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Abstract 

In this paper, we present a framework for developing a Learning Health System (LHS) to provide means to a comput‑
erized clinical decision support system for allied healthcare and/or nursing professionals. LHSs are well suited to trans‑
form healthcare systems in a mission‑oriented approach, and is being adopted by an increasing number of countries. 
Our theoretical framework provides a blueprint for organizing such a transformation with help of evidence based 
state of the art methodologies and techniques to eventually optimize personalized health and healthcare. Learning 
via health information technologies using LHS enables users to learn both individually and collectively, and independ‑
ent of their location. These developments demand healthcare innovations beyond a disease focused orientation 
since clinical decision making in allied healthcare and nursing is mainly based on aspects of individuals’ functioning, 
wellbeing and (dis)abilities. Developing LHSs depends heavily on intertwined social and technological innovation, 
and research and development. Crucial factors may be the transformation of the Internet of Things into the Internet 
of FAIR data & services. However, Electronic Health Record (EHR) data is in up to 80% unstructured including free text 
narratives and stored in various inaccessible data warehouses. Enabling the use of data as a driver for learning is chal‑
lenged by interoperability and reusability.

To address technical needs, key enabling technologies are suitable to convert relevant health data into machine 
actionable data and to develop algorithms for computerized decision support. To enable data conversions, existing 
classification and terminology systems serve as definition providers for natural language processing through (un)
supervised learning.

To facilitate clinical reasoning and personalized healthcare using LHSs, the development of personomics and func‑
tionomics are useful in allied healthcare and nursing. Developing these omics will be determined via text and data 
mining. This will focus on the relationships between social, psychological, cultural, behavioral and economic determi‑
nants, and human functioning.
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Furthermore, multiparty collaboration is crucial to develop LHSs, and man‑machine interaction studies are required 
to develop a functional design and prototype. During development, validation and maintenance of the LHS continu‑
ous attention for challenges like data‑drift, ethical, technical and practical implementation difficulties is required.

Keywords Learning health system, Clinical decision support system, Experience based evidence, Allied healthcare, 
Nursing, Functionomics, Personomics, Key enabling technologies, Key enabling methodologies

Introduction
Transforming health information technologies is critical 
to safeguard and advance healthcare in a dynamic world. 
We describe our design for a learning health system 
(LHS) to aid decision-making in allied health care and 
nursing. This article is to be viewed as the presentation 
of a basic theoretical framework that serves as a starting 
point of a program for the practical design, development 
and deployment of the LHS for health and healthcare 
and, in parallel, for the start of a dialogue amongst rel-
evant stakeholders in order to strengthen the framework 
during this program. We start by drawing attention to 
the scale of the challenge before discussing the actual 
development.

With the global challenges and their urgency of the 
United Nations Sustainable Development Goals [1] 
in mind, many countries are adopting mission-driven 
approaches [2, 3]. Missions concerning transformative 
actions depend on intertwined social and technological 
innovation and research and development [4]. Trans-
forming from the Internet of Things (IoT) to the Internet 
of FAIR (Findable, Accessible, Interoperable, Reusable) 
data & services (IoFAIRaS) is a key factor [5]. This trans-
formation is supported by key enabling technologies [4, 
6, 7] such as Life-Science Technologies, Security & Con-
nectivity, Artificial Intelligence, and Foundation Models 
[8] that were recently put forward. These technologies 
can be combined in with key enabling methodologies [9] 
like Critical Design, Fieldlabs and Learning Communi-
ties, and Transition Design [4, 9].

The Dutch government introduced a mission-driven 
approach in 2019 [10]. ‘Health and healthcare’ is one 
of four nationwide transformative challenges, inspired 
by five missions of the ministry of health [10–12]. The 
intended health and healthcare transformation acceler-
ates by the IoFAIRaS-transformation [5] as one of the 
technological ingredients [4, 7] and Fieldlabs i.e. LHSs 
[13, 14] as crucial social ingredient to improve personal-
ized health and healthcare [15].

