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Abstract 

Background In France an average of 4% of hospitalized patients die during their hospital stay. To aid medical deci‑
sion making and the attribution of resources, within a few days of admission the identification of patients at high risk 
of dying in hospital is essential.

Methods We used de‑identified routine patient data available in the first 2 days of hospitalization in a French 
University Hospital (between 2016 and 2018) to build models predicting in‑hospital mortality (at ≥ 2 and ≤ 30 days 
after admission). We tested nine different machine learning algorithms with repeated 10‑fold cross‑validation. Models 
were trained with 283 variables including age, sex, socio‑determinants of health, laboratory test results, procedures 
(Classification of Medical Acts), medications (Anatomical Therapeutic Chemical code), hospital department/unit 
and home address (urban, rural etc.). The models were evaluated using various performance metrics. The dataset con‑
tained 123,729 admissions, of which the outcome for 3542 was all‑cause in‑hospital mortality and 120,187 admissions 
(no death reported within 30 days) were controls.

Results The support vector machine, logistic regression and Xgboost algorithms demonstrated high discrimina‑
tion with a balanced accuracy of 0.81 (95%CI 0.80–0.82), 0.82 (95%CI 0.80–0.83) and 0.83 (95%CI 0.80–0.83) and AUC 
of 0.90 (95%CI 0.88–0.91), 0.90 (95%CI 0.89–0.91) and 0.90 (95%CI 0.89–0.91) respectively. The most predictive vari‑
ables for in‑hospital mortality in all three models were older age (greater risk), and admission with a confirmed 
appointment (reduced risk).

Conclusion We propose three highly discriminating machine‑learning models that could improve clinical and organ‑
izational decision making for adult patients at hospital admission.
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Background
In France, approximately 4% of all patients admitted to a 
hospital die during their in-patient hospital stay (accord-
ing to the 2022 database of the Technical Agency for 
Information on Hospital Care (ATIH) [1]). The early 
detection of patients with a high risk of dying in hospital 
may improve organizational and clinical decision mak-
ing and help to determine the scale of required medi-
cal resources [2]. However, most established mortality 
prediction systems such as the SAPS score [3–5], SOFA 
score [6], and APACHE score [7–9] focus on adult inten-
sive care unit admissions, and the consideration of cases 
during their entire hospitalization (including patients 
who are not admitted to intensive care) is less frequent 
[10]. Machine learning algorithms offer the advantage of 
providing a predictive tool with high flexibility based on 
a large set of information from electronic health records 
(EHR) [2, 11–13].

In recent years, the number of medical studies utiliz-
ing different kinds of machine learning algorithms for 
clinical decision support has increased [14, 15]. Machine 
learning algorithms may improve the proper early iden-
tification of patients at risk of in-hospital mortality. Sev-
eral studies have applied machine learning algorithms to 
predict in-hospital mortality of adult patients, identifying 
several risk factors among vital signs and laboratory tests 
[10, 11, 16–19]. In addition, machine learning methods 
have been used to predict in-hospital mortality from sep-
sis [20] and diabetic patients in intensive care units [21].

Overall, studies based on a general and entire hospi-
tal population are rare. The predictive value of matched 
administrative data and socio-economic variables needs 
to be investigated.

Methods
Aim and design
Our primary goal was to build and compare multiple 
machine learning models that predict in-hospital mor-
tality for adult patients using the diverse data available at 
the beginning of their hospital stay. The secondary goal 
was to use the best models to identify the most important 
risk factors of in-hospital mortality.

Study population
This study is based on 273,696 admissions to Grenoble 
Alpes University Hospital, France (CHUGA) between 
January 1, 2016 and December 31, 2018 [22]. Briefly, 
only adult patients (aged ≥ 18 at admission) with a length 
of stay of more than two days were included. Patients 
with geriatric long stays or permanent hospitalization, 
day clinic patients, or those with coding errors were 
excluded. Patients who died between the second and 
30th day (included) after admission were considered 

as the case group. Patients who did not die in this time 
frame were considered as the control group. The dataset 
was randomly divided into a training/validation set (80%) 
and a benchmark set (20%).

