
Wang et al. 
BMC Medical Informatics and Decision Making          (2023) 23:262  
https://doi.org/10.1186/s12911-023-02369-z

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Informatics and
Decision Making

ClotCatcher: a novel natural language 
model to accurately adjudicate venous 
thromboembolism from radiology reports
Jeffrey Wang1*, Joao Souza de Vale1, Saransh Gupta1, Pulakesh Upadhyaya1, Felipe A. Lisboa2,3,4, 
Seth A. Schobel2,3,4, Eric A. Elster2,3, Christopher J. Dente2,5,6, Timothy G. Buchman2,5,7 and 
Rishikesan Kamaleswaran1,2 

Abstract 

Introduction Accurate identification of venous thromboembolism (VTE) is critical to develop replicable epidemio-
logical studies and rigorous predictions models. Traditionally, VTE studies have relied on international classification 
of diseases (ICD) codes which are inaccurate – leading to misclassification bias. Here, we developed ClotCatcher, 
a novel deep learning model that uses natural language processing to detect VTE from radiology reports.

Methods Radiology reports to detect VTE were obtained from patients admitted to Emory University Hospital (EUH) 
and Grady Memorial Hospital (GMH). Data augmentation was performed using the Google PEGASUS paraphraser. This 
data was then used to fine-tune ClotCatcher, a novel deep learning model. ClotCatcher was validated on both the 
EUH dataset alone and GMH dataset alone.

Results The dataset contained 1358 studies from EUH and 915 studies from GMH (n = 2273). The dataset contained 
1506 ultrasound studies with 528 (35.1%) studies positive for VTE, and 767 CT studies with 91 (11.9%) positive for VTE. 
When validated on the EUH dataset, ClotCatcher performed best (AUC = 0.980) when trained on both EUH and GMH 
dataset without paraphrasing. When validated on the GMH dataset, ClotCatcher performed best (AUC = 0.995) 
when trained on both EUH and GMH dataset with paraphrasing.

Conclusion ClotCatcher, a novel deep learning model with data augmentation rapidly and accurately adjudicated 
the presence of VTE from radiology reports. Applying ClotCatcher to large databases would allow for rapid and accu-
rate adjudication of incident VTE. This would reduce misclassification bias and form the foundation for future studies 
to estimate individual risk for patient to develop incident VTE.
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Introduction
Venous thromboembolism (VTE) is defined as the devel-
opment of either a deep venous thrombus (DVT) or pul-
monary embolism (PE) and is widely considered to be a 
preventable and leading cause of death worldwide [1–3]. 
VTE is estimated to occur in 1 in 1000 patients in the 
United States [4] and is associated with increased cost 
[5], hospital length of stay [6], morbidity [7], and a higher 
risk of both short-term and long-term mortality [8]. 
There have been several nation-wide campaigns address-
ing VTE as a public health issue, including a call in 2008 
to prevent in-hospital VTE by the United States Surgeon 
General [9, 10].

Several studies utilizing large electronic medical 
record databases to determine predictors and outcomes 
in patients who develop VTE have recently been pub-
lished; however, they are limited by their reliance on 
using International Classification of Disease (ICD) 
codes to determine the incidence of VTE [11–13]. 
While ICD codes are easily accessible and can be rap-
idly applied to large databases, they have several impor-
tant limitations. First, their accuracy has been called 
into question with recent analyses finding that among 
patients with an ICD diagnosis of VTE, only 30%—60% 
have clinical documentation from radiological reports 
to support this diagnosis [12, 14, 15]. Another impor-
tant limitation is that ICD codes do not provide infor-
mation regarding the time of incident VTE, as it can 
only be used to identify whether the condition was pre-
sent or absent. Without data on timing, analysis and 
modeling are limited to more traditional and simplistic 
approaches such as logistic regression.

To address this, recent approaches have used Natu-
ral Language Processing (NLP), a field within machine 
learning that concentrates on text data with the goal of 
developing models that can understand human writ-
ing. Using NLP, researchers have used models that can 
identify whether VTE is present or absent from clini-
cal notes (see Supplemental Table  1) [16–19]. These 
approaches have utilized tools that are rules based or 
advanced text miners; however, a major limitation in 
most of these approaches is that they use tools that are 
considered black box in which the architecture of the 
tools is not available. Some of these tools were from a 
commercialized source, further limiting the ability to 
replicate the methods. While the architecture in the 
tool published by Verma et al. is available, the tool used 
in this study used a rules-based NLP tool, rather than 
newer available tools [19].