We present a framework that schematically represents 
the crucial reuse of health and healthcare data to develop 
a Learning Health System (LHS). A theoretical frame-
work is deemed necessary to be designed, developed and 
deployed a LHS in a solid and state of the art program 
[16]. Common components in LHS frameworks are the 

focus on the LHS, codesign, learning communities, eth-
ics, organization structures, patient outcomes, informa-
tion technology, security, science, data and performance 
[16–21]. Here we present a next stage theoretical frame-
work as a mission map and in conjunction with the FAIR 
principles, key enabling technologies and key enabling 
methodologies. In our framework we considered each 
of these components. In general the development of 
LHS are rapidly evolving though adoption remains diffi-
cult [20]. Strong partnership between academic, citizens 
(patients and relatives), clinical, technical and as well as 
involving administrative stakeholders in codesign is pre-
sented as an important success factor for adoption and 
implementation of an LHS, whereafter development can 
start [16, 20–22]. On the other hand organizational cul-
ture, adequate data systems and data sharing policies, 
limited skilled persons, funding and competing priorities 
remain challenging [18] and, what is more, to be validated 
in the next steps of our program of design, development 
and deployment. Our LHS framework focusses on com-
puterized clinical decision support system (cCDSS) 
for allied healthcare and/or nursing professionals. We 
explain LHSs in more detail and their importance for 
the usability of the transformation of health, and health-
care professionals that are embedded in the health sys-
tem. We also highlight the challenges of using data and 
data-driven approaches in this context. These challenges 
might (partly) be overcome by using federated learning 
data-principles [23–25]. This requires the “FAIRification” 
of data as this is often inaccessible and unstructured data 
formats, like in EHR [26, 27].

Development of learning health system, social, 
technological and scientific context
LHSs were introduced as a potential solution to support 
health and healthcare users and professionals knowledge 
discovery through learning from clinical data [13, 14, 19]. 
The learning cycle (Fig. 1, section I) represents an itera-
tive process, that consists of several stages. First; improv-
ing users knowledge discovery [28], based on existing 
data (data to knowledge). For instance, by reflecting on 
the impact of care delivery or by giving insights in quality 
of care or cost-effectiveness. Second, learning from data 
implies the option to utilize the data to improve indi-
viduals performance (knowledge to performance) [28], 
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organizations or systems. The third stage is when the 
improved performance generates new data (performance 
to data) itself [28]. This accumulation of new data then 
leads to new knowledge; as a gradual buildup of ‘experi-
ence based evidence’ [29–31]. LHS enables users to learn 
individually and collectively, by reflecting on their own 
decisions and performances, and on top of this by reflect-
ing on data gathered by others, independent of their 
location.

To optimize health-related decision making a number 
of factors are vital, Evidence should be available to the 
right person, and in the right format, and through the 
correct channel (e.g. EHR), and at the right time in the 
workflow [32] using routinely collected and research data 
[13, 14, 28]. Developing LHSs to optimize health related 
decision making is made harder due to issues of the acces-
sibility and interoperability of data held in so-called ‘data 
silos’ (Fig. 1, section II). Data in an EHR is considered as a 
single data silo, holding both structured and unstructured 
data formats [26, 27, 33] including free text. This results 
in locking in the data which restricts the potential learn-
ing cycle (Fig. 1, II A). A systematic review of systematic 
reviews [27] found that EHRs data comprises up to 80% 
as unstructured including free text narratives. Healthcare 
registration has become more and more required from 
clinical and legislation perspectives, and is also paral-
leled by an exponential increase in digital communica-
tion between patients and healthcare providers via online 

communication portals [27]. EHR contain a variety of 
nomenclature and languages, abbreviations and defini-
tions and this occurs within and between individuals and 
within and between health and healthcare disciplines [26, 
33, 34]. Using structured (meta)data, standardized termi-
nologies and classifications improves the interoperability 
and reusability of data. This extends the learning cycle by 
using multiple data silos (Fig.  1, IIB) and consequently, 
the global success of LHSs may depend heavily on FAIRi-
fication of health and health(care) related data (Fig.  1, 
IIC). To be able to learn from data collected by others 
[28], irrespective of location or profession and from mul-
tiple decentralized data-silos, data must be FAIR [35–37] 
preventing numerous amounts of health data exchange 
between research databases. It should contain not only 
research and public data, but routinely collected health 
data as well [13, 14, 28, 38]. The reuse of health data, as 
the ultimate goal of FAIR, requires a set/system of agree-
ments concerning: standardization of data, metadata, 
unique identifiers, authentication & authorization, licens-
ing and key infrastructures [35–37].

Developing LHSs for allied health care and nursing 
demands healthcare insights and innovations that go 
beyond a disease focused orientation [39]. Clinical rea-
soning by these professionals, is driven by the apprecia-
tion of patient preferences [40, 41] and interrelationship 
between personal, psychological, social, and environ-
mental determinants [15] and their variability over time, 

Fig. 1 Learning cycle in a Learning Health System
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to understand the patients’ functioning and (dis)ability 
[42, 43]. Besides, these determinants should be the focus 
in shared decision making, as means to come to person-
alized healthcare [15, 44].