Database
The de-identified medical and administrative data from 
the Clinical Data Warehouse (CDW) PREDIMED [23] 
includes administrative and demographic information, 
hospitalization details, laboratory results, diagnoses, pro-
cedures, and medications.

Fifty-one distinct social determinants of health 
(SDOH) from the French national institute for statisti-
cal and economic studies (INSEE) corresponding to 
every patient´s home address were added. Patients´ 
home addresses had been geocoded using the National 
Address Database geocoding service. In detail, six age-
group related, 10 household–related, nine popula-
tion-structure related, 20 housing-related, and seven 
activity-related variables available for inhabitants of the 
Grenoble area were included in this analysis (detailed list 
in the Supplementary Material: Table S1).

Missing data
To reflect the specific circumstances and clinical con-
siderations during data collection and avoid introduc-
ing potential biases through imputation, missing values 
for categorical and continuous variables were labelled as 
zero.

Variable selection and correlation analysis
A total of 11 different categories of variables were con-
sidered for modelling, including age at admission, sex, 
mode of admission, hospital department/unit code, 
home address postal code type (urban, rural, semi-rural, 
or none), primary discharge diagnosis from any previous 
hospital stay, medication score (defined as the number 
of different drugs prescribed during the first day after 
admission [24]), laboratory tests (ordered and high, low, 
or normal result), Classification of Medical Acts (CMA) 
code(s), Anatomical Therapeutic Chemical (ATC) medi-
cation code(s), and SDOH (Table 1). To limit variables to 
a manageable number CMA and ATC codes were trun-
cated to the first 3 and 4 characters respectively.

The number of variables were preselected to reduce 
model complexity and to avoid overfitting. Categorical 
variables were selected using chi-square testing [25]. In 
addition, only variables available for at least 5% of admis-
sions per group (case/control) or absent in one group but 
present in at least 5% of admissions in the other group 
were retained. A laboratory test was only retained if 
there was a significant difference between cases and con-
trols in orders for the test and if the test results (high, 
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normal, low) were significantly (Fisher exact test) dif-
ferent between cases and controls. For these tests a 
p-value < 0.05 was considered statistically significant. 
These multi-level categorical variables were introduced 
into the model as binary dummy variables. In a final step 
of dimension reduction, variables were tested for inter-
dependency using Pearson correlation analysis [26]. 
Categorical and continuous variables with a correlation 
coefficient > 0.9 are presented by only one of the cor-
related variables. Correlation between categorical and 
continuous variables was tested using point-biserial cor-
relation [27]. Finally, continuous variables such as age at 
admission, medication score, and socio-economic vari-
ables were scaled using the scikit-learn min–max scaler 
[28] to express each variable in a range between 0 and 
1. A descriptive analysis of all primary and secondary 
diagnoses (3-digit ICD10 code) during the entire hospi-
tal stay (for both cases and controls) was done. It should 
be noted that final diagnoses for the current hospital stay 
could not be used as a variable for predictive modelling 
since the time stamps of these entries in the electronic 
medical record were not accurate enough. We selected 
diagnoses with a false discovery rate (FDR) of < 0.01 using 
chi-square testing [25] and the Benjamini–Hochberg cor-
rection for multiple testing [29]. Variables are described 
by numbers and percentages, means and their 95% confi-
dence interval (95% CI) and standard deviations. Results 
are presented as Odds Ratio (OR) and their 95% CI. All 
statistical tests were two-tailed.

Machine learning
To build predictive models and identify potential risk 
factors for in-hospital mortality, various supervised 