In this investigation we develop ClotCatcher, which is 
a novel deep learning technology that incorporates the 
use of BERT (Bidirectional Encoder Representations 

from Transformers). BERT is a state-of-the-art model 
that incorporates several key advancements in the field 
of NLP that can be applied to textual data. First, BERT 
uses a transformer, which is a neural network used 
predominantly in NLP that allows the tool to weight 
certain parts of the sentence to predict the relation-
ships between the words in the sentence. Having an 
improved understanding of the sentence allows the 
encoder to better detect key words allowing the tool to 
interpret hidden representation of the text, resulting 
in increased accuracy when decoding. These advance-
ments led to the development of BERT, which achieved 
state-of-the-art results in NLP tasks. As a result, BERT 
has been utilized as a pre-trained base for construct-
ing models that cater to specific contexts, such as bio-
medical texts, scientific publications, clinical notes, and 
patient information [20–22].

Secondly, BERT is also the first to use bidirectional 
models, in comparison to earlier models that trained 
unidirectionally, meaning that the tool only trained on 
language going in one direction (i.e., left-to-right). Bidi-
rectional models, such as BERT, utilize a novel meth-
odology by allowing input data to be input from either 
direction (i.e., both left-to-right and right-to-left), 
improving contextual understanding. Finally, BERT 
uses Masked Language Modeling (MLM), which is an 
approach to further improve prediction and contextual 
understanding by randomly masking words in the text 
and forcing the model to predict the word that is ran-
domly masked. This allows the NLP tool to improve the 
contextual understanding of the text by looking at the 
surrounding sentence [23].

The objectives of our study were (1) to develop a deep 
learning tool using a deep learning model to detect VTE 
from clinical reports, (2) create a tool using open source 
methodologies that would not rely on black box algo-
rithms, allowing for reproducibility, and (3) create a gen-
eralizable NLP tool by training the tool on datasets from 
two different hospital systems.

Methods
Study design
This study used a retrospective, observational design to 
create and validate ClotCatcher, a novel deep learning 
model to accurately adjudicate the presence or absence of 
venous thromboembolism (VTE) from radiology notes. 
This study was approved by the Emory University Insti-
tutional Review Board (STUDY00000302) under waiver 
of consent due to the retrospective nature of the study. 
This investigation was carried out in accordance to the 
Emory University Institutional Review Board guidelines 
and regulations.
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Data source
We included all radiology studies from patients who 
were admitted to either Emory University Hospital 
(EUH) (years 2014 – 2021) or Grady Memorial Hospi-
tal (GMH) (years 2014 – 2022). During the years noted, 
EUH used PowerChart™ from Cerner™ and GMH used 
Epic™. We selected only radiology studies that are used 
to evaluate for VTE (see Table  1). We did not include 
ventilation-perfusion scintigraphy (i.e. V:Q scans) as 
the results are given as a probability. We then randomly 
selected 5% of all studies from GMH and 2.5% of stud-
ies from EUH. The reports of all radiological studies 
were extracted into a document and a physician (JW) 
adjudicated whether VTE was present or absent. Notes 
which were not finalized or were incomplete were 
excluded from the study (n = 5).

Cleaning and creating training dataset
The radiology reports were first extracted, and all text 
converted to lowercase to standardize the text. The 
reports from both GMH and EUH were then randomly 
split 80% to 20% (training to validation) for both hospi-
tals. Randomly splitting the dataset into training and 
validation helps the model avoid overfitting, where the 
model performs well on the training set but poorly on 
new, unseen data. To maximize the potential from the 
training dataset, we performed data augmentation using 
paraphrasing, a technique that generates new versions of 
the text using different words and/or syntax, while still 
preserving the meaning of the original text. Two distinct 
strategies were developed, one with paraphrasing and 
one without paraphrasing. Paraphrasing can be done 
manually, however in our dataset, the Google PEGASUS 
model, a transformer-based neural network-based NLP 
tool was used which automates data paraphrasing. After 
applying the Google PEGASUS model to the train-
ing dataset, we generated 20 additional studies for each 
unique study, resulting in 21 × amplification of the train-
ing dataset.

While we started with datasets from EUH and GMH, 
we created a third dataset by combining EUH and 
GMH resulting in three unique combinations – EUH 
alone, GMH alone, and EUH combined with GMH (see 
Fig. 1  for training dataset creation and model validation 
pipeline). We created six total training datasets, the initial 
three used the datasets without applying paraphrasing. 

