the parameters in the state model. The 
parameter prediction process {θk}, k ≥ 0 is an artificially 
defined pseudomorphic process and the patient prog-
nosis data {Yk} as a measurement process cannot pro-
vide a direct measurement of θk. To make  Yk effectively 
connected to θ introduce variable  Xk + 1, the observation 
function is defined as

where ξk + 1 is the artificial dynamic noise, θk + 1 is a 
parameter,  Xk is a variable value, and  Yk + 1 is a measured 
value. The parameter estimate at the moment k is 
p
(

θk | Ŷ1:k

)

.

Algorithm derivation process

Suppose there are M particles ζ
(m)

k

M

m=1
 at the moment 

k, the prediction of the direct filtering of the parameter 
estimation is essentially the addition of artificial noise to 
the set of particles to obtain the set of predicted particles, 
i.e. ∼ζ

(m)

k+1
= ζ

(m)

k
+ ǫ

(m)

k
 . In turn, the approximate distribution 

∼
π

(
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)

 of the target distribution is obtained from the 
Monte Carlo algorithm [17] as

The Monte Carlo approximation of the posterior distri-
bution is obtained from the Bayesian formula.

(1)θk+1 = θk + ǫk, ǫk ∼ N(0,Q)
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(
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)
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where 
∼
π

(

θk+1 | Ŷ1:k+1

)

 is the weighted posterior distri-
bution, approximating the posterior distribution 
p
(

θk+1 | Ŷ1:k+1

)

 . p
(

Ŷk+1 |
∼
ζ

(m)

k+1

)

 is the likelihood function, 

and 
(

Ŷk+1 |
∼
ζ

(m)

k+1

)

:= exp

(

− 1
2R

(

Yk+1 − Ŷk+1

)2
)

 , to solve the sim-

plex problem, the particles are resampled using a random 
resampling method.

Each prediction and update will yield an approximate 
probability distribution 

∼
p
(

θk | Ŷ1:k

)

 , and the corresponding 

conditional expectation 
∼

E
(

θk | Ŷ1:k

)

 is calculated as the 

parameter estimate at the moment k, i.e. 
∼
θ k :=

∼

E
(

θk | Ŷ1:k

)

 . 
Because of the artificial parameter noise ϵk, the observation 
noise ϵk is a covariance-invariant Gaussian noise in the 
direct filtering method. To balance the effect of noise, 
∼
θ := 1

nl

∑

n

i=l

∼

E
(

θk | Ŷ1:k

)

 is used as an estimate of parameter θ 
in practice, and l is a user-defined update step. Figure  1 
shows a flowchart of the particle filter for the parameter 
estimation algorithm.

Fig. 1 The flowchart of the direct filtering algorithm for parameter estimation
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 Algorithm 1 Particle filter parameter estimation

Empirical analysis
Data sources
Clinical data of patients who underwent surgical resection 
for primary lung cancer at Shanghai Chest Hospital between 
2008 and 2018 were collected and organized. According to 
the 8th edition of TNM staging and combination criteria, 
patients with distant metastases after preoperative imaging, 
emergency surgery, preoperative adjuvant radiotherapy, and 
a history of other malignancies were excluded, and patients 
with lung cancer postoperative pathological staging of stage 
I or II were selected, and 1288 patients data were collected. 
The independent variables were the clinical data of patients, 
classified into 16 categories with 70 characteristics, of which 
follow-up data were based on the latest information, and the 
dependent variables were the overall survival between the 
date of patient surgery and the time of death.

Feature dimensionality reduction
To prevent overfitting in the modeling process, it was 
necessary to reasonably downscale high-dimensional 
data without losing much possible data information. 
Through dimensionality reduction, the spatial complex-
ity of the data can be reduced, and the established model 
has stronger robustness in small datasets. Two problems 
were solved before feature dimensionality reduction as 
follows: (1) Features with low variance indicated that 
this feature explains less of the dependent variable y and 

contains less available information, so they are deleted. 
(2) The absolute value of the correlation coefficient of the 
two features was between 0.6 and 1, indicating that the 
information carried by these two features was highly sim-
ilar, and too many similar features will reduce the perfor-
mance of the algorithm; thus, one of them was retained 
by setting a threshold. After the feature-expression differ-
entiation process, 60 feature values remained.

LASSO regression feature dimensionality reduction
The least absolute shrinkage and selection operator 
(LASSO) regression is based on linear regression with 
an L1 regular penalty term. It allows some characteristic 
indicators with relatively small parameters to regularize 
directly to zero [18] to achieve dimensionality reduction 
and obtain characteristic indicators with a high correlation 
with the survival of patients with lung cancer. As demon-
strated, LASSO regression is used to select variables and 
adjust the complexity of the model when fitting a general-
ized linear model and is therefore applicable to binary or 
multivariate, continuous, or discrete variables [11].