machine learning algorithms were investigated. This 
set of algorithms covers a wide range of different model 
classes, such as regression algorithms e.g., Logistic 
Regression (LR) [30], and instance-based algorithms 
e.g., Support Vector Machines (SVM) [31]. In addition, 
Bayesian algorithms e.g., Naive Bayes (NB) [32], ensem-
ble algorithms e.g., Random Forest (RF) [33], Xgboost 
[34] and light gradient boosting machine (LightGBM) 
[35], deep learning algorithms such as Multilayer Per-
ceptrons (MLP) [36], and the non-parametric algo-
rithm k-nearest neighbors (KNN) [37] were used. 
Moreover, the scikit-learn dummy classifier (DC) [28], 
which makes predictions regardless of the input vari-
ables, was included as a benchmark model serving as 
a baseline reference to evaluate the performance of 
more sophisticated machine learning models. For each 
model, if applicable, algorithm hyperparameters were 
optimized using distributed asynchronous optimiza-
tion [38] (Table S2(a)). For LightGBM and Xgboost, ten 
rounds of early stopping where applied, using the bal-
anced accuracy and logistic loss as an evaluation met-
ric, respectively. To improve model generalization and 
performance of the strongly unbalanced data set, the 
minority group (cases) was oversampled in the training 
data set at a ratio of one to one using the RandomOv-
erSampler function from the imbalanced-learn library 
[39]. In each model, using the random search method, 
the algorithm hyperparameters were optimized based 
on the F1-score evaluation metric [40, 41], which is 
the harmonic mean between precision and recall (also 
known as prediction sensitivity). In addition, a ten-
fold cross validation was applied to derive a more reli-
able model evaluation. The final models were tested 

Table 1 Variable selection and criteria

a Table S1
* Chi-square test (p-value < 0.05), present in at least 5% of all admissions per group
** Fisher-exact test (p-value < 0.05), present in at least 5% of all admissions per group for every laboratory test and the sub-categories (high, normal, low). CMA 
(Classification of Medical Acts code), ATC (Anatomical Therapeutic Chemical code)

Variable category Comment data type Time frame Selection

Age at admission continuous at admission /

Sex categorical at admission /

Mode of admission categorical at admission *

Hospital department—unit (ward) code first 4 digits, categorical max one day after admission *

Postal code type (urban, rural, semi‑rural, or none) categorical at admission *

Discharge diagnosis from previous hospital stay first 3 characters, categorical previous hospital stay *

Medication score (number of medications given) continuous max one day after admission /

Laboratory test (tested, high, low, normal) categorical max one day after admission **

Procedural codes—CMA first 4 characters, categorical max one day after admission *

Medication—ATC codes first 3 digits, categorical max one day after admission *

Socio‑economic  variablesa continuous at admission /
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and used for predicting in-hospital mortality, using the 
“benchmark” dataset (Fig. 1).

Model performances were evaluated by assessing pre-
diction sensitivity, specificity, balanced accuracy (for-
mulas 1, 2, 3, 4 and 5); area under the curve (AUC), and 
area under the precision recall curve (AUCPR); 95% con-
fidence intervals (CI) were determined using a 500-step 
bootstrap analysis on the benchmark dataset.

Bootstrapping is a resampling technique that 
involves randomly sampling with replacement from 
the original dataset to create multiple new datasets. 
By repeatedly fitting the model to these resampled 
datasets, we estimated the variability and uncertainty 
of the model performance metrics by calculating the 
2.5th percentile and the 97.5th percentile of the distri-
bution of the performance metric after bootstrapping.

The number of true positives (TP), the number of 
false positives (FP), the number of false negatives (FN) 
and the number of true negatives (TN).

The top three models were selected based on their 
balanced accuracy. In addition, confusion matri-
ces, receiver operating characteristic (ROC) curves 
and precision-recall curves were generated. Variable 
importance in these final models was determined 
using 250 rounds of permutation importance calcu-
lation using the Python scikit-learn [28] permutation 
importance function, where the balanced accuracy was 
used as an evaluation metric. To determine the least 
number of variables needed to achieve similar model 
performances (balanced accuracies) in comparison 
to the full set of variables. For the top three models, 
the top 2–150 variables were re-modelled and plot-
ted regarding their resulting balanced accuracy. The 
least necessary number of variables was determined by 
identifying the point on the resulting curve where the 
slope flattened. For each of the top three models these 

(1)Sensitivity (Recall) =
TP

TP + FN

(2)Specificity =
TN

TN + FP

(3)F1 Score = 2×
Sensitivity× Specificity

Sensitivity+ Specificity

(4)Balanced Accuracy =
Sensitivity+ Specificity

2

(5)Precision =
TP

TP + FP

variables were finally plotted after sorting them by 
their corresponding mean balanced accuracy and the 
most influential variables were determined by identi-
fying the point on the curve where the slope flattens.