In the following section we present a framework to 
construct cCDSS in LHSs taking into account these 
challenges.

Framework
Constructing computerized clinical decision support 
in learning health systems
The proposed framework (Fig.  2) uses the Cross Indus-
try Standard Process for Data Mining (CRISP-DM) 
Extension for Medical Domain [45], in every stage of the 
development and research. The CRISP-DM is charac-
terized by its iterative nature, where the depth of details 
of these processes described increases with every cycle 
[45]. Although multiple data mining models are avail-
able, CRISP-DM is feasible and the most commonly used 
model in the medical domain [46]. Development is not 
a linear process, but for the sake of clarity in the con-
ceptual description, we present only basic information, 
divided into technological, healthcare, and research and 
development aspects.1 In addition, we present in supple-
ment 1. in multiple steps (Fig. S1.) the detailed flow for 
technical development.

Technologies
Key enabling technologies (KET) [4, 6, 7] to address tech-
nical needs are suitable to convert relevant health-related 
data, from different sources, in machine actionable data 
[35–37, 47] suitable for clinical meaningful exchange and 
federated learning [25].

To develop machine actionable data, input data must be 
transformed into FAIR data [35–37] (Fig.  2-I). Relevant 
and useful input data is stored in different (in)accessible 
data silos like EHR systems, public databases, research 
databases and wearables and sensors. Public databases 
contain potential useful data for clinical decision mak-
ing on specific, e.g. environmental, determinants that 
are not documented in encounters with healthcare pro-
fessionals. For example, several studies have shown that 
environmental determinants are potentially relevant 
determinants of health [39, 48–53]. Automatically link-
ing public data to the EHR is preferable to expecting 
healthcare professionals to gather this themselves (e.g. 
In the Netherlands, public data containing clinical use-
ful information on social, environmental and economic 

determinants, are available in structured format for sci-
entific research by Statistics Netherlands (CBS) [54] and 
the National Institute for Public Health and the Envi-
ronment (RIVM)[55]). In addition to linking public and 
EHR data and transforming routinely collected data into 
machine actionable data, these procedures should also be 
performed for empirical research data and wearable sen-
sor data. This IoFAIRaS-transformation, by applying the 
FAIR principles, maximizes the clinical meaningful reuse 
of health and healthcare data [35–37] in order to develop 
multicenter multidisciplinary LHSs as represented in 
Fig.  1C. Besides the reuse of research data, health data 
exchange acts [56] demands to put forward health data 
exchange between health information systems (HIS). The 
Fast Healthcare Interoperability Resources (FHIR) is the 
standard to put forward health data exchange between 
HIS and could speed up the FAIRification of EHR data 
[38, 57, 58] and data from medical devices as well [59].

With huge amounts of unstructured data collected in 
EHRs [26], technical and, especially, semantic interoper-
ability remains challenging [60, 61]. Semantic interoper-
ability, defined as the unambiguous representation of 
clinical concepts [61], is complicated by heterogeneity 
of data quality and the recognition of concepts of con-
cern in free text narratives suitable for allied healthcare 
professionals and nurses [60]. To develop technical and 
semantic interoperable data, all input data, including 
free text narratives, must be mapped to existing ter-
minology or classification systems using named entity 
recognition (NER) [62]. Hereto, the International Clas-
sification of Function, Disabilities and Health (ICF) [43, 
62], NANDA International classification of nursing diag-
noses (NANDA-I) [60], Nursing Outcome Classification 
(NOC), SNOMED-CT [63–65] and International Clas-
sification of Diseases (ICD-11) [66] (Fig.  2-I) serve as 
definition providers as these contain meaningful repre-
sentations of clinical concepts for allied healthcare pro-
fessionals and nurses.

When developing and maintaining a LHS with cCDSS, 
according to data mining models, the data needs to be 
prepared and modelled [45, 46]. Free text data must be 
validated, cleaned, repaired and abbreviations must be 
handled. Subsequently, both structured and unstruc-
tured EHR data can be extracted and processed using 
natural language processing techniques to map them to 
the classification terminologies [64]. Both unsupervised 
and supervised learning (i.e. machine learning or deep 
learning) would be suitable for this (Fig. 2-I). The selec-
tion of techniques can be aided by Responsible Technol-
ogy frameworks like Fundamental Rights and Algorithms 
Impact Assessment [67].