The L1 canonical term penalty parameter λ was used for 
10-fold cross-validation. Figure 2 shows the selection pro-
cess of the penalty parameter λ, and the most appropri-
ate penalty parameter λ = 0.0002354. Additionally, using 
LASSO regression, 33 eigenvalues associated with the 
degree of survival of patients with lung cancer were iden-
tified, including sex, age at onset, number of hospitaliza-
tions, total stage, cough and chest pain presence, family 
history of lung cancer, history of hypertension, if under-
gone targeted therapy radiotherapy, presence of pericar-
dial effusion, and histological typing, among others.

Random Forest feature screening
The importance measure of the random forest algorithm 
can be used as a feature selection tool for high-dimen-
sional data, ranked in descending order of importance to 
the dependent variable, and variable screening is achieved 
by setting a threshold [19]. By converting multi-categorical 
variables to dummy variables among the 33 feature vari-
ables, the number of variables will be increased substan-
tially, and the building model will remain relatively highly 
dimensional. The purpose of feature variable screening 
using random forest is to identify feature variables that are 
strongly correlated with the dependent variable and can 
adequately predict the outcome of the dependent variable 
with a smaller number of feature variables. General screen-
ing is divided into two steps as follows: (1) initial estima-
tion of importance and degree of explanation and sorting 
in descending order based on both, and (2) determination 
of weight thresholds and deletion ratios. Thirty-three fea-
ture indicators were ranked by random forest importance, 
as shown in Fig. 3. Taking the modeling dimensions into 
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Fig. 2 The selection of penalty parameter λ over the graph

Fig. 3 Random forest importance ranking chart
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account and combining it with the literature review, a 
weight threshold of 0.05 was selected to enter five feature 
variables into the prognostic survival model of patients 
with lung cancer. The five variables were pathological thy-
roid transcription factor-1 (TTF1), degree of lymph node 
clearance, histological staging, surgical resection, and sur-
gical approach.

Model building
The multi-categorical independent variables were con-
verted into dummy variables, and the 3-fold cross-vali-
dation method was used to establish a patient survival 
model with a coefficient significance test. The results 
showed that the four indicators entered the model, 
including TTF-1 results in pathology, histological typ-
ing, lymph nodes clearing intraoperatively, and the usage 
of chemotherapeutic hemostatic drugs in the medica-
tion record. The output parameters and regression accu-
racy for the same training set differed according to the 
amount of data. As the number of samples in the train-
ing set increased, the coefficients and intercepts of the 
model did not change in single digits when increased by 
approximately 250 entries. Moreover, the overall predic-
tion accuracy of the model was maintained at 90.93%, 
indicating that the coefficients and intercepts tended to 
be stable, and the model utilized less data on the char-
acteristics of subsequent patients. The stabilized logistic 
regression relationship equation is as follows:

ln
y

1− y
= 2.79 ∗ x1 − 2.39 ∗ x2 + 2.4 ∗ x3 + 1.3 ∗ x4 − 0.9

When applying the parameter estimation direct filter-
ing algorithm to actual data, first, the data from the test 
set needs to be divided into two parts, including using 
logistic regression to generate the initial parameters and 
data continuously introduced in the particle filtering pro-
cess. Additionally, before the parameter estimation is 
directly filtered, it should have some premise, including 
the state of the space model of disturbance and measure-
ment of noise covariance matrix Q, equation of distur-
bance of the noise covariance R, the initial particle sets 
the covariance of A, the number of filters N, and cycle 
time K. Although these variables are custom settings, 
they must have a certain standard. The shape of the per-
turbed noise covariance matrix Q is determined accord-
ing to the number of parameters; here, the coefficient 
plus intercept has five parameters, and Q is a 5X5 sym-
metric matrix. The settings of Q, R, and A, among others, 
can be divided into various experimental schemes, the 
results of the comparison, and the final selection of the 
best set of experimental results. Table 1 lists the settings 
of the experimental scheme and experimental results.

After many experiments were adjusted, the perturba-
tion noise covariance Q in the state space model was set 
as a matrix with differentiation with normalization, i.e., 
the value on the diagonal = corresponding initial param-
eter value/sum of all initial parameter values, and the value 
on the non-diagonal = correlation coefficient of the cor-
responding two feature indicators/sum of all correlation 
coefficients. The overall Q was reduced by a factor of 10 to 
ensure that the fluctuations of the particles during the pre-
diction update were not too large and that the parameters 

Table 1 Different experimental protocols and results

The first experiment The second experiment The third experiment The fourth experiment

A N(0,1) N(0,1) N(0,1) N(0,1)

