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Abstract 

Multiple Sclerosis (MS) is a chronic disease developed in the human brain and spinal cord, which can cause perma-
nent damage or deterioration of the nerves. The severity of MS disease is monitored by the Expanded Disability Status 
Scale, composed of several functional sub-scores. Early and accurate classification of MS disease severity is critical 
for slowing down or preventing disease progression via applying early therapeutic intervention strategies. Recent 
advances in deep learning and the wide use of Electronic Health Records (EHR) create opportunities to apply data-
driven and predictive modeling tools for this goal. Previous studies focusing on using single-modal machine learning 
and deep learning algorithms were limited in terms of prediction accuracy due to data insufficiency or model simplic-
ity. In this paper, we proposed the idea of using patients’ multimodal longitudinal and longitudinal EHR data to predict 
multiple sclerosis disease severity in the future. Our contribution has two main facets. First, we describe a pioneering 
effort to integrate structured EHR data, neuroimaging data and clinical notes to build a multi-modal deep learn-
ing framework to predict patient’s MS severity. The proposed pipeline demonstrates up to 19% increase in terms 
of the area under the Area Under the Receiver Operating Characteristic curve (AUROC) compared to models using 
single-modal data. Second, the study also provides valuable insights regarding the amount useful signal embedded 
in each data modality with respect to MS disease prediction, which may improve data collection processes.
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Introduction
Multiple sclerosis (MS) is a neurodegenerative condi-
tion characterized by potential disability, affecting the 
central nervous system comprising the brain and spinal 
cord. Estimations based on a ten-year accumulation up 

until 2010 reveal a prevalence of over 700,000 cases of 
MS in adult individuals within the United States [1]. 
Recent advancements in MS research have unveiled a 
significant neuron count loss of up to 39% in patients 
who succumbed to MS compared to those unaffected 
by the disease [2]. Although the human brain possesses 
inherent self-repair mechanisms and regenerative 
potential capable of addressing brain plaques [3], the 
extent of such abilities remains notably limited. Hence, 
timely intervention to prevent or decelerate brain dam-
age assumes critical importance in MS treatment [4]. 
Accurate grading of MS severity plays a vital role in 
determining effective treatment approaches, with scor-
ing systems widely employed for this purpose. One 
such commonly employed ordinal scoring system is the 
EDSS [5], frequently utilized by healthcare providers 
to assess clinical disability in MS. This comprehensive 
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scale encompasses diverse functional systems, includ-
ing pyramidal functions (muscle strength, tone, and 
reflexes), cerebellar functions (coordination and bal-
ance), brainstem functions (eye movements, speech, 
and swallowing), sensory functions (light touch, pain, 
and vibratory sense), bowel and bladder functions, 
visual functions, cerebral functions (cognition), and 
ambulation. Building upon the EDSS, Roxburgh et  al. 
proposed the Multiple Sclerosis Severity Score, facili-
tating the determination of MS disease progression 
using single assessment data, particularly in cases 
where only one evaluation is available throughout the 
course of the disease [6]. Several milestones defined 
within the EDSS score have commonly been adopted to 
delineate different stages of the MS disease course. The 
EDSS 4 (significant disability but capable of walking 
without aid or rest for 500  m), EDSS 6 (requires uni-
lateral assistance to walk approximately 100 m with or 
without resting), and EDSS 7 (ability to walk no more 
than 10  m without rest while relying on support from 
a wall or furniture) serve as notable milestones fre-
quently employed in the study of MS disease severity.

The evaluation of a patient’s EDSS score requires the 
expertise of a well-trained specialist to ensure accu-
rate assessment, which limits its applicability to clin-
ics specialized in MS disease. Several research studies 
have endeavored to tackle this challenge by employing 
machine learning or deep learning models. For instance, 
Pinto et al. proposed the utilization of machine learning 
models to predict MS progression based on the clini-
cal characteristics observed during the initial five years 
of the disease [7]. Zhao et  al. employed a support vec-
tor machine (SVM) classifier along with demographic, 
clinical, and MRI data from the first two years to fore-
cast patients’ EDSS scores at five-year follow-ups [8]. 
Sacca et  al. explored various machine learning models, 
such as Random Forest, Support Vector Machine, Naive-
Bayes, K-nearest-neighbor, and Artificial Neural Net-
work, and employed functional MRI-derived features to 
classify MS disease severity [9]. Narayana et al. proposed 
the adoption of the VGG-16 convolutional neural net-
work (CNN) to predict enhancing lesions in MS patients 
using non-contrast MRIs [10]. D’Costa et al. introduced 
a transformer model named MS-BERT to predict EDSS 
scores based on patients’ neurological consultation notes 
[11]. Ciotti devised a clinical instrument to retrospec-
tively capture EDSS levels, achieving a Kappa score of 
0.80 when comparing captured EDSS scores with actual 
values [12]. Chase et  al. also utilized neurological con-
sultation notes, employing simpler models (Naïve Bayes 
classification model) and features (word frequency) [13]. 
Dekker et al. employed multiple linear regression models 

on patient brain lesion volumes and their variations over 
time to predict physical disability [14].

The above studies explored the application of machine 
learning and deep learning methods, however, they pre-
dominantly focused on limited single modality patient 
information (such as clinical notes, basic lesion volume 
information extracted from MRI, or patient clinical 
characteristics). In recent years, the field of multimodal 
deep learning has witnessed significant advancements. 
These advancements primarily revolve around three key 
research questions: addressing modality heterogeneity, 
identifying interconnections between modalities, and 
representing their interactions effectively [15]. Based 
upon the recent advancements in multimodal deep learn-
ing, it is reasonable to posit that leveraging multimodal 
deep learning approaches can integrate fragmented 
information from diverse modalities, leading to more 
accurate predictions of MS disease severity. Hence, this 
study endeavors to address the question of whether har-
monizing the available EHR data modalities collected 
during patient clinic visits and leveraging longitudinal 
data can enable more precise prediction of MS severity. 
We investigate the potential of utilizing patients’ MRI 
images, clinical notes, and structured EHR data, encom-
passing laboratory tests, vital sign observations, medica-
tion prescriptions, and patient demographics, collected 
during clinic visits, to predict MS disease severity three 
years ahead.