Respecting the FAIR principles and to prevent trans-
mission of huge amounts of data between silos, the data 

1 Research data, developed ontologies and developed algorithms are consid-
ered as open science and therefor will be published in scientific literature, 
ontology databases like Bioportal, and all algorithms will be made available 
to EHR providers, other researchers and developers.
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Fig. 2 Development of Learning Health system; a mission map
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remains stored in a machine-readable format in its origi-
nal location [36, 37]. Using Federated learning or Multi 
Party Computation [23, 24] algorithms are sent to the 
data without full access to these data (Fig. 2-I). Only the 
results of processed algorithms are collected preserving 
the optimum data privacy [23–25].

Key premises in healthcare encounters
Some systematic reviews [68, 69] have assessed the bar-
riers and factors influencing the implementation of 
cCDSS. The included studies were limited to technology, 
organization and healthcare provider perspectives. Using 
cCDSS affects the primary process of care and, more 
importantly impacts patients (Fig. 2-II) [70–73]. Recom-
mendations generated by cCDSS aim to improve patient 
relevant outcomes and therefore facilitate evidence based 
practice when healthcare professionals discuss these rec-
ommendations with their patients [40, 70].

Research has shown that social, functional, environ-
mental and personal determinants for decision making 
by allied healthcare professionals and nurses [60, 74] are 
mostly recorded in the unstructured free text areas of 
EHRs [26]. Within clinical reasoning of allied healthcare 
professionals and nurses, the ICF [43] and NANDA-I 
[60] are often used as theoretical knowledge based classi-
fications. These classifications contain social, functional, 
environmental and personal determinants as elements 
and can be combined with reasoning frameworks like 
the hypothesis-oriented algorithm for clinicians II [75, 
76], or the nursing process model [77]. While these clas-
sifications are useful to describe, clinical concepts are not 
widely implemented in EHR systems for documentation 
[62].

For data supported personalized healthcare and pre-
cision medicine, development of new, or deployment of 
existing ontologies are crucial as prerequisite for machine 
readable data [15, 19, 73, 78, 79]. Personomics [15] and 
functionomics [42, 80] (Fig.  2-II) in addition to biologi-
cal omics [81–83] (e.g. genomics, proteomics, metabo-
lomics, etc.) may provide for this [15, 80, 84].

The variety and sequencing of omics is not fully devel-
oped and does not cover all domains in health [15]. Inter-
actions between social, psychological, cultural, behavioral 
and economic factors affecting the patients’ health beliefs 
and illness approach within the medical system are 
described as personomics [15]. Studying the complex 
structure and associations in human functioning has 
been defined as human functionomics [42, 80]. Person-
omics and functionomics are suitable for the domain of 
allied healthcare and nursing, and assisting personalized 
healthcare provision by these professions [42, 78, 80, 85]. 
This expands the body of knowledge for decision making, 

and enables the transformation from a disease focused to 
a personalized approach.

Transforming the health and healthcare system, in 
this case, by developing a LHS, requires not only key 
enabling technologies (KET) but key enabling method-
ologies (KEM) as well. KET have been proven as interna-
tional concepts [7, 86], while KEM are limited to national 
concepts and contain eight methodologies which are 
currently further developed [4, 9]. A reflection on used 
KEM will be performed in a later phase of this project. 
The presence of a LHS with cCDSS, is considered a cru-
cial social ingredient to enable the fulfilment of the mis-
sions of the Dutch Ministry of Health to improve health 
and healthcare quality by learning via clinical data. This 
evolution affects not only healthcare encounters, but also 
EHR developers and healthcare organizations [13, 14, 
19]. All relevant stakeholders such as; patients, health-
care professionals, data scientists, data engineers, EHR 
vendors and healthcare organizations must collaborate to 
identify clinical and technical needs and barriers. Code-
sign is a crucial element in KEMs [4, 9] and is vital to 
develop a functional design followed by prototype of a 
LHS with cCDSS [16, 17, 20–22, 68, 69, 87].

Future Research & Development
Before deployment in clinical practice, several scientific 
methods are executed to develop, test and maintain a 
working LHS with cCDSS (Fig.  2- III). At each stage of 
development the data is trained and tested on independ-
ent datasets until acceptable performance is achieved. 
Processes are executed with historical data followed by 
the validation of the results by healthcare professionals 
and patients before implementation in a real time EHR 
environment. Research using text and data mining, e,g. 
natural language processing or deep learning, will be 
performed to determine the interactions between social, 
psychological, cultural, behavioral and economic deter-
minants, and human functioning to develop personomics 
and functionomics.