Decision Curve Analysis (DCA) [42] was performed 
for the top three performing models in our study using 
the full set of variables. DCA is a useful tool for assess-
ing the clinical utility of predictive models, evaluating 
their performance across different threshold probabili-
ties. The prevalence was preset to 4.5%, representing 
the approximate prevalence observed in our dataset.

Results
Study population
Among 123,729 admissions in the selected dataset [22], 
3542 (2.86%) of admissions in 79,117 (4.48%) eligible 
patients were considered as cases (in-hospital death) 
and 120,187 admissions were used for the control 
group (Fig. 2).

Variables
The variables retained included seven modes of admis-
sion, seven hospital departments, three different diag-
noses from previous hospital stays, 51 laboratory tests, 
20 procedures, 29 different medications, two postal 
code types and 51 different social determinants of 
health (Tables S1 and S3 (a). Completeness was high: 
100% for age, sex, mode of admission, hospital depart-
ment and SDOH, 99.97% for postal code type, 87.14% 
for laboratory tests, 84.37 for CMA procedural codes, 
and 92.34% for ATC medication codes; with an excep-
tion of 27.93% for the discharge diagnosis from a previ-
ous hospital stay.

Our correlation analysis identified six highly cor-
related (Pearson correlation coefficient > 0.9) continu-
ous variables of which three were retained (all SDOH) 
and 49 highly correlated (Pearson correlation coef-
ficient > 0.9) categorical variables (all laboratory tests 
categorized as “tested”) of which eight were retained 
(Table S4 (a) and (b)). Finally, a total of 283 variables 
were used for predictive modelling. We could not 
detect any correlation between the remaining categori-
cal and continuous variables (point-biserial correlation 
coefficient ≤ 0.9).

Analysis of the study population
Male patients were significantly (p-value < 0.05) more 
frequent in the case group compared to the con-
trol group (2036 (57.8%) compared to 60,120 (50.0%) 
respectively). Patients in the case group were signifi-
cantly (p-value < 0.05) older than controls (mean age 
75.9 [95% CI 75.4 -76.4] vs. 60.5 [95% CI 60.4–60.6]. 
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Fig. 1 Workflow to detect early clinical factors associated with in‑hospital mortality. AUC: area under the curve; AUCPR: area under the precision 
recall curve
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Moreover, the number of medications prescribed 
in the observation window was significantly higher 
(p-value < 0.05) in the case group compared to the con-
trol group (Table S3 (b)).

Differences between cases and controls were iden-
tified for six primary and 85 secondary diagnoses 
(FDR < 0.01) (Table S5 (a) and (b)). We observed a sig-
nificantly higher proportion of patients in the case 
group with a primary diagnosis of cardiogenic shock 
(OR = 12.51; 95% CI 10.94–14.32), malignant neoplasm 
of main bronchus (OR = 12.08, 95% CI 10.32–14.14), 
acute respiratory failure (OR = 9.09, 95% CI 7.90–
10.38), heart failure (OR = 3.45, 95% CI 3.06–3.90), 
antineoplastic radiation therapy (OR = 3.09, 95% CI 
2.73–3.49) and stroke due to thrombosis of precerebral 

arteries (OR = 2.90, 95% CI 2.49–3.37) compared to the 
control group.

Predictive modelling
After randomly splitting the data, with 2,841 cases and 
96,142 controls assigned to the training/validation group; 
and 701 cases and 24,045 controls to be used as the 
benchmark dataset.

The extracted training/validation dataset was used to 
optimize the corresponding algorithm hyperparameters 
(Table S2 (b)) and the final model was tested using the 
unseen benchmark dataset (Table 2, Fig. 3). Based on the 
balanced accuracy of the benchmark dataset, SVM and 
LR showed the best performances with a balanced accu-
racy of 0.81 (0.80–0.82) and 0.82 (0.80–0.83) respectively, 

Fig. 2 Flowchart for dataset selection
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when all variables were used for modelling. To reduce 
model complexity, we set out to determine the least num-
ber of variables necessary to achieve similar model per-
formances (balanced accuracy) for SVM, LR and Xgboost 
in comparison to the full variable list. By selecting the top 
2–150 variables based on the variable importance score, 
we determined that at least 75 of the most impactful vari-
ables were necessary to achieve a balanced accuracy of 
0.82 (95% CI 0.80–0.83) for SVM and 0.81 (95% CI 0.80–
0.83) for LR respectively. For Xgboost, at least 45 of the 
most impactful variables were necessary to achieve a bal-
anced accuracy of 0.82 (95% CI 0.80–0.83) (Fig. 3D).