We propose a multimodal deep neural network archi-
tecture capable of leveraging diverse modalities within 
MS patient EHR data. This includes MRI images, such as 
pre- and post-contrast T1 weighted images, T2 weighted 
images, fluid-attenuated inversion recovery images, and 
proton density images. By harnessing this comprehensive 
set of modalities, our approach aims to achieve accurate 
prediction of MS disease severity. In addition, we pro-
pose the utilization of patients’ longitudinal data for pre-
dicting EDSS milestones. This approach acknowledges 
that evidence regarding patients’ MS disease severity is 
not solely confined to the most recent EHR data but is 
also abundantly present in the data from previous clinic 
visits. By incorporating both the current clinic visit and 
historical EHR data, our proposed multimodal deep 
neural network surpasses the limitations of using solely 
cross-sectional data (e.g., utilizing clinical notes from 
the current visit to predict EDSS scores [11]). Longitu-
dinal data encompasses a wealth of MS disease progres-
sion information, surpassing that of cross-sectional data, 
thereby enhancing the model’s ability to generate more 
accurate predictions of the patient’s future status.

This study makes four key contributions.
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• A novel deep learning architecture, namely a mul-
timodal neural network, coupled with a data fusion 
mechanism. This architecture efficiently incorpo-
rates diverse EHR components, including medi-
cations, vital signs, laboratory test results, clini-
cal imaging, and physician notes, to address the 
challenging task of predicting MS disease severity. 
The experimental results demonstrate notewor-
thy enhancements in prediction accuracy when 
compared to using single modality data or simpler 
models.

• Utilization of longitudinal data, encompassing both 
current and historical visit information, instead of 
relying solely on cross-sectional data from the cur-
rent visit. This approach enables precise classification 
of patient EDSS score milestones during the current 
clinic visit.

• Exploration of the informative content embedded 
within each data modality for MS severity prediction. 
The proposed neural network employs various atten-
tion mechanisms to enhance both prediction accu-
racy and model explainability. These mechanisms 
provide insights into the importance of different data 
modalities, thereby shedding light on the specific 
aspects contributing significantly to the prediction 
process.

• We have developed an end-to-end AI model 
designed to work efficiently with readily acces-
sible data, significantly reducing the necessity for 
complex preprocessing procedures. In contrast to 
methods that demand intricate feature extraction 
steps, such as the measurement of thalamic volume 
or lateral ventricle volume, our proposed model 
streamlines the preprocessing stage. It achieves 
this by leveraging deep learning to autonomously 

discover features and interactions, simplifying the 
training process while preserving strong predictive 
performance.

Materials and methods
In this section, we provide an overview of the patients’ 
data descriptions, our neural network architecture, and 
our innovative techniques for addressing the common 
issues in multiple data modality modeling, such as miss-
ing data, irregular sampling, data fusion.

Data description
Our database comprises a comprehensive dataset of 300 
patients diagnosed with MS. Table 1 provides a summary 
of the demographic information of these patients. Each 
patient’s data encompasses three distinct modalities: (1) 
neuroimaging data, (2) structured EHR data, and (3) clin-
ical notes.

The neuroimaging data is stored in NIFTI format and 
captures the patients’ brain images. Most patients have 
undergone multiple clinical visits, and during each visit, 
a range of information is recorded in the structured 
EHR data. This includes laboratory test results, vital 
signs, prescribed medications, diagnoses, medical pro-
cedures, and treatments, which are stored in separate 
tables.

The clinical notes consist of detailed descriptions pro-
vided by physicians during each clinic visit, offering valu-
able insights into the patient’s condition. Our proposed 
neural network architecture is specifically designed to 
handle the heterogeneous structure of these databases by 
learning representations from each modality.

The prediction objective of this research is focused 
on a classification problem, aiming to predict whether 
a patient will reach specific milestones on the EDSS 

Table 1 An overview of patient statistics in the dataset (SD: standard deviation)

Average ± SD Minimum Maximum 0.25 quantile 0.75 quantile

Age 43.62 ± 11.20 19.00 71.00 34.00 52.00

EDSS @ baseline 1.93 ± 1.59 0 7.50 1.00 2.50

EDSS @ last visit 2.90 ± 1.96 0 9.50 1.50 3.50

Number of visits 3.39 ± 1.60 1 13.00 2.00 4.00

Follow-up years (Years b/w first and last visits) 5.14 ± 4.34 0 22.66 2.03 7.01

Number of MRI sessions/patient 1.20 ± 0.96 0 4 0 2

Gender Male 66 (22.0%)

Female 234 (78.0%)

Race White 197 (65.67%)

Black or African American 103 (34.33%)

Ethnicity Hispanic or Latino 100 (33.33%)

NOT Hispanic or Latino 200 (66.67%)
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with a specified time frame, particularly three years in 
advance. For all 300 patients, the EDSS was evaluated 
and recorded by physicians at the end of each clinic 
visit, and these scores serve as the ground truth labels. 
For patients with a follow-up time (i.e., the time inter-
val between the first and last clinic visit) of less than 
three years, we utilize their data from the first clinic 
visit to predict the score at the last visit.

Figure 1 illustrates the distributions of patients’ ages 
and EDSS scores. Additionally, Fig. 2 presents the EDSS 
historical scores of all patients over the course of their 
disease, offering insights into the progression of their 
condition.