Table 1 List of imaging studies selected

Imaging Studies Selected

Ultrasound – Bilateral Upper Extremity

Ultrasound – Right Lower Extremity

Ultrasound – Left Lower Extremity

Ultrasound – Bilateral Lower Extremity

Ultrasound – Right Lower Extremity

Ultrasound – Left Lower Extremity

Computed Tomography Chest w/ Intravenous Contrast (Pulmonary 
angiography)

Fig. 1 Overview of the architecture of the natural language processing pipeline
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The additional three were created after using data aug-
mentation by applying paraphrasing, resulting in datasets 
that were 21 × the size of the original datasets [24].

Clotcatcher tool development
The training datasets were then used to create the Clot-
Catcher tool by fine-tuning the BERT model to better 
adjudicate for the presence or absence of VTE based on 
the text available within the radiology report. The physi-
cian adjudicated result was considered the gold standard. 
Comparing the paraphrased dataset to the datasets not 
utilizing paraphrasing allowed us to evaluate the impact 
of data augmentation.

To evaluate the generalizability of ClotCatcher, we 
trained six deep learning models from six datasets (see 
Fig. 1). The first three were 1) EUH alone (without para-
phrasing), 2) GMH alone (without paraphrasing), and 3) 
EUH combined with GMH (without paraphrasing). The 
final three datasets were the same as above, however with 
paraphrasing applied for data augmentation.

These six training datasets were then used to fine-
tune the ClotCatcher tool to create six different deep 
learning models which were then validated on the EUH 
dataset alone and the GMH dataset alone. Key metrics 
to measure model performance such as sensitivity, spec-
ificity, F1 score, accuracy, and area under the receiver 
operating curve (AUC) were determined for each model 
and validation cohort combination. The architecture of 
the ClotCatcher tool can be seen in Fig. 1. All program 
codes were written for Python programming language 
(Version 3.9).

All ICD-9 and ICD-10 codes were extracted from each 
hospitalization for which the imaging report originated. 
ICD codes consistent with VTE were further determined 
based on previous literature [25]. Hospitalizations with 
ICD codes consistent with VTE were adjudicated as VTE 
positive by ICD Code. This was compared against phy-
sician adjudication, which is considered the gold stand-
ard. Key metrics to measure model performance such as 
sensitivity, specificity, F1 score, accuracy, and area under 
the receiver operating curve (AUC) were determined for 
GMH and EUH.

Results
Analytic cohort
After applying appropriate inclusion criteria for radio-
logical studies, we obtained 1358 studies from EUH 
and 915 studies from GMH (see Fig.  2). Both EUH 
and GMH datasets were randomly split into deriva-
tion (EUH n = 1086, GMH n = 732) and validation 
(EUH n = 272, GMH n = 183). The baseline character-
istics for the patients stratified by hospital are listed in 
Table 2. Patients from GMH were younger (53.5 ± 16.9 vs 

57.8 ± 17.5 years), less likely to be female (381/895 [32.5%] 
vs 754/1342 [56.2%]), and more likely to self-identify as 
African American (718 [80%] vs 613 [45.7%]). The pro-
portion of ultrasound studies adjudicated to have VTE 
by a physician was 177/653 (27.1%) at EUH and 351/853 
(41.1%) at GMH. The proportion of CT studies adju-
dicated to have VTE by a physician was 88/705 (12.5%) 
at EUH and 3/62 (4.8%) at GMH (Table 3). The median 
time to study ordered was 33.7 [Interquartile Range 
(IQR): 14.4, 139.2] hours, and 9.8 [IQR: 4.0, 93.6] hours 
for GMH (Table 2). When stratified by whether the study 
was positive for VTE (1) or not (2), the distribution plots 
are presented in Supplemental Fig. 3.

ClotCatcher tool validation
We performed validation of all six deep learning models 
generated from ClotCatcher on the validation datasets 
from EUH and GMH separately. When validated on the 
EUH dataset, all six models produced excellent AUCs, 
ranging from 0.966 to 0.980 (Fig.  3, Table  4). Interest-
ingly, the model with the highest AUC validated on the 
EUH dataset was fine-tuned on EUH combined with 
GMH data without paraphrasing (AUC 0.980, 95% Con-
fidence Interval [CI]: 0.977 – 0.983). When validated on 
the GMH dataset, all six models also had excellent AUCs 
ranging from 0.988 – 0.995 (Fig. 4, Table 5). The model 
with the highest AUC validated on the GMH dataset was 
fine-tuned on EUH combined with GMH data utilizing 
paraphrasing for data augmentation. ClotCatcher per-
formed better than using ICD to adjudicate whether VTE 
was present or not during the hospitalization across all 
metrics (Supplemental Table 2).