The DCA results demonstrate that across the full range 
of threshold probabilities, all three models exhibited a 
higher net benefit compared to considering all patients 
as cases. Moreover, the net benefits of all three models 
showed similar patterns (Figure S4).

Important feature selection
A total of 250 rounds of permutation importance was 
performed to retrieve the most influential variables from 
SVM, LR and Xgboost based on their contribution to 
the balanced accuracy (Figures S1, S2 and S3). Age was 
found to be in the top two most predictive variables for 

in-hospital mortality in SVM (mean balanced accu-
racy ± standard deviation 0.047 ± 0.006, rank 2), LR 
(0.054 ± 0.006, rank 1) and Xgboost (0.055 ± 0.006, rank 1) 
models. For SVM and LR a total of 10, and for Xgboost a 
total of nine variables were strongly associated with in-
hospital mortality (Table 3).

Overall, age and being admitted to the hospital with 
a confirmed appointment were identified in all three 
models as crucial (Fig.  4). Although, the rank of vari-
able importance varied depending on the machine learn-
ing model, some variables ranked consistently high in all 
three models.

We noted that testing alanine-aminotransferase 
(ALAT) was highly correlated with testing other liver 
enzymes (Gamma glutamyl transferase and aspartate-
aminotransferase (ASAT); Pearson correlation coef-
ficient = 1.0) (Table S4 (a) and (c)). Testing for plasma 
albumin was correlated with testing for 19 variables 
from the complete blood count (Table S4 (a) (c)). In 
addition, the SVM model considered three social 
determinants of health as important. These were the 
“patients living in an apartment” (mean balanced accu-
racy 0.046 (± 0.006), rank 3, higher in cases), “patients 
living in a house” (0.038 (± 0.005), rank 4, lower in 
cases) and “households with families” (0.010 (± 0.003), 

Table 2 Metrics for all classification models. 95% confidence intervals (95% CI) derived from 500 bootstraps by using all variables. 
Selected models are highlighted in bold

AUC  Area under the curve, AUCPR Area under the precision recall curve, LR Logistic regression, SVM Support vector machine, NB Naive bayes, LightGBM Light gradient 
boosting machine, RF Random forest, MLP Multilayer perceptron, KNN K-nearest neighbors, DC Dummy classifier

Model AUC (95% CI) AUCPR (95% CI) Sensitivity (95% CI) Specificity (95% CI) Balanced 
accuracy (95% CI)

F1 Score (95% CI)

LR 0.90 (0.89–0.91) 0.23 (0.20–0.26) 0.81 (0.78–0.84) 0.82 (0.82–0.83) 0.82 (0.80–0.83) 0.55 (0.54–0.56)

Xgboost 0.90 (0.89–0.91) 0.23 (0.20–0.26) 0.82 (0.79–0.85) 0.81 (0.81–0.82) 0.82 (0.80–0.83) 0.55 (0.54–0.57)

SVM 0.90 (0.88–0.91) 0.22 (0.20–0.25) 0.81 (0.78–0.83) 0.82 (0.81–0.82) 0.81 (0.80–0.82) 0.55 (0.54–0.57)

NB 0.80 (0.79–0.81) 0.43 (0.42–0.46) 0.91 (0.88–0.93) 0.59 (0.59–0.60) 0.75 (0.74–0.76) 0.43 (0.42–0.43)

Light‑GBM 0.87 (0.86–0.89) 0.20 (0.18–0.24) 0.55 (0.51–0.58) 0.91 (0.91–0.92) 0.73 (0.71–0.75) 0.60 (0.59–0.61)

RF 0.79 (0.77–0.80) 0.34 (0.32–0.36) 0.75 (0.72–0.78) 0.69 (0.69–0.7) 0.72 (0.71–0.74) 0.50 (0.50–0.50)

MLP 0.86 (0.85–0.87) 0.19 (0.17–0.22) 0.36 (0.33–0.39) 0.96 (0.96–0.97) 0.66 (0.66–0.68) 0.63 (0.61–0.64)