Brain MRI
A total of 360 MRI images were obtained for the 300 
patients included in the study. The imaging studies were 

Fig. 1 The histograms of all patients by age; baseline EDSS (at initial hospital visit); EDSS at the last hospital visit; total hospital visits; years 
between the first and the last hospital visit; number of hospital visits during which brain MRI scan was performed

Fig. 2 The MS disease progression of all patients. For clear illustration, patient were sorted by the total EDSS increase in their disease course 
and the trajectory of the top 10% cohort who grows the most were marked in red, and the rest 90% cohort were marked
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conducted using a Philips 3.0T Ingenia scanner (Philips 
Medical Systems, Best, Netherlands). Multiple MRIs 
were available for some patients, collected from different 
clinic visits. The MRI dataset encompasses five distinct 
sequences: pre-contrast and post-contrast T1-weighted 
sequences (T1-pre, T1-post), T2-weighted sequences, 
proton density-weighted sequences (PD), and fluid-atten-
uated inversion recovery sequences (FLAIR).

All MRI sequences were acquired with a field of view 
of 256  mm x 256  mm x 44  mm and in the axial plane. 
To ensure consistency and facilitate analysis, the MRI 
images underwent several preprocessing steps. First, 
they were skull-stripped using the Simple Skull Stripping 
(S3) method [16] and the SRI24 template [17]. Next, a 
bias correction technique known as N4 Bias Field Cor-
rection was applied to adjust the low-frequency intensity 
variations [18]. Finally, the images were co-registered 
to a common template (SRI24) using FreeSurfer [19]. A 
representative example of the MRI sequences for a sam-
ple patient is displayed in Fig.  3. These processed MRI 
images serve as a crucial component of the multimodal 
dataset, contributing valuable information for the subse-
quent analysis and prediction tasks.

Clinical notes
The patient’s clinical notes are documented in unstruc-
tured free-text format and provide a comprehensive 
account of the patient’s health status. These notes 
encompass a range of vital information, including the 
physician’s observations, patient demographics (such as 
weight, height, and BMI - body mass index), physiologi-
cal condition, medical diagnoses, prescribed medica-
tions, and administered treatments. To ensure privacy 
and confidentiality, all clinical notes data underwent a 
rigorous de-identification process, where any personally 
identifiable information of both patients and physicians 
was removed from the dataset. This approach adheres to 
stringent privacy regulations and safeguards the anonym-
ity of the individuals involved, allowing for secure and 
ethical analysis of clinical data.

Structured EHR
The patient’s structured EHR consists of organized tabu-
lar data that encompasses various types of information, 
including laboratory test measurements (floating-point 
values), vital sign observations (floating-point values), 
medication administrations (binary indicator − 0 for not 
taken, 1 for taken), and demographic information (age: 
floating-point value, race/ethnicity/gender: binary indi-
cators). The EHR tables are constructed in a standard-
ized format, where each row represents an observational 
time stamp, and the columns represent specific features. 
It is important to note that the features within each table 
remain consistent for all patients, while the number of 
rows may vary depending on the number of observa-
tional time points for each patient.

To streamline the EHR tables and facilitate effective 
neural network training, we apply a time granularity of 
4 h for laboratory tests, vital signs, and medication tables. 
During each 4-hour window, we calculate the average 
value for each feature if multiple observations are avail-
able. This approach serves to reduce table dimensions, 
eliminate observational noise, and prevent the creation 
of large and sparse tables that could hinder neural net-
work training. When certain features lack observations 
within the 4-hour window, the corresponding entry is set 
to zero.

It is important to maintain the integrity of the data 
within clinic encounters, ensuring that each 4-hour win-
dow falls within a single encounter. This prevents the 
averaging of feature values from different encounters. 
For example, if a patient has two clinic encounters, one 
from 2014-05-05 1:15:00 PM to 2014-05-05 6:00:00 PM, 
and another from 2015-09-20 9:12:00 AM to 2015-09-20 
1:00:00 PM, there would be four rows in each table rep-
resenting the observations from specific time intervals 
within each encounter. Rows containing all zeros (indi-
cating no observations for any feature) are deleted. The 
demographic data of all patients is structured as a fixed 
size vector, providing a standardized representation of 
the demographic variables. Table 2 presents the variables 
utilized in our dataset.

Fig. 3 The MRI sequences of a patient as an example



Page 6 of 17Zhang et al. BMC Medical Informatics and Decision Making          (2023) 23:255 

Figure  4 demonstrates an example patient’s three 
clinic encounters. Note that not all data modalities were 
observed in each encounter.

Model architecture
We propose a novel multimodal neural network designed 
to predict a patient’s EDSS score. The proposed neural 

network architecture follows an encoder-decoder schema 
implemented in a sequential structure, augmented with a 
self-attention module for improved performance and fea-
ture extraction capabilities.

The objective of the encoder network is to effectively 
process data from various modalities and map them 
into dense embeddings within a shared high-dimen-
sional latent space. Distinct encoder neural network 

Table 2 The features from the structured EHR data tables, including laboratory tests, vital signs, and medications

LABORATORY TEST VITAL SIGN MEDICATION

Mean Corpuscular Hemoglobi Carbon Dioxide Albumin Diastolic Blood Pressure Baclofen

Red Cell Distribution Width Basophils Glucose Level Systolic Blood Pressure Gabapentin