Discussion
In this study, we created ClotCatcher, a deep learning 
tool that was able to accurately and rapidly adjudicate 
the presence or absence of VTE from text in radiologi-
cal reports. We obtained excellent results with our best 
models demonstrating an AUC of 0.980 on the EUH 
dataset and an AUC of 0.995 on the GMH dataset. Our 
approach is novel as it is the first study to use either 
BERT – which is considered state-of-the-art technol-
ogy in natural language processing or the paraphrasing 
technique in developing a tool to detect VTE from radi-
ology studies. Furthermore, the architecture of the Clot-
Catcher tool uses non-proprietary tools that are readily 
available. Previous approaches have relied on black box 
or commercialized tools that are not easily replicated. By 
combining these techniques into our pipeline, we have 
created a tool which is both powerful and replicable.

The high metrics of the ClotCatcher tool is in large 
part due to its use of BERT, which has been estab-
lished as the industry standard in NLP and has found 
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widespread use from medical research to Google 
searches. In our analysis, we used BioBert, the form 
of BERT pre-trained on biological data, which is the 

first use of BERT in adjudicating VTE from radiologi-
cal studies. The significance of these tools are readily 
apparent when considering that only 2.5% of the Emory 
dataset and 5% of the Grady dataset was clinician adju-
dicated. Using ClotCatcher, we can now accurately and 
rapidly adjudicate all available studies within the EUH 
and GMH database.

There were important differences in the GMH and 
EUH patient populations (Table  2). These differences 
can be explained by the hospital locations and the 
communities which they serve. Patients at GMH were 
younger, more likely to be male, and had a higher pro-
portion self-identify as African American. As patients 
are younger at GMH, younger patients generally have 
less comorbidities resulting in a lower prevalence of 
ICD codes in this population. Secondly, there are dif-
ferences in VTE evaluation, at EUH, 48% (653/1358) 
of studies ordered were ultrasound, whereas at GMH, 
this was 93% (853/915). Secondly, while there are no 
readily apparent clinical differences to explain differ-
ences in ordering pattern, it is possible that differences 
in physician ordering practice could be driving these 
differences. In a retrospective observational study of 
emergency room physicians ordering CT studies to 
evaluate for VTE, the number of studies ordered by 

Fig. 2 CONSORT diagram describing analytic cohort for studies

Table 2 Baseline characteristics for analytic cohort by hospital

Emory University 
Hospital (n = 1342)

Grady Memorial 
Hospital (n = 895)

Age 57.8 ± 17.5 53.5 ± 16.9

Female, n (%) 754 (56.2%) 381 (32.5%)

Race
 Caucasian 643 (47.9%) 83 (9.3%)

 African American 613 (45.7%) 718 (80%)

 Asian 35 (2.6%) 8 (0.9%)

History of Diabetes 427 (31.8%) 112 (12.5%)

History of MI 183 (13.6%) 29 (3.2%)

History of CHF 407 (30.3%) 100 (11.1%)

History of PVD 205 (15.3%) 21 (2.3%)

Chronic Pulmonary Disease 448 (33.4%) 117 (13%)

CKD or Dialysis 340 (25.3%) 96 (10%)

History of Cancer 246 (18.3%) 20 (2.2%)

HIV/AIDS 25 (1.9%) 17 (1.9%)

Time from Admission to 
Radiological Study (hours)

33.7 [14.4 – 39.2] 9.8 [4.0 – 93.6]
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each physician varied greatly from 25 to 141 CT studies 
per physician [26].

Thirdly, the CT studies at GMH have a low positivity 
rate (4.8%) compared to EUH (12.5%). This can be in part 
explained that GMH is the only level one trauma center 
in metropolitan Atlanta. During the initial evaluation of 
complex poly-trauma, CT studies are often obtained to 
evaluate multiple pathologies simultaneously. Therefore, 

the pre-test probability for VTE in these situations are 
low, which can partially explain the low positivity rate. 
This seemingly low positive rate is consistent with exist-
ing literature demonstrating that among emergency 
room physicians ordering CT studies to evaluate for 
VTE, the proportion positive was 6.9% [26].