KNN 0.75 (0.73–0.77) 0.18 (0.16–0.20) 0.14 (0.11–0.16) 0.98 (0.98–0.99) 0.56 (0.55–0.57) 0.57 (0.56–0.58)

DC 0.51 (0.49–0.53) 0.28 (0.26–0.30) 0.52 (0.48–0.55) 0.50 (0.50–0.51) 0.51 (0.49–0.53) 0.36 (0.36–0.36)

(See figure on next page.)
Fig. 3 Model performances on the unseen benchmark dataset. A Balanced accuracy for all machine learning algorithms. B Precision‑Recall curve 
based on all variables and the corresponding area under the precision recall curve (AUCPR). C Receiver operating characteristics (ROC) curve based 
on all variables and the corresponding area under the curve (AUC). D Balanced accuracy, based on the number of most important features selected, 
the dashed grey line illustrates the selected threshold for LR and SVM, dashed green line for Xgboost. Confusion matrices for E Xgboost based on all 
variables, F Xgboost based on top 45 variables, G LR based on all variables, H LR with the top 75 important variables, I SVM based on all variables 
and J SVM based on top 75 most important variables. Numbers in brackets in (B‑D) correspond to the 95% confidence intervals determined by 500 
bootstrappings. Logistic regression (LR), support vector machine (SVM), naive bayes (NB), light gradient boosting machine (LightGBM), multilayer 
perceptron (MLP), k‑nearest neighbors (KNN) and random forest (RF)
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Fig. 3 (See legend on previous page.)
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rank 9, lower in cases). These also showed significant 
differences between cases and controls (p-value < 0.05). 
The socio-economic variable “households with families” 
was highly correlated with the socio-economic variable 
“households with families with children” (Pearson cor-
relation coefficient = 0.9) (Table S4 (b)).

Discussion
The main aim of this study was to generate a predictive 
model for in-hospital mortality based on data from the 
PREDIMED clinical data warehouse [23] along with pub-
licly available socio-economic variables. In contrast to 
other studies, we focused our analyses not on a specific 
subgroup of patients but on the general adult population 

admitted to our University Hospital, which makes our 
model applicable to a wide range of patients admitted to 
large teaching hospitals in France and possibly elsewhere 
in Europe. In addition, this study utilized a wide range of 
types of variables, which have not been included in previ-
ous studies.

We succeeded in generating highly discriminating 
prediction models for in-hospital mortality. The models 
identified multiple plausible risk factors and risk protec-
tors at the time of admission. Older age is a well-known 
risk factor for mortality; already identified in two stud-
ies using machine learning, one in emergency depart-
ments to predict early and short-term mortality [16] and 
the other in the University of Tokyo hospital to predict 

Table 3 Most influential categorical variables for support vector machine (SVM), logistic regression (LR) and Xgboost from 250 rounds 
of permutation importance, sorted by odds ratio

Selected variables in each model are highlighted in bold green. All variables show a p-value of < 0.0001 (chi-square test). Alanine-aminotransferase (ALAT), aspartate-
aminotransferase (ASAT), red cell distribution width (RCW). *Modes of admission: “After consultation with doctor from the establishment* is when a patient is seen in 
a scheduled consultation and kept in hospital immediately afterwards, without going through the emergency room, therefore without immediate vital risk; whereas 
“Confirmed prescheduled appointment” is hospitalization programmed in advance, e.g., for non-urgent surgery, again without immediate vital risk
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in-hospital mortality within 14 days [10]. In contrast, 
being admitted to the hospital with a confirmed appoint-
ment i.e., being admitted without a newly emergent issue, 
was a low-risk factor for in-hospital mortality. Several 
clinical scores, such as SAPS II, have used the patient’s 
location before ICU admission to predict mortality [17]. 
In this study, among the variables we used for building 
the machine learning models several laboratory param-
eters were found to be important in predicting in-hospi-
tal mortality. Risk factors were high ALAT, high albumin, 
high urea, low lymphocytes, and low prothrombin. A low-
risk factor was a normal leucocyte count. These anormal 
biological laboratory analysis results are markers of seri-
ous pathologies. High ALAT reflects liver pathology, high 
albumin and high urea a state of dehydration or hemo-
concentration and renal failure. Low lymphocytes expose 
the risk of infection and low prothrombin reflects either 
liver failure or the presence of anticoagulant for cardio-
vascular problems. In line with this, it has been previ-
ously reported that these parameters were markers for 
predicting the prognosis of hospitalized patients, and 
this indicates that our internal algorithms of the predic-
tion models are consistent with current evidence [10, 11, 
17]. Of note, high red cell distribution width was recently 