Mean Corpuscular Hemoglobin 
Concentration

White Blood Cell Count eGFR Heart Rate Copaxone

Mean Corpuscular Volume Hematocrit Albumin/Globulin Ratio Weight Gilenya

Alanine Aminotransferase Red Blood Cell Count Eosinophils Height Tecfidera

Aspartate Aminotransferase Platelet Count Potassium Level BMI Aubagio

Anion Gap Total Protein Creatinine O2 Saturation Ampyra

MRI Brain W/Wo Contrast Bili Total Bilirubin, Direct Pulse Prednisone

Creatinine Level Alkaline Phosphatase Bun/Creatinine Ratio Temperature Vitamin

Bun/Creatinine Ratio Albumin Level Potassium Respiration Duloxetine

Hematocrit Test Globulin Systolic Dalfampridine

Hemoglobin Neutrophils MRI Spine Cervical W Wo Contrast Clonazepam

Blood Urea Nitrogen Lymphocytes Brain W/Wo Contrast MRI

Mean Platelet Volume Absolute Eosinophils Body Surface Area

Calcium Level Total Basophils Bilirubin, Indirect

Sodium Level Absolute Monocytes Segmented Neutrophils

Thyroid Stimulating Hormone Absolute Neutrophils Monocytes

Segs-Bands Absolute Basophils Chloride Level

Fig. 4 Example: The clinic visits of an example patient and the information (data modality) recorded during each visit
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architectures are employed for each modality, tailored 
to their respective learning tasks. For instance, CNNs 
are utilized for image processing and structured EHR 
data, while language models are employed for handling 
clinical notes, see Fig.  5. In the following, we intro-
duce the details of each encoder architecture for each 
modality.

Structured EHR
The encoder network for structured EHR consists of mul-
tiple parallel 1-dimensional CNN channels. Each channel 

within the network follows a homogeneous network 
structure but incorporates distinct hyperparameters to 
accommodate EHR tables of varying sizes specific to each 
patient. This design allows for efficient processing and 
extraction of meaningful features from the structured 
EHR data, see Fig. 6.

The structured EHR data of patients comprises multi-
ple tables containing information such as lab tests, vital 
signs, and medications. These tables are formatted with 
rows representing observation time points and columns 
representing specific features. However, the number of 

Fig. 5 The detailed architecture of one of the encoder channels for processing structured HER data. The figure shows the lab test channel 
as an example

Fig. 6 The encoder network for our proposed deep neural network
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rows can vary for different patients and different tables of 
the same patient, resulting in irregular spacing along the 
time axis. This irregular spacing introduces heterogeneity 
in sampling intervals, posing challenges for analysis.

The irregular sampling issue is a typical issue in pro-
cessing structured EHR data with multiple longitudi-
nal features [20]. Traditional methods such as multiple 
imputation [21] or Gaussian process-based imputation 
[22] address this issue by performing imputation. The 
essential idea is to establish a common regularly spaced 
time axis for all the features and then imputing missing 
values at these shared time points. Recent advancements 
have demonstrated that attention networks offer a more 
effective solution to this problem, yielding superior per-
formance [23]. This module enables the neural network 
to adaptively assign distinct attention weights to differ-
ent time points in a patient’s history, thereby effectively 
handling the irregularity in the sampling intervals. Spe-
cifically, the attention weights are computed for each 
row (representing a time point) through the application 
of multiple layers of 1D-CNNs on the feature dimension. 
This process results in the generation of a single attention 
weight for each time stamp.

The computed attention weights collectively form an 
attention vector, which represents the relative impor-
tance assigned to different time stamps. By applying this 
attention vector to the original input data, the network 
is able to generate a fixed dimensional embedding that 
remains consistent across all patients. This approach 
ensures that the neural network is able to capture and 
leverage relevant temporal patterns and dependencies in 
the data, enabling more accurate and robust predictions.

In each channel, there are stacked 1D convolution 
layers, followed by a ReLU activation layer and drop-
out layers. The number of layers varies depending on 
the number of features in each table (lab, vital, medica-
tion, etc.). For the i-th patient, the k-th data table Di

k of 
dimension tik × fk is fed into thek-th channel, where tk 
rows represent the time stamps of clinic visits and fk col-
umns represent variables. Note that different EHR tables 
(laboratory tests, vital signs, medications, etc.) have dif-
ferent fk and different patients have different numbers of 
clinic visits tik . Each row of the table is processed through 
a stack of multiple 1D CNNs (see Fig. 6) and is reduced 
to a single value (attention weight). The entire table will 
generate an attention weight vector αi

k
 of size tik × 1 . The 

attention weights can be viewed as the weight factor of all 
fk features at different time points. In the following, we 
omit the patient index i.

We multiply the attention vector α
k
 with the input 

matrix Dk to get the feature map ek for each table,

where ek is the embedding vector of the k-th table for a 
certain patient. Specifically, each element in ek is calcu-
lated as

and ek is of size 1× fk.

Image embedding
For the encoder channel dedicated to patient MRI 
images, we employ a different network structure com-
pared to the structured EHR. Specifically, we utilize the 
ResNet architecture [24] to process the MRI images. Each 
MRI sequence, namely T1-pre, T1-post, T2, PD, and 
FLAIR, is individually fed into a corresponding ResNet 
model. The output of each ResNet model is a fixed-length 
embedding vector.

Clinical notes embedding
The encoder channel dedicated to processing patient 
clinical notes data employs a Graph Attention Convo-
lution Model (GACN), which takes textual input and 
generates embeddings for each document [25]. For medi-
cal word embeddings, we utilize a pre-trained database 
trained on PubMed + MIMIC-III [26].

In GACN, the entire document is treated as a word 
co-occurrence network, where words in the corpus of all 
patients’ documents serve as graph nodes. Additionally, 
an extra “document node” is introduced, representing the 
entire document, and connected to all other nodes. To 
capture word co-occurrences, a sliding window mecha-
nism is employed, and the resulting co-occurrences are 
represented as weighted and directed edges in the graph. 
This ensures that the word order is preserved within the 
sliding window, while maintaining meaningful semantics 
and word co-occurrence counts.

The training process of GACN is based on message 
passing. Specifically, we define G(V ,E) as the graphical 
network, where V  represents the set of nodes and E rep-
resents the set of edges. Each node v(∈ V ) constructs a 
broadcasting message by aggregating the embeddings of 
its neighboring nodes (using a multi-layer perceptron).

which can proceed in a parallel manner using matrix 
format,

ek = αT
k ·Dk

ek [j] =

tk

m=1

αk [m]Dk [m, :], for j = 1, . . . , fk

m
t+1
v = AGGREGATE t+1

({
h
t
w | w ∈ N (v)

})
,
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where H t
∈ R

n×d is the d-dimensional node features of n 
nodes and A ∈ R

n×n is the adjacency matrix, and MLP is 
multiple layer perceptrons neural network.