Man-machine interaction studies are crucial to develop 
the functional design followed by the prototype of a 
LHS with cCDSS [88–90]. Supervised learning will be 
performed for prediction analyses using decision trees, 
regression analysis and neural networks as analytical 
tools [83, 91–98]. This lays the framework to develop 
algorithms suitable for computerized decision support in 
a LHS. These algorithms, decision rules and the results 
of the man-machine interaction studies are stepping 
stones to develop the prototype. It is then essential to 
assess how well the prototype performs before deploy-
ment in clinical research as this saves costs and time 
[89]. When testing a non-operational system, healthcare 
professionals enter clinical data into the prototype, test 
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the feasibility, and evaluate whether the cCDSS recom-
mendation is consistent with their clinical expertise and 
scientific knowledge [99–101]. If the prototype performs 
acceptably, then an impact analysis of the system pre-
cedes implementation in clinical practice. Impact analysis 
could be done using cluster randomized controlled trials 
[102–105] or retrospective cohort, pre-post and prospec-
tive cohort designs, using a single or multicenter setting 
[106]. These have been shown to be suitable to evaluate 
the impact of a cCDSS [102–106]. Multiple baseline stud-
ies or interrupted-time-series are also appropriate ways 
to analyze the impact [107, 108].

Deliverables
If the processes we have described are followed then 
EHR providers would be able to convert their data into 
structured and standardized data. This would make EHR 
data machine actionable so it can be reused for other 
purposes. This could be data extraction for quality indi-
cators, or computerized clinical decision support, as 
described in the literature [34, 109–113].

General considerations
To achieve the health and healthcare transformation 
envisaged by the Dutch nationwide transformative chal-
lenges we presented a framework to develop a cCDSS 
as part of a LHS for allied healthcare and nursing. Mul-
tiparty collaboration will be crucial to develop, validate 
and maintain a working LHS [21, 114]. The proposed the-
oretical framework can also serve as a key enabling meth-
odology [9] to develop and deploy LHSs in other health 
and healthcare domains and thereafter to be extensively 
validated and adjusted where necessary. As so, this paper 
opens up dialogue amongst experts to strengthen our ini-
tial thoughts and that of others before and during devel-
opment of this methodology. Artificial intelligence is a 
key enabling technology [4, 6, 7] which will be used to 
develop algorithms for clinical decision support in daily 
practice. A working LHS with cCDSS could enable per-
sonalized healthcare by expanding the learning cycle. 
The LHS follows the principles of evidence based prac-
tice [40] to optimize safe and efficient healthcare provi-
sion (knowledge to performance), and enlarge experience 
based evidence (performance to data) [28–31].

Reusing routinely collected health data could 
(in accordance with Dutch Electronic Health Data 
Exchange Act) [56] decrease administrative burden 
and prevent harmful care [115, 116]. Access to empiri-
cal research data or routinely collected health data is 
impeded by the European General Data Protection 
Regulation [117, 118]. The development and research 
of LHSs faces the challenges of data privacy, informed 
consent and medical ethical approval. Historical or real 

time data are processed, giving rise to the (im)possibil-
ity of informed consent and so approval of medical eth-
ics committees is crucial.

Considering these needs and demands, the FAIRifica-
tion of health and research data needs to be accelerated. 
In the era of smart devices and internet of things (IoT) 
data are a source of information [59] about context, 
history, physiology, functioning and behavior. Consid-
ering the potential to link data from EHRs, empirical 
research, public data, smart devices and IoT, the inter-
net of FAIR Data & Services facilitates the optimal use 
of life science technologies and artificial intelligence as 
key enabling technologies [5–7, 9, 35, 47].

While there are many possible advantages, domain 
experts, developers and data scientists should be aware 
of disadvantages. They need to consider aspects like data 
drift and technical and practical implementation difficul-
ties [119]. First, to overcome these challenges, the data 
and processed algorithms need to be maintained and 
tested regularly [120–123]. Second, early multi-stake-
holder dialogue and collaboration in a learning commu-
nity [21] and continuing evaluation of our framework is 
vital to successfully develop and deploy in clinical care 
[114, 124, 125]. Third, data sovereignty versus data soli-
darity [126] will have to be studied. Fourth, beside code-
signing via learning communities educational institutes 
should considerably educate agile health professionals in 
an agile manner [127].

Patients, nurses and allied healthcare profession-
als could benefit greatly if we develop and implement 
learning health systems together. This would improve 
healthcare and the healthcare system. This roadmap 
provides guidance on how we could achieve the Dutch 
and project missions of personalized healthcare via a 
learning health system.
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