The tool directly addresses the inaccuracies from mis-
classification bias due to using ICD codes in studies 

Fig. 3 Model validation on the Emory dataset after training on either 1) Emory and Grady, 2) Emory alone, or 3) Grady alone dataset. This 
was evaluated with (3A) paraphrasing and (3B) without

Table 3 Radiological study count and proportion positive for venous thromboembolism

Emory (n = 1358) Grady (n = 915) Total (n = 2273)

Ultrasound
- Proportion Positive for VTE

653
177 (27.1%)

853
351 (41.1%)

1506
528 (35.1%)

CT Studies
- Proportion Positive for VTE

705
88 (12.5%)

62
3 (4.8%)

767
91 (11.9%)

Table 4 The sensitivity, specificity, F1 Score, accuracy and the area under the receiver operation curve (AUC) for the model validated 
on the Emory dataset with and without paraphrasing

Best in class metrics are bolded in red
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investigating VTE. ICD codes are known to be inaccu-
rate and previous literature demonstrated that the posi-
tive predictive value of a VTE ICD code to predict the 
presence of VTE diagnosed during hospitalization was 
poor, around 50%. By applying tools such as ClotCatcher 
to radiological studies, investigators will be able to accu-
rately adjudicate the presence of VTE use radiological 
studies. This will allow for more accurate epidemiological 
studies and reduce misclassification bias.

In addition to accurate adjudication, all radiological 
studies have an associated time stamp which will pro-
vide the time VTE was diagnosed on a radiological study. 
When relying on traditional methods which use ICD 
codes, lack of time data limited analyses to more sim-
plistic methods such as logistic regression. Incorporating 
the time of the event will allow for more sophisticated 
analyses such as Cox-proportional hazard modeling and 

Kaplan Meier analysis. Furthermore, these modeling 
approaches will form the basis to create automated indi-
vidualized risk prediction scores for patients admitted to 
the hospital. This is particularly relevant for patients who 
have their chemoprophylaxis for VTE held as applying 
individualized risk prediction models can alert clinicians 
to consider starting chemoprophylaxis in patients with a 
high risk for in-hospital VTE.

An important aspect of applying machine learning 
models to healthcare data is the concept of generaliza-
tion, which refers to the ability of a model to accurately 
predict outcomes from data that is different from the 
source population it was originally trained on. In health-
care, data limitations often constrain researchers to use 
data from the same hospital for training and testing; how-
ever, given the increasing popularity of machine learn-
ing models in healthcare, it is crucial to investigate the 

Fig. 4 Model validation on the Grady dataset after training on either 1) Emory and Grady, 2) Emory alone, or 3) Grady alone dataset. This 
was evaluated with (4A) paraphrasing and (4B) without

Table 5 The sensitivity, specificity, F1 Score, accuracy and the area under the receiver operation curve (AUC) for the model validated 
on the Grady dataset with and without paraphrasing

Best in class metrics are bolded in red
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performance of models on data sourced from different 
hospitals and healthcare systems [27, 28]. Our model had 
excellent performance on both the EUH and the GMH 
datasets, demonstrating that our model is not limited 
by the origin of the training data. Furthermore, the two 
hospitals used different electronic medical records dur-
ing the study period which further supports the general-
izability of our model. The slight variation in the metrics 
could be due to different documentation standards across 
hospitals. Future directions would include replicating our 
analysis using additional hospital systems.

There were several limitations. We used a subset of the 
available data, given limitations in time and resources 
in utilizing physician adjudication of the radiological 
studies. We were also limited to studies that were com-
monly used to identify VTE, thereby missing incidental 
VTE found by other studies (i.e., portal vein thrombus, 
splanchnic vein thrombus, etc.). We also excluded 
ventilation-perfusion scans from this study given that 
the interpretation of these studies is usually provided 
as probabilities. Finally, radiologists at GMH can have 
appointments at EUH as well and therefore there may 
be similarities between these two hospitals in producing 
radiological reports.

In conclusion, we present the results from ClotCatcher, 
a novel deep learning tool to accurately and rapidly adju-
dicate the presence or absence of VTE from radiological 
reports. The tool can be readily replicated using exist-
ing open-source tools such as BERT and the paraphras-
ing technique. Validation of this ClotCatcher serves as 
the foundation for improving identification of VTE cases 
from large databases.
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