All nodes update themselves by their own embedding 
and all messages from their neighbors using a Gated 
Recurrent Unit (GRU) network,

again, in matrix format,

After T  steps, a final self-attention read-out layer is 
used to aggregate all nodes embeddings and output a 
latent vector to represent the entire document,

where Ĥ
T
∈ R

n×d is the final node representation of all 
n− 1 nodes (remove the document node) after T  time 
steps, and W T

A is the network parameters (a dense layer). 

M
t+1

= MLPt+1
(
D

−1
AH

t
)

h
t+1
v = COMBINEt+1

(
h
t
v ,m

t+1
v

)

H
t+1

= GRU
(
H

t ,Mt+1
)
.

Y
T
= tanh

(
Ĥ

T
W

T
A

)

βT
i =

exp
(
Y
T
i
·v
T
)

∑n−1
j=1 exp

(
Y
T
j ·v

T
)

u
T
=

∑n−1
i=1 βT

i Ĥ
T

i

Therefore, uT
∈ R

d would be the final representation 
of the document, i.e., aggregation of all node features, 
which will be fed into a classification layer for document 
classification.

Multi‑modality data fusion
Multimodal medical data often exhibit inherent logical 
relationships. For instance, vital signs and laboratory tests 
contribute to the diagnosis, which in turn determines the 
appropriate procedures and medications. Some informa-
tion remains constant over time, such as demographics, 
while others evolve dynamically.

To take advantage of the intricate interplay among 
various types of medical information, we have designed 
a data fusion pipeline that leverages the causal relation-
ships between variables. Vital signs, laboratory tests, and 
MRI scans leading to the diagnosis, which further influ-
ences prescription and procedure decisions, ultimately 
resulting in medication administration. This pipeline is 
implemented using a bidirectional GRU-based decoder, 
facilitating the integration of time-varying information. 
Therefore, the latent representation vectors obtained 
from each encoder network channel are combined into a 
structured matrix E in the above order (illustrated in the 
left part of Fig. 7). If the lengths of the vectors differ, zero-
padding is applied to ensure a consistent matrix format. 
Each row of the matrix represents a specific modality, 

Fig. 7 The decoder network for our proposed deep neural network
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enabling the model to capture and learn the interdepend-
encies within the data.

where E is of dimension K × d, d = max(f1, ..., fK ).

Decoder network
The decoder network structure is composed of a stacked 
bidirectional GRU (Bi-GRU) network with a self-atten-
tion module. It takes the feature matrix E as input. The 
self-attention serves to learn important weights on the 
state vectors from different data modalities. The Bi-GRU 
network takes K  as the sequence length and d as the 
input size. We use C to denote the stack of hidden states 
of all time points, which is of dimension K × h , h = 2 × 
hiddensize (note that factor 2 comes from the bi-direc-
tion network being used).

Each state of the bidirectional GRU network is fed into 
an attention module, which is 1D convolution layer of 
multiple output channels. The attention module outputs 
a vector of attention weights γ of length g (hyper-param-
eter, depending on the output channel of the convolution 
layer), and

where B is of dimension K × g denoting the attention 
matrix. The attention matrix is multiplied with the GRU 
output,

where O is of dimension g × h . Note that the purpose of 
this attention layer is to enforce a feature reduction from 
the high-dimensional GRU outputs to a smaller and more 
informative lower-dimensional embedding not only for 
reducing the noise but also for increasing the efficiency 
of neural network training.

The output matrix O is flattened, and concatenated 
with the patient demographic data vector d , and fed into 
a fully-connected (FC) layer for prediction,

E =

[
ZeroPadding(e1)

T , . . . , ZeroPadding (eK )
T
]T

,

B =

[
γ T
1 , . . . , γ T

K

]T

O = B
T
· C

o = FC(Concat(Flatten(O),d))

see Fig. 7.

Results
The prediction model is implemented using Python and 
PyTorch, and the training process is conducted on a Tesla 
A100 graphics card. Before feeding the data into the 
model, a comprehensive quality check is performed on all 
modalities. Any low-quality data, such as empty clinical 
notes or meaningless lab test results, is carefully excluded 
or removed from the dataset.

To evaluate the model’s performance, a 5-fold cross-
validation approach is employed. The dataset of 300 
patients is randomly divided into five folds, with each 
fold used iteratively as the hold-out test set (20%) while 
the remaining folds serve as the training set (80%). This 
cross-validation strategy allows for a robust assessment 
of the model’s predictive capabilities.

The performance of the prediction model in identifying 
patients with an Expanded EDSS score greater than 4.0 
is summarized in Table  3. Multiple data modalities are 
considered, and their individual and combined contribu-
tions to the prediction task are evaluated. It is observed 
that the utilization of multimodal data inputs generally 
yields superior performance compared to single-modal 
inputs. Specifically, the top three performances in terms 
of AUROC are achieved when utilizing all data modali-
ties (0.8380), combining EHR and clinical notes (0.8078), 
or combining MRI and clinical notes (0.7988).

Moreover, the degradation in prediction performance 
resulting from excluding either MRI or EHR data from 
the input is minimal. This can be reflected on the per-
formance of MRIs & Notes and EHR & Notes in Table 3 
which have four out of five metrics falling in the top high-
est, and three of five in top highest, respectively. This 
suggests that these modalities provide limited additional 
information compared to clinical notes when predicting 
the severity of MS. Notably, if clinical notes are entirely 
omitted from the input data, the prediction performance 
drops to 0.7836. Additional information on the model’s 
performance in predicting other EDSS milestones, such 
as EDSS > 6 and EDSS > 7, using all data modalities, can 
be found in Table 4.

Table 3 Encoder network parameters (I: input channel size, O: output channel size, K: kernel size, S: stride size, P: padding size, R: 
(dropout) rate)

Conv1d Dropout Conv1d ReLU + Dropout Conv1d ReLU + Dropout Pooling

Channel 1 (Lab tests) I: 1, O: 8, K: 7, S: 2 R: 0.3 I: 8, O: 8, K: 4, S: 2 R: 0.3 I: 8, O: 1, K: 3, S: 2 R: 0.3 Avg.

Channel 2 (Vital Sign Observation) I: 1, O: 8, K: 3, S: 2 R: 0.3 I: 8, O: 1, K: 2, S: 2 R: 0.3 Avg.

Channel 3 (Medication) I: 1, O: 8, K: 3, S: 2 R: 0.3 I: 8, O: 1, K: 2, S: 2 R: 0.3 Avg.
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MRI Images
We introduce five channels to process the MRI sequence, 
where each channel employs a ResNet structure. The five 
channels are independent, and each is trained to learn 
from one sequence (T1-pre, T1-post, T2, FLAIR and 
PD). All MRI images are bias-corrected, skull-stripped, 
and registered and the intensity scale is normalized [27]. 
The following data augmentation is applied during model 
training. Image intensity normalization and random hor-
izontal and vertical flip were performed both with a prob-
ability rate of 0.5. Randomly rotation was performed with 
a probability of 0.5 by a maximum of ± 0.02 degrees on all 
three dimensions. Random zoom-out (then resize) was 
applied to prevent neural networks to take shortcuts by 
remembering the pixel location instead of learning char-
acteristic lesions areas to make predictions. If a patient 
performed MRI scans in more than one clinic visit, we 
use the last scan as it represents the patient’s most recent 
disease status. Due to the relatively high imbalance of the 
positive and negative samples, we performed 10-fold re-
sampling for the negative training samples during model 
training.

For each channel, a respective ResNet model is trained 
on the training dataset, and we select the trained model 
with the best performance on the validation dataset. Our 
goal is to learn a latent vector representation of the MRI 
image instead of performing disease classification at this 
stage, therefore, the training process is formulated as 
a metric learning task where each channel’s ResNet is 
trained to learn an embedding for each MRI sequence of 
a patient. The triplet margin loss [28] operates directly on 
embedding distances by promoting the matching point 
(positive) to the reference point (anchor) and the non-
matching point (negative) away from the anchor. The 
network is trained to learn well-separated embedding 

vectors for positive and negative patients for downstream 
decoding networks to perform classification. The triplet 
margin loss is defined as

where ai, ni and pi are an anchor, positive and negative 
sample in the batch, respectively. We set the anchor point 
in our model as a fixed point in the embedding space, 
therefore, the distance from the positive samples to the 
anchor is minimized and the distance from the negative 
samples to the anchor is maximized.

The margin in the triplet margin loss is chosen to be 
1.5. The learning rate is set to be  10−5 and the batch size 
is 10. The ResNet in each encoder channel is trained for 
500 epochs. Early stopping criteria of not-improving 
for consecutive 50 epochs on the validation dataset are 
adopted.

We leverage the gradient-weighted class activation 
mapping (Grad-CAM) [29] model to locate and visual-
ize the important regions the ResNet neural network is 
learning for predicting the target. The Grad-CAM uses 
flowing gradients of the prediction target into the last 
convolutional layer of the ResNet to produce a heatmap 
of the regions according to their contributions to the pre-
diction, see Fig. 8.

Clinical notes
We preprocess patients’ clinical notes by identifying and 
then removing all sensitive patient health information 
that is irrelevant to our prediction task, including the 
patient and physician’s name, address, phone number, 
and email address. Similar to the MRI image data, we for-
mulate the embedding generation problem from clinical 

loss =
∑

ai ,ni ,pi∈batch

max
(
d(ai , pi)− d(ai , ni)+margin, 0

)

Table 4 Prediction accuracy performance of using different data modalities for predicting EDSS>4. In each evaluation metric, the 
top-3 highest scores are highlighted

AUROC AUPRC Sensitivity Specificity Accuracy

MRI T1-pre 0.6462 ± 0.0352 0.2074 ± 0.0145 0.5089 ± 0.0397 0.7679 ± 0.0209 0.6567 ± 0.0300

MRI T1-post 0.6437 ± 0.0389 0.2027 ± 0.0180 0.5501 ± 0.0390 0.6536 ± 0.0252 0.6697 ± 0.0199

MRI T2 0.7736 ± 0.0268 0.2245 ± 0.0198 0.6834 ± 0.0223 0.7409 ± 0.0398 0.7467 ± 0.0390

MRI FLAIR 0.7945 ± 0.2798 0.3306 ± 0.0309 0.7689 ± 0.0261 0.7423 ± 0.0265 0.7423 ± 0.0399

MRI PD 0.5430 ± 0.0401 0.0998 ± 0.0321 0.7536 ± 0.0218 0.4862 ± 0.0300 0.5046 ± 0.0399

Clinical Notes 0.7048 ± 0.0365 0.5201 ± 0.0293 0.4632 ± 0.0320 0.8956 ± 0.0235 0.4958 ± 0.0301

Structured EHR 0.6589 ± 0.0193 0.3651 ± 0.0265 0.7015 ± 0.0263 0.6587 ± 0.0366 0.6984 ± 0.0265

MRIs & Notes 0.7988 ± 0.0465 0.6321 ± 0.0299 0.7024 ± 0.0536 0.7792 ± 0.0563 0.7963 ± 0.0422
MRIs & EHR 0.7836 ± 0.0531 0.4265 ± 0.0323 0.6789 ± 0.0411 0.6875 ± 0.0333 0.6841 ± 0.0523

EHR & Notes 0.8078 ± 0.0232 0.7978 ± 0.0453 0.7268 ± 0.0435 0.7643 ± 0.0255 0.8125 ± 0.0353
MS-BERT( [11]) 0.6010 ± 0.0222 0.2064 ± 0.0356 0.3090   ± 0.0265 0.7936 ± 0.0512 0.7788 ± 0.0398

MRI & Notes & EHR 0.8380 ± 0.0438 0.7963 ± 0.0520 0.7489   ± 0.0502 0.7936 ± 0.0488 0.7960 ± 0.0312
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notes as a metric learning problem, where the message-
passing graph neural network is trained to learn mean-
ingful embeddings and their distances between positive 
and negative samples. Hence, the same loss function (14) 
is used for this encoder channel.

We set the size of the window to be 10 (covering 10 
consecutive words) and the message passing layer to be 
2. The hidden side of the GRU network is 64. We trained 
the graph network with 500 epochs with a batch size of 
128, the learning rate of  10−3, and early stopping criteria 
of 50 epochs (no improvements on the validation data-
set). We choose the best-performing model on the vali-
dation dataset and run it on the test dataset to get the 
model’s final performance.

Structured EHR
The patient’s structured EHR consists of tables of 4 cat-
egories, the laboratory tests table, the vital signs table, 
the medications table, and the demographics table. The 
first 3 categories are in the format number of times-
tamps × number of features containing the laboratory 
test results (float), vital sign measurements (float), and 

medications (0/1 indicators), respectively. All numerical 
data (non-categorical) was standardized using max-min 
scalar to the range of 0 to 1. Table 2 shows a pre-selected 
subset of all the variables from the above 3 categories to 
be used in our model, based on their observation fre-
quency. Features (lab tests, medications) that were taken 
by less than 10% of patients were discarded. The categori-
cal features in the demographic table contains race (0/1, 
one-hot encoded), ethnicity (0/1, one-hot encoded), sex 
(0/1, male/female), and age (float, min-max normalized). 
The encoder network consists of 3 channels for each of 
the first 3 categories and the network parameters are 
described in Table 5.

A patient’s three structured EHR’s embeddings pro-
duced by the encoder network will be concatenated with 
the five MRI image embeddings produced by the ResNet, 
and together with the clinical note embedding to be fed 
into the decoder network. In the situation of a patient (a 
small amount) without MRI or clinical notes, the corre-
sponding embedding will be set to an all-zero vector. In 
the decoder network, the bidirectional GRU network is 
set to have 4 layers and hidden size of 512.

Fig. 8 Attention maps for MRI sequences of a sample patient

Table 5 Prediction accuracy performance at different EDSS milestones

AUROC AUPRC Sensitivity Specificity Accuracy

MRI & Notes & EHR (EDSS > 4) 0.8380 ± 0.0438 0.7963 ± 0.0520 0.7489 ± 0.0502 0.7936 ± 0.0488 0.7960 ± 0.0312

MRI & Notes & EHR (EDSS > 6) 0.8032 ± 0.0556 0.7012 ± 0.0501 0.8043 ± 0.0454 0.7121 ± 0.0755 0.6720 ± 0.0555

MRI & Notes & EHR (EDSS > 7) 0.8543 ± 0.0572 0.7678 ± 0.0588 0.6777 ± 0.0453 0.7534 ± 0.225 0.7248 ± 0.0377
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The self-attention module in the encoder channels cor-
responding to laboratory tests, vital signs, and medica-
tions can provide insights into feature importance. The 
importance of a feature represents how much the feature 
is being relied on making correct predictions. Figure  9 
illustrates the importance of laboratory features evalu-
ated on the test set of patients. Larger value indicates 
higher feature importance. From the figure, we observe 
that the top three important features for all patients are 
“Absolute Neutrophils”, “Absolute Lymphocytes”, and 
“Platelet”.

Similarly, Fig.  10 depicts the feature importance for 
vital signs and medications. Our algorithm identifies cer-
tain medications such as “Baclofen 10 MG Oral Tablet”, 
“Gabapentin 300 MG Oral Capsule”, and “predniSONE 
50 MG Oral Tablet” as having high importance, as they 
are commonly used to treat MS symptoms. Regarding 
vital signs, features such as “Temperature”, “Respiration”, 

“Pulse Quality”, and “Respiration Quality” are gener-
ally regarded as less critical indicators for predicting the 
severity of MS in the clinical consensus.

These findings provide valuable insights into the rele-
vance of specific features for the prediction of MS sever-
ity, aiding in understanding the underlying factors and 
potential treatment options.

Discussion
In this study, we propose a multimodal deep neural net-
work approach that combines EHR and neuroimaging 
data to address the prediction of MS disease severity. By 
leveraging diverse sources of information such as labora-
tory tests, vital signs, medications, neuroimaging data, 
and clinical notes, our model aims to provide accurate 
predictions of the EDSS score, a widely used metric for 
evaluating MS disease severity.

Fig. 9 The attention weights for laboratory tests
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The study focuses on three EDSS milestones EDSS 
4.0, 6.0 and 7.0 since they are widely accepted as criti-
cal transition points between MS stages. For example, 
Confavreux et al. used the above milestones to study the 
effect of relapses on the progression of irreversible dis-
ability [30]. The same milestones have also been used to 
study the contribution of relapses to worsening disabil-
ity and evaluate the MS therapies’ effect on delaying the 
disability accumulation [31]. A Sweden research group 
studied whether the risk of reaching the above disability 
milestones in MS has changed over the last decade [32]. 
Rzepiński et al. used the EDSS milestones to explore early 
clinical features of MS and how they affect patients’ long-
term disability progression [33]. The same milestones 
were also used to study how these factors affect the time 
to transition from relapsing-remitting MS (RRMS) to 
secondary progressive MS (SPMS).

While MRI images and clinical notes have been recog-
nized as valuable sources of diagnostic information for 
MS, the role of laboratory test results in predicting the 
severity of the disease remains uncertain. This study aims 
to contribute to the understanding of this matter from an 
engineering perspective. Conversely, previous research 
has indicated that both MRI data and certain labora-
tory test results can provide meaningful insights into 
MS disease severity. Notably, studies have demonstrated 
a strong correlation between the thickness of cortical 
and deep grey matter in MRI images and the severity of 
MS, underscoring the informative nature of MRI data in 
predicting disease progression [34, 35]. Some laboratory 
tests were also documented as playing an important role 
in this regard, such as the cerebrospinal fluid (CSF) [36, 
37], and serum neurofilament light chain (nFl) [38].

The results show that despite the many publications, 
conventional MRI contains relatively less information 

about MS severity compared to other data modalities. 
However, T2 and Flair MRI performed relatively bet-
ter than other MRI sequences. Clinical notes were well-
documented to be used for the prediction of EDSS, which 
has been re-verified in our experiment as the relatively 
not good performance of using MRIs, or EHR, or MRIs 
& EHR were all improved when clinical notes were added 
to the input. A re-examination of the data reveals a rea-
sonable explanation that the clinical notes contain rich 
patient general disease information including patient 
status, medical procedures, and treatment information, 
which implicitly and partially embeds information from 
the EHR data and MRI images.

For MRI image processing, alternatively, other variants 
of ResNet [39] can also be utilized as embedding learning 
networks in our task. However, our experimental findings 
indicate that employing different network structures for 
the MRI sequences only leads to marginal improvements 
in prediction performance. This can be attributed to two 
reasons. Firstly, the inherent capabilities of the ResNet 
model enable it to effectively capture essential features 
within the MRI images, thereby generating diverse 
embeddings for positive and negative patients. Secondly, 
considering that the MRI data represents only a subset of 
the overall input multimodal data, the impact of ResNet 
variations on the final prediction outcome is diluted by 
the presence of other data modalities.

There are a few future research directions for this 
study. First, an equally interesting research question is 
to predict a patient’s MS disease progression rate. This is 
because having an EDSS of 4.0 at the age of 65 and a dis-
ease duration of 40 years would mean a relatively benign 
disease but having an EDSS score of 4.0 only after 5 years 
of MS diagnosis is considered as “aggressive” MS. Moreo-
ver, the severity of MS can be seen as a relative concept 

Fig. 10 The attention weights for (a) medications and (b) vital signs
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instead of an absolute one. The severity of MS should 
be studied based on an understanding of the “natural” 
disease progression, and it varies in terms of many fac-
tors (e.g. sex, disease duration, lesion load, atrophy, etc.). 
Limited by the data size and commonly agreed on crite-
ria to distinguish the “aggressive” cases from the rest, we 
focus on developing a tool to predict EDSS milestones 
now and leave the decision of MS severity to MS special-
ists by jointly considering all the above factors. In addi-
tion, this problem itself is quite an interesting research 
problem and could potentially be studied using survival 
analysis methods, the results will have a high impact on 
the prevention of rapid disease progression through early 
intervention.

The second is the limitation of the imaging data. While 
random rotation of MRI scans (a data augmentation 
technique used to train ResNet on the MRI sequences) 
helps generalizability, the use of only one scanner for 
all datasets makes it difficult to infer if the model would 
work in the same way when introduced to new images 
from a different scanner. Therefore, our work serves as a 
proof-of-concept regarding this question. Ideally, more 
data (especially data from external sources) needs to be 
collaboratively collected to verify the inclusion of MRI 
potentially has a positive impact on a multi-modal model.

Thirdly, the study was conducted on a cohort of 300 MS 
patients from a local academic medical center. An impor-
tant future research direction is to evaluate the generaliz-
ability of the proposed model to other institutions. The 
result replicability should be checked from two perspec-
tives, the first is the prediction accuracy with or with-
out model re-training, i.e., model generalizability; and 
the second is if the ranking of importance for different 
data modalities is the same in general, for example, MRI 
images and clinical notes contains more signals com-
pared to the structured EHR. If the results in this study 
are verified, it may serve as a cost-effective study recom-
mending which electronic health information should 
be collected to reach maximum prediction accuracy. To 
address the issue of limited size of the dataset, collabora-
tive studies are encouraged that involve pooling datasets 
from various sites. Such an approach could leverage fed-
erated learning with secure data sharing mechanisms to 
facilitate joint investigations. This not only has the poten-
tial to enrich our dataset but also aligns with the emerg-
ing field of Multimodal Federated Learning, offering an 
exciting avenue for future research.

Another compelling research question from a tech-
nical standpoint revolves around the utilization of time 
windows for averaging observations. As discussed, this 
technique proves valuable in reducing the size of longi-
tudinal data while retaining essential temporal informa-
tion. However, there exist more advanced methods for 

handling long sequences of temporal data. Although 
not the primary focus of this study, it is worth mention-
ing some notable techniques, such as data resampling 
(subsampling) and the application of deep neural net-
works capable of handling longer data sequences without 
encountering issues like the vanishing gradient problem, 
such as the use of transformer models.

Conclusion
The study focuses on predicting patients’ MS severity 
three years in the future by using current and historical, 
and multimodal medical information, with the goal of 
developing an AI-based patient disease status evaluation 
tool to exceed human capabilities.

This research represents an initial exploration in inte-
grating multiple data modalities for predicting MS sever-
ity, while also assessing the effectiveness of each modality 
in this prediction task. Our experimental results high-
light the significant contributions of brain MRI images 
and clinical notes as the most informative modalities 
for predicting MS severity, while structured EHR data 
demonstrates relatively limited relevance to this spe-
cific prediction objective. By integrating and analyz-
ing multimodal data, our approach aims to improve the 
understanding of MS disease progression and provide 
valuable insights for clinical decision-making and treat-
ment planning.
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