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Abstract
Background The addition of coronary artery calcium score (CACS) to prediction models has been verified to improve 
performance. Machine learning (ML) algorithms become important medical tools in an era of precision medicine, 
However, combined utility by CACS and ML algorithms in hypertensive patients to forecast obstructive coronary 
artery disease (CAD) on coronary computed tomography angiography (CCTA) is rare.

Methods This retrospective study was composed of 1,273 individuals with hypertension and without a history 
of CAD, who underwent dual-source computed tomography evaluation. We applied five ML algorithms, coupled 
with clinical factors, imaging parameters, and CACS to construct predictive models. Moreover, 80% individuals were 
randomly taken as a training set on which 5-fold cross-validation was done and the remaining 20% were regarded as 
a validation set.

Results 16.7% (212 out of 1,273) of hypertensive patients had obstructive CAD. Extreme Gradient Boosting 
(XGBoost) posted the biggest area under the receiver operator characteristic curve (AUC) of 0.83 in five ML 
algorithms. Continuous net reclassification improvement (NRI) was 0.55 (95% CI (0.39–0.71), p < 0.001), and integrated 
discrimination improvement (IDI) was 0.04 (95% CI (0.01–0. 07), p = 0.0048) when the XGBoost model was compared 
with traditional Models. In the subgroup analysis stratified by hypertension levels, XGBoost still had excellent 
performance.

Conclusion The ML model incorporating clinical features and CACS may accurately forecast the presence of 
obstructive CAD on CCTA among hypertensive patients. XGBoost is superior to other ML algorithms.
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Introduction
Hypertension affects approximately one-third of the 
world’s adult population and is a major risk for the pres-
ence of coronary artery disease (CAD) [1]. Arguably the 
biggest challenge for cardiologists is to more accurately 
identify patients with obstructive CAD among all indi-
viduals with hypertension. Coincidentally, coronary com-
puted tomography angiography (CCTA) has emerged as 
a non-invasive and popular method for the evaluation of 
CAD for many years [2, 3]. With the extensive application 
of CCTA in clinical practice, it is imperative to optimize 
patient selection to improve diagnostic yield and cost-
effectiveness of CCTA [4].

The coronary artery calcium (CAC) scan, different 
from the CCTA, can be accomplished with 10 to 15 min 
of total room time at about 1 mSy of radiation, without 
the need for contrast agents [5]. CAC, as a biomarker of 
subclinical atherosclerosis, is the most significant inde-
pendent predictor for cardiovascular events as well as 
all-cause mortality [6, 7]. Furthermore, accumulated 
evidence has demonstrated that the absence of coronary 
artery calcium (CAC) in CCTA represents a low risk 
for the incidence of cardiovascular events while there 
is increased cardiovascular risk with CACS increasing 
[8, 9]. In addition, the addition of CACS to clinical pre-
diction models has been revealed to improve predictive 
performance for CAD [10, 11]. Interestingly, previous 
reports have unveiled that CAC is not only accelerated 
by hypertension but also contributes to hypertension 
[12]. However, the predictive importance of CACS for 
obstructive CAD in hypertensive patients has rarely been 
defined.

Machine learning (ML) is an emerging sort of artificial 
intelligence (AI) and is skilled at uniting diverse popula-
tion characteristics to fit superior prediction models. 
Thus, ML has been widely applied to healthcare data 
analysis in recent years [13, 14]. By taking full advantage 
of the powerful prediction ability of ML algorithms, it 
may be feasible to develop prediction tools that surpass 
traditional statistical models in some cases, thus optimiz-
ing the prediction of CAD and decreasing the extensive 
use of CCTA in hypertensive patients. In this study, we 
seek to develop ML-based models integrating clinical 
factors and CACS, to forecast the presence of obstructive 
CAD on CCTA among patients with hypertension.