Q No standardization and no dif-
ference

Differentiation Differentiation and standardi-
zation

Differentiation and standardi-
zation

R 0.1 0.1 0.1 0.05

N 100 100 100 100

T 608 608 608 608

Accuracy 0.4895 0.7366 0.8556 0.8324

Stability of parameters poor poor poor poor

The fifth experiment The sixth experiment The seventh experiment The eighth experiment

A N(0,1) *0.05 N(0,1) N(0,1) *0.1 N(0,1)

Q Differentiation and standardi-
zation

Differentiation and stand-
ardization *0.05

Differentiation and standardi-
zation

Differentiation and standardi-
zation *0.1

R 0.1 0.1 0.1 0.1

N 100 100 100 100

T 608 608 608 608

Accuracy 0.85 0.8625 0.8601 0.9184

Stability of parameters poorer good poorer very good
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could reach a steady state. A smaller set of the perturba-
tion noise covariance R in the measurement equation indi-
cated a greater belief in the measurement data, and a larger 
R showed a bias toward the initial parameter information. 
Here, a greater belief in the data is chosen, and R = 0.1. 
Table 2 summarizes the other settings.

Figure 4 shows the fluctuations in the parameters dur-
ing cycling. The green line indicates the parameter results 
of the overall logistic regression, and the red curve indi-
cates the fluctuation of the parameter estimates after 
each particle filter prediction update for a total of 608 
iterations. From the fluctuation of the parameters, the 
parameter estimates were basically stable during the last 
100 iterations of the particle filter, with the up and down 
fluctuations not exceeding approximately 0.5, indicating 
that the customized state equation covariance Q is set 
reasonably. This result indicated that the true value of the 
parameter estimates considered by the particle filter is 
reached, proving the effectiveness of the direct filtering 
algorithm for parameter estimation.

Utility and discussion
Comparison of the results of the same test set
Since the dependent variable of patient survival is 
unbalanced data, observing only the metric of pre-
diction accuracy is not feasible. Rather, more atten-
tion is required on the magnitude of the recall rate of 
deceased patients in medical prognosis scenarios, i.e., 
the proportion of patients predicted to die to those 
who did die. The area under receiver operating charac-
teristics (ROC) curve (AUC) value indicated the effect 
of the classifier, and the larger the AUC value, the bet-
ter the classification effect. The same test set was used 
to measure the overall effect of the model in terms of 
AUC values, model prediction accuracy, recall rates 
for surviving patients and deceased patients, and the 
F1 values to validate the efficacy of the direct filtering 
algorithm for parameter estimation.

The AUC value of the general risk assessment model 
based on logistic regression was 0.8, and the overall 

prediction accuracy was 0.90. Since the number of sur-
viving and deceased patients in the dependent varia-
ble data was uneven, the precision and recall F1 values 
between both surviving and deceased patients needed to 
be observed. Table 3 shows the results of the model eval-
uations. The prediction was better for survival patients 
with a precision rate and recall rate of 0.9, while for death 
patients, the recall rate was lower than 0.6.

The parameter estimates of the direct filtering algo-
rithm were applied to the test set, and the model AUC 
value was 0.84, with a prediction accuracy of 92.09%, 
which was further improved compared with the direct 
use of logistic regression, indicating the effectiveness 
of the direct filtering algorithm for parameter estima-
tion. Table  4 shows the model evaluation results. The 
precision rate of surviving patients increased by 0.03, 
and the recall rate decreased by 0.02; however, the F1 
value of both could be increased by 0.05, the precision 
rate of dead patients decreased by 0.04, the recall rate 
increased by 0.11, and the F1 value increased by 0.05. 
Therefore, the parameter estimates after particle filter-
ing improved the model precision for surviving or dead 
patients, especially for the recall rate of the deceased 
patients. Additionally, the increased recall rate can ena-
ble more patients to intervene earlier in all aspects and 
reduce mortality.

Discussion
The high mortality rate of patients with lung cancer is not 
only because it is not easily detected in its early stages 
but also because of its poor prognosis, and some patients 
experience recurrence after treatment. Therefore, it is 
important to conduct a prognostic analysis of patients 
with lung cancer. Furthermore, many types of patient 
information are stored in EMR [20]. Risk characteristics 
that are closely related to patient survival and poor prog-
nosis can be obtained by analyzing a large amount of data 
on patient characteristics. Patients can then be treated 
differentially according to their risk characteristics to 
improve their overall survival.

Table 2 Summary of parameter estimation premise settings

Data Segmentation Divided into 30% discount the training dataset 2/3, the test dataset 1/3

Data set Description Logistic regression The entire training set, with 858 data

Particle filtering initial parameters The first 250 data in the training set

Filtering process The remaining 608 data in the training set

Other parameters description A variance of the initial particle set A A ~ N(0,1)

Initial particle set P P ~ N(initial parameters, A)

State equation noise covariance Q A matrix of differentiation and standardized

Measurement equation noise covariance R 0.1

Number of particles 100

Cycle Time K 608
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Effectiveness of direct filtering risk assessment model 
to avoid model attenuation
In clinical practice, the doctor’s postoperative treat-
ment plan is based on a combination of factors, includ-
ing the patient’s clinical information and relatively 
real-time clinical auxiliary test results and the final treat-
ment plan made at that time. Therefore, establishing an 
adaptive multifactorial clinical risk assessment model 
has important clinical implications for physician con-
sultation and treatment decisions [21]. In this study, 70 

feature indicators, including basic patient information, 
visit characteristic labels, and clinicopathological factors 
were analyzed using feature differentiation processing, 
LASSO regression, and random forest feature selection. 
The NSCLC multifactor prognostic model was estab-
lished using the reduced dimensional data, and the adap-
tive model was realized by the particle filtering direct 
parameter estimation method. The results showed that 
the accuracy, recall, and F1 value of the improved model 
were enhanced, and the decision curve analysis showed 
that the risk assessment model had better clinical utility 
[22]. Therefore, it innovatively solves the data drift prob-
lem, in which model accuracy naturally decreases with 
time without human intervention.

Effectiveness of direct filtering risk assessment model 
to improve model performance
The NSCLC prognostic model needs to be evaluated for 
its effectiveness, and the repeatability and generaliza-
tion ability of the model should be examined. Therefore, 
a valid model evaluation generally requires validation of 
its efficacy through a non-training set. In this study, we 
considered the coefficients and intercepts of the prog-
nostic model as state variables and then used the particle 
filtering algorithm to implement the optimization of the 
parameters of the risk assessment model by continuously 
adding data. The accuracy of the risk assessment model 

Fig. 4 Parameter fluctuation diagram of the direct filtering algorithm for parameter estimation

Table 3 Overall prediction evaluation index of logistic 
regression model

Logistic regression accuracy 0.90

precision recall f1-score

Survival 0.90 0.99 0.9

Death 0.91 0.60 0.73

Table 4 Logistic regression results after parameter estimation

Logistic regression accuracy 0.9209302325581395

precision recall f1-score

Survival 0.93 0.97 0.95

Death 0.87 0.71 0.78
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can be improved using this approach. Therefore, we com-
pared the initial and improved models using the same 
test set. The improved model achieved an accuracy rate 
of 92.09%, a recall rate of 97% for surviving patients, and 
a recall rate of 71% for deceased patients. Compared with 
the initial risk assessment model, the improved model 
not only has an improved overall accuracy rate but also 
has a greater increase in the recall rate for surviving and 
deceased patients.

Rationality of direct filtering risk assessment model 
to guide clinical practice
Among the five factors that eventually entered the 
model, the pathological index of TTF-1, degree of 
lymph node clearance, and histological typing ranked 
the top three in the random forest weighting. TTF-1 
is an isoform of the thyroid transcription factor. The 
probability of positive epidermal growth factor recep-
tor (EGFR) mutation is increased in patients with 
TTF-1-positivity in many foreign and domestic clinical 
research, and the patients with NSCLC also have a bet-
ter prognosis [23]. These factors correspond to the pos-
itive coefficient in the model. Studies have shown that 
the degree of lymphatic clearance is an important factor 
in the surgical treatment of lung cancer [24]. The coef-
ficient of lymph node clearance degree, unscavenged in 
the risk assessment model, is negative, indicating that 
the probability of survival is low for patients without 
lymph node dissection. In this study, the histologi-
cal classification of lung cancer was adenocarcinoma 
and non-adenocarcinoma. Studies have shown that 
women with NSCLC adenocarcinoma have a lower risk 
of breast cancer than men and that NSCLC adenocar-
cinoma expresses more TTF-1 [25]. These two factors 
determined a better prognosis for patients with lung 
adenocarcinoma than those without adenocarcinoma, 
which also corresponded to the positive coefficient of 
histological classification in our risk assessment model. 
Simultaneously, it justified the rationality of our risk 
assessment model and indicated that the model would 
provide guidance for clinical practice.

Shortcomings and prospects
The risk assessment model developed in this study is 
based on the parameter estimation direct filtering algo-
rithm combined with data mining of clinical character-
istics index data of patients with lung cancer. Although 
some risk factors were obtained and the prognostic 
model of patients with NSCLC established by these fac-
tors achieved relatively good prediction accuracy using 
the direct filtering algorithm of parameter estimation, 

there are still some issues that require further investiga-
tion. First, the number of surviving patients and the num-
ber of dead patients in the sample data of this study were 
unbalanced, and more samples are needed to verify the 
accuracy of this model. Second, dimension reduction can 
be compared with other approaches, and there may be 
better attempts at modeling algorithm values for current 
data. Third, although the model results were validated by 
machine learning analysis, survival analysis, and ROC 
curves, the lack of clinical trial makes it seem tenuous.
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