found to be a risk factor for mortality after Covid-19 [43]. 
Other consistent risk factors were the administration of 
blood substitutes and perfusion solutions, physiological 
exploration of the arteries, and hospitalization in a tho-
racic oncology unit. A consistent low-risk factor was hos-
pitalization in an obstetrics unit.

Use of drugs for constipation, antifungals for derma-
tological use, whether the patient lives in a house or an 
apartment or in a household with a family, are unusual 
predictive factors which require additional investigation.

In a next step the models need to be validated using 
more recent data from our hospital and finally in every-
day clinical practice. Up to now, no predictive model for 
all adult patient in-hospital mortality has been validated 
in clinical practice.

The hospital (CHUGA) is a large tertiary teaching hos-
pital with a sizeable trauma unit, and is particularly active 
in highly specialized procedures and in clinical care. The 
model is unlikely to be applicable to hospitals with a dif-
ferent profile and different coding scheme. Overall, nine 
different machine learning algorithms were compared, 
showing that regression algorithms (such as LR) and 
instance-based algorithms (such as SVM) were superior 
to Bayesian algorithms (NB), RF, deep learning algorithms 

Fig. 4 Overlapping variables between support vector machine (SVM), logistic regression (LR) and Xgboost. Alanine‑aminotransferase (ALAT), 
aspartate‑aminotransferase (ASAT), red cell distribution width (RCW). *Modes of admission: “After consultation with doctor from the establishment”* 
is when a patient is seen in a scheduled consultation and kept in hospital immediately afterwards, without going through the emergency 
room, therefore without immediate vital risk; whereas “Confirmed prescheduled appointment” is hospitalization programmed in advance, e.g., 
for non‑urgent surgery, again without immediate vital risk
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(MLP) and non-parametric algorithms (KNN). SVM, LR 
and Xgboost demonstrated high predictive ability with 
good balanced accuracy (Table  2) when the full set of 
variables was used. Indeed, the alignment of model per-
formances derived from LR, SVM, and Xgboost, each 
utilizing different sets of variables, points to the compre-
hensive tuning of hyperparameters. Interestingly, while 
the three methods exhibit comparable performance, it 
is noteworthy that LR and SVM, both representing lin-
ear models, show a closer alignment in terms of feature 
overlap. This alignment hints at the nature of mortality 
prediction as a linear classification task, where these lin-
ear models prove to be as effective as even more intricate 
models like Xgboost. Moreover, all these models outper-
formed the dummy classifier which was used as a bench-
mark model. Regarding the achieved AUC (Table 2), our 
results are similar [19] or slightly lower than in other 
studies (AUC ~ 0.95) [10, 11, 16]. Notably, KNN was infe-
rior in predicting in-hospital mortality but showed supe-
rior specificity compared to LR, SVM and Xgboost. Since 
our Xgboost model requires the smallest number of vari-
ables (45 vs. 75 in LR and SVM) to achieve similar model 
performances compared to using all variables, this model 
is thus most suitable for application in clinical practice. 
As our models would allow physicians to increase their 
focus on patients at risk, which would also increase the 
quality of care in general, the relatively high number of 
false positives is not necessarily a disadvantage. Moreo-
ver, our top three models demonstrate high sensitivities, 
correctly identifying positive cases and reducing false 
negatives compared to other models in the study. Mod-
els with the highest specificity, namely Light-GBM, MLP, 
and KNN, achieved the highest F1-scores. Neverthe-
less, this gain in specificity is accompanied by a decrease 
in sensitivity. Overall, the low number in false positives 
could help to optimize healthcare resource allocation 
and minimize unnecessary interventions and associated 
costs. Overall, our model’s ability to tackle alarm fatigue 
underscores their high value as potential tools in medical 
decision-making and patient care.

Our DCA demonstrates that across the entire range of 
threshold probabilities, all three models (SVM, LR, and 
Xgboost) consistently exhibit higher net benefits com-
pared to the strategy of considering all patients as cases. 
This finding highlights the clinical value of these predic-
tive models, as they consistently outperform the simple 
approach of treating all patients as positive cases, even 
when accounting for different decision thresholds. Fur-
thermore, the DCA results indicate that the three mod-
els have very similar net benefits throughout the entire 
threshold range. This similarity underscores the robust-
ness of their performance and suggests that they are reli-
able in a wide range of decision-making scenarios.

Model performance might be improved in the future 
if more data becomes available, and the coding behavior 
is further standardized. To date, we could only consider 
diagnoses from the patient’s previous hospitalization (if 
any) because of inadequate time stamps. We could not 
use any unstructured information from the electronic 
health records. However, including these might further 
benefit the models’ performances. The models’ perfor-
mances might be even more improved by additional algo-
rithm hyperparameter tuning and optimization.

Our study has several limitations. First, we chose 
to censor in-hospital mortality at 30 days. The 30-day 
delay is the usual delay in public health studies. We had 
no information on deaths after discharge from hospital, 
so we cannot rule out that some patients died within 
30-days in another establishment or at home. Moreover, 
we cannot distinguish between patients who enter the 
hospital with an end-stage disease and those who die as 
a consequence of an intervention during their hospitali-
zation, or a complication acquired during their hospi-
talization. Second, we only analyzed the data recorded 
in the patients’ files. Third, there was no updating of 
the patients’ EMR data during hospitalization, whereas 
medical staff usually routinely record important comor-
bidities or changes in medical condition. Forth, labora-
tory analysis values were not available for all patients. 
Nevertheless, biological parameters such as albumin 
were usually requested in cases in which abnormalities 
were suspected. Fifth, we lack information from other 
establishments about previous hospitalizations. Sixth, 
the decision to generate a single prediction at the time of 
inpatient admission and only use data available up to two 
days after admission might be subject to bias when evalu-
ating the mortality at medium term (up to 30 days after 
admission). In some rare cases, a patient could be in rela-
tively good health at hospital admission and their health 
subsequently deteriorate very quickly until death. Finally, 
additional research is required to assess the generalizabil-
ity of our results to other settings.

Nevertheless, our study has several strengths. What 
distinguishes our research is its ability to establish a 
prospective risk assessment for individual patients 
within the first day of admission, encompassing a broad 
spectrum of variables. This permits appropriate care 
pathways to be implemented from the first few days of 
hospitalization onwards. While many investigations tend 
to focus on specific patient cohorts, our study addresses 
the entire hospitalized patient population. This differen-
tiation lies in our holistic approach, which incorporates 
diverse variables, including clinical, administrative, and 
social determinants of health. This multifaceted per-
spective enables us to provide a personalized and com-
prehensive risk assessment for each patient, marking a 



Page 12 of 14Stoessel et al. BMC Medical Informatics and Decision Making          (2023) 23:259 

significant contribution to the field. Additionally, our 
methodological approach strikes a balance between 
model complexity, data size, and practical applicability in 
medical practice, aligning with best practices in data sci-
ence and EHR data modelling. Critical to our approach 
were meticulous data exploration and variable extrac-
tion, ensuring the relevance of information while guard-
ing against overfitting in machine learning models. These 
steps underpin the robustness and clinical utility of our 
approach. Moving forward, we plan to validate our mod-
els with an expanded dataset from additional hospitals 
and leverage them in the development of a warning sys-
tem. This system will alert physicians to patients at risk, 
ultimately enhancing healthcare resource allocation and 
management.

Conclusion
Our highly discriminating prediction models identi-
fied multiple risk factors for in-hospital mortality in 
the data available within the first full day of admission. 
Our extraction of the most impactful variables for LR 
and SVM, will enable physicians to understand which 
information has been used by the algorithms. This will 
improve the acceptance of predictive models in everyday 
practice.

The routine use of predictive models that alert health-
care professionals and administrators to a patient´s 
heightened risk of dying within the next 30 days has the 
potential to improve efficient resource management and 
augment the monitoring of patients most at risk.
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