Methods
Study population and definition
We retrospectively screened 1,346 hypertensive patients 
without a history of CAD who were admitted to the 
Department of Hypertension and underwent CCTA 

examination in the First Affiliated Hospital of Dalian 
Medical University from January 2014 to December 
2017. Hypertension is defined as a prior diagnosis of 
hypertension or the use of antihypertensive medications. 
Definition of hypertension is based on the 2017 ACC/
AHA guideline (systolic blood pressure (SBP) ≥ 140  mm 
Hg and/or diastolic blood pressure (DBP) ≥ 90  mm Hg). 
Meanwhile, patients previously diagnosed with CAD 
according to CCTA, coronary angiography, treadmill 
exercise testing, and (or) typical chest pain symptoms 
were excluded. Additional exclusion criteria were miss-
ing data of scan identifiers, uncertain date of birth, and 
unavailable CACS. Patients with severe hepatic/renal 
insufficiency, malignant disease, and poor CCTA image 
quality were excluded. Moreover, laboratory parameters 
were from fasting venous blood which was collected on 
the second morning of admission and detected in the 
biochemistry lab of the First Affiliated Hospital of Dalian 
Medical University.

The data included baseline patient characteristics, the 
results of blood tests, and imaging data in the prelimi-
nary experiment. For data preprocessing, we removed 
variables that have no clinical significance, and deleted 
some variables that have no obvious causal relation-
ship with the outcomes. The dataset was imputed using 
multiple imputation. Then, the recursive feature elimi-
nation (RFE) algorithm was used to select key variables 
and develop machine learning model. Finally, A total of 
68 variables from 1,273 people were eventually applied in 
the study (Detailed study flow was shown in Fig. 1, and 
the list of included variables is shown in Supplementary 
Table 1). Furthermore, all the individuals were randomly 
distributed into two sets, namely the training set (80%) 
for ML model development and the validation set (20%) 
for performance evaluation. Furthermore, random split-
ting was repeated until the patients were equally distrib-
uted in both sets. The comparable differences in baseline 
characteristics between the training set and the valida-
tion set were shown in Supplementary Table 2.

Coronary computed tomography angiography and 
coronary artery calcium scanning
According to the guidelines outlined by the Society of 
Cardiovascular Computed Tomography, CCTA image 
acquisition, and processing, as well as coronary artery 
calcium scanning, were performed on the scanner (dual-
source, Somatom Definition CT, Siemens, Erlangen, Ger-
many). Two professional imaging physicians blind to the 
patients’ clinical data independently evaluated all images 
to determine the extent of CAD and provide a CACS 
using the Agatston method which semi-automatically 
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calculates a weighted sum of the area of coronary calcifi-
cation in line with the available study [15]. The presence 
of diameter stenosis ≥ 50% in any of the four major epi-
cardial coronary arteries detected on CCTA was defined 
as obstructive CAD.

The optimal machine learning model
Five types of ML algorithms were performed to model 
our data: Extreme Gradient Boosting (XGBoost), Ran-
dom Forest (RF), Support Vector Machine (SVM), Neu-
ral Network (NNET), and traditional Logistic Regression 
(LR). The traditional LR model used in this study was 
composed of traditional clinical factors (including age, 
gender, stage of hypertension, history of diabetes mel-
litus, current smoker, as well as the levels of total cho-
lesterol and triglyceride) and CACS. Moreover, the 
remaining 4 models included all available variables. 
Meanwhile, tuning was considered to avoid overfitting 
for ML-based models and the optimal hyper-parameter 
in the training process for ML models was 5-fold cross-
validation. Followingly, the R software was applied to 
further train the ML algorithms to forecast the presence 
of obstructive CAD. Furthermore, the best-performing 
algorithm (with the highest area under the receiver oper-
ator characteristic curve (AUC)) was used to construct 
the classifier from the whole training set, with the same 
hyper-parameter, and applied it to the validation set to 

independently assess the predictive performance [16]. 
Additionally, shapely additive explanations (SHAP) was 
calculated to assess the feature ranking, as previously 
described [17].

Statistical analysis
Kolmogorov–Smirnov test was applied to assess the dis-
tribution of continuous variables. Normally distributed 
continuous variables were expressed as mean (standard 
deviation (SD)) and compared with the t-test; non-nor-
mally distributed continuous variables were expressed 
as median (interquartile range) and compared with the 
non-parametric test. Fisher’s exact test was used to assess 
the differences between categorical variables, which are 
reported as a number (percentage). A multivariable logis-
tic regression analysis with backward stepwise selec-
tion was applied to verify the independent risk factors 
of obstructive CAD and related results were reported as 
odds ratios (ORs) (95% confidence intervals (CIs)).

Five ML algorithms were compared to find the best 
algorithm. Further, the optimal algorithm was compared 
with the traditional LR regression using the calibration 
curve and Hosmer-Lemeshow test. In the subgroup anal-
ysis of hypertension, the corresponding sensitivity, speci-
ficity, positive predictive value, negative predictive value, 
as well as overall accuracy of ML algorithms were calcu-
lated. In addition, net reclassification improvement (NRI) 

Fig. 1 Flow chart of the study
CAD, coronary artery disease; CCTA, coronary computed tomography angiography; CACS, coronary artery calcium score

 



Page 4 of 11Wang et al. BMC Medical Informatics and Decision Making          (2023) 23:244 

and integrated discrimination improvement (IDI) were 
applied to compare predictive performance between the 
best ML algorithm and the traditional LR model. Addi-
tionally, SHAP was calculated to assess the importance 
of variables included in the XGBoost model. R software 
(https://www.r-project.org/) was used in statistical anal-
yses. A two-tailed p < 0.05 was considered statistically 
significant.

Results
Demographic features
A total of 1,273 patients were finally included in the study 
and divided into two groups according to the presence of 
obstructive CAD (shown in Table  1). The prevalence of 
obstructive CAD was 16.3% (212 out of 1,273). Moreover, 
the proportion of CACS > 0 in the general population 
was 54.6% (695 out of 1,273), and 92% (195 out of 212) 
in obstructive CAD. The prevalence of males, previous 
diabetes mellitus, and current smokers was significantly 
higher in the obstructive CAD group (p < 0.05). The dif-
ferences in CACS between the two groups were obvious 
(p < 0.05).

Univariate and multivariate logistic regression analysis of 
obstructive CAD
In univariate analysis, age, gender, history of diabe-
tes mellitus, current smoker, and CACS were all sig-
nificantly linked to obstructive CAD (p < 0.05), whereas 
there was no significant difference in total cholesterol 
levels. In multivariable logistic regression analysis, the 

results revealed that age (OR 1.035, 95% CI (1.021–
1.050), p < 0.001), current smoker (OR 1.699, 95% CI 
(1.108–2.626), p = 0.016), and CACS (OR1.002, 95% CI 
(1.001–1.002), p < 0.001) were independently related to 
obstructive CAD. In addition, hypertension [stage 2 vs. 
stage 1 (OR 3.433, 95% CI (1.099–12.82), p = 0.046); stage 
3 vs. stage 1(OR 3.373, 95% CI (1.254–10.932), p = 0.030)] 
was a positive predictor for obstructive CAD (shown in 
Table 2).

Performance of machine learning algorithm for obstructive 
CAD
Within the training cohort and validation cohort, com-
parisons of the performance of the five ML algorithms 
models were detailed in Fig.  2, and their performance 
was evaluated based on the area under the receiver oper-
ating characteristics curve (AUC) through 5-fold cross-
validation (AUC of the RF model (SD) = 0.8090(0.04); 
AUC of the SVM model (SD) = 0.7524 (0.05); AUC 
of the LR model (SD) = 0.7558 (0.03); AUC of the 
XGBoost model (SD) = 0.8266 (0.03); AUC of the NNET 
(SD) = 0.7127(0.07)). The predictive value and optimal 
cutoff in the different machine learning algorithms for 
obstructive CAD were presented in Table  3. Moreover, 
XGBoost, as the best-performing algorithm, achieved 
a high AUC of 0.794 in the independent validation set 
(shown in Fig. 3).

To evaluate the deterministic of a given new observa-
tion belonging to one of the already established sorts 
(prediction value for the presence or absence of CAD on 

Table 1 Baseline characteristics of the study population
Total
(n = 1,273)

NO-OCAD
(n = 1,061)

OCAD
(n = 212)

KS Test
p

p

Age, y 58.2(14.3) 56.8(14.2) 65.2(12.8) 0.128 0.047

Male, n (%) 692(54.4) 558(52.6) 134(63.2) 0.005

Hypertension, n (%) 0.074

Stage 1 55(4.3) 52(4.9) 3(1.4)

Stage 2 107(8.4) 89(8.4) 18(8.5)

Stage 3 1,111(87.3) 920(86.7) 191(90.1)

Diabetes mellitus, n (%) 337(26.5) 255(24.0) 82(38.7) 0.000

Current smoker, n (%) 362(28.4) 280(26.4) 82(38.7) 0.000

Hs-CRP 1.0(0.5–2.3) 1.0(0.5–2.2) 1.1(0.5–2.8) 0.000 0.134

eGFR (mL/min·1.73m2) 88.6(24.7) 97.7(28.0) 84.3(25.4) 0.568 0.144

LVEF, % 59.0(58.0–59.0) 59.0(58.0–59.0) 59.0(58.0–59.0) 0.000 0.022

TC, mmol/L 4.8(4.1–5.5) 4.8(4.5–5.5) 4.8(4.0-5.5) 0.009 0.652

TG, mmol/L 1.4(1.0-2.1) 1.4(1.0–2.0) 1.6(1.1–2.2) 0.000 0.043

HDL-C, mmol/L 1.2(0.9–1.4) 1.2(0.9–1.4) 1.1(0.9–1.3) 0.000 0.016

LDL-C, mmol/L 2.6(2.2–3.1) 2.6(2.2–3.1) 2.6(2.1–3.2) 0.006 0.814

CACS > 0, n (%) 695(54.6) 500(47.1) 195(92.0) 0.000

CACS, score 2.2(0.0-116.0) 0.0(0.0-43.5) 292.0(58.3–745.0) 0.000 0.000
Values are presented as mean (SD), median (25th–75th percentiles) or n (%).

OCAD, obstructive coronary artery disease; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein 
cholesterol; eGFR, estimated glomerular filtration rate; hs-CRP, high-sensitivity C reactive protein; CACS, coronary artery calcium score. KS Test, Kolmogorov Smirnov 
Test .

https://www.r-project.org/
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CCTA), Model calibration was applied (shown in Fig. 4). 
Interestingly, the minimum difference between the pre-
dicted and observed likelihood of obstructive CAD 

appeared in the XGBoost model. That is, the XGBoost 
model achieved a good model fit. Further, the Hosmer-
Lemeshow test indicates that the XGBoost model had 
a high calibration (p = 0.301), while the traditional LR 
model was disappointing (p < 0.05). Additionally, con-
tinuous NRI was 0.55 (95% CI (0.39–0.71), p < 0.001), 
IDI was 0.04 (95% CI (0.01–0. 07), p = 0.0048) when the 
XGBoost model was compared with LR Models.

Feature importance in the XGBoost model
As shown in Fig.  5, the probability of the prevalence of 
obstructive CAD increased, with CACS increasing. That 
is, CACS had the highest predictive value for the pres-
ence of obstructive CAD. Age was the second important 
variable and was followed by plasma triglycerides levels, 
estimated glomerular filtration rate (eGFR), and plasma 
creatinine levels. Interestingly, carotid intima-media 
thickness was also related to obstructive CAD among 
imaging parameters.

Subgroup analysis stratified by Hypertension levels
Because the proportion of patients in stage 1 and stage 
2 hypertension was low, we grouped patients accord-
ing to whether they were in stage 3 hypertension or not. 
The proportion of CAC > 0 in stage 3 hypertension was 
significantly higher than that in patients without stage 3 

Table 2 Univariate and multivariate logistic regression analysis 
for obstructive CAD
Variables Univariate analysis Multivariate analysis

OR (95%CI) p OR (95%CI) p

Male 1.549(1.143–2.099) 0.005 1.385(0.907–
2.104)

0.128

Age 1.046(1.034–1.058) 0.000 1.035(1.021–
1.050)

0.000

Hypertension

Stage1 -[Reference] - [Reference]

Stage2 3.506(0.985–
12.473)

0.053 3.433(1.099–
12.82)

0.046

Stage 3 3.599(1.112–
11.643)

0.033 3.272(1.254–
10.932)

0.030

Diabetes 
mellitus

1.994(1.462–2.719) 0.000 1.252(0.874–
1.779)

0.215

Current smoker 1.759(1.293–2.395) 0.000 1.699(1.108–
2.626)

0.016

TC 0.995(0.867–1.152) 0.995

CACS 1.002(1.002–1.003) 0.000 1.002(1.001–
1.002)

0.000

TC, total cholesterol; CACS, coronary artery calcium score.

In the multivariate analysis, male, age, hypertension, diabetes mellitus, current 
smoker and CACS were adjusted.

Table 3 The predictive value and optimal cutoff in the different models
Cutpoint Sensitivity Specificity PPV NPV accuracy

LR 0.121 0.726 0.702 0.319 0.930 0.706

RF 0.184 0.768 0.722 0.347 0.942 0.730

SVM 0.134 0.713 0.681 0.301 0.925 0.687

NNET 0.323 0.511 0.726 0.447 0.875 0.618

XGBoost 0.254 0.837 0.786 0.389 0.950 0.767
PPV, positive predict value; NPV, negative predict value. LR, Logistic Regression; XGBoost, Extreme Gradient Boosting; RF, Random Forest; SVM, Support Vector 
Machine; NNET, Neural Network; PPV, positive predictive value; NPV, negative predictive value

Fig. 2 The area under the curve as a measure of individual model performance for the prediction of obstructive coronary artery disease on coronary 
computed tomography angiography in training cohort (A) and validation cohort (B)
AUC, area under the curve; LR, Logistic Regression; XGBoost, Extreme Gradient Boosting; RF, Random Forest; SVM, Support Vector Machine; NNET, Neural 
Network

 



Page 6 of 11Wang et al. BMC Medical Informatics and Decision Making          (2023) 23:244 

hypertension, and a similar result was found with CACS 
as a continuous variable(p < 0.05) (shown in Table 4). The 
sensitivity, specificity, positive predictive value, negative 
predictive value, and accuracy of the XGBoost model for 
obstructive CAD in patients with stage 3 hypertension 
were 82.0%, 87.6%, 57.9%, 93.1%, and 84.8%, respectively; 
results were and 86.9%, 90.5%, 53.3%, 92.3%, and 88.7% in 
non-stage 3 hypertensive patients (shown in Table 5).

Discussion
In this study, we developed and validated multiple pop-
ular ML algorithms to forecast the presence of obstruc-
tive CAD in hypertensive patients. A comparison among 
five ML algorithms demonstrated that the XGBoost 
model was the most excellent in terms of predictive 
power and appropriate for patients with different levels 
of blood pressure (BP). The ML algorithm-based model 
was potentially able to guide clinical decision-making 

and improve risk stratification in hypertensive patients. 
In addition, this study further emphasized the impor-
tance of CACS as a risk stratification tool in hypertensive 
patients.

The importance of machine learning
The current study demonstrated that ML algorithms 
are necessary and applicable in the context of clinical 
requirements. Furthermore, the XGBoost model is the 
most appropriate model among the five ML algorithms 
in terms of predictive power for the presence of obstruc-
tive CAD in hypertensive patients and is superior to 
traditional regression models. CAD is a common and 
frequently-occurring disease linked to high morbid-
ity, mortality, and healthcare expenditure. To invasively 
forecast the occurrence of CAD, many models have 
been developed. Nevertheless, the performance of most 
of the existing models is limited to the presence of CAD 

Fig. 3 The receiver operating characteristic curve from applying the best-performing classifier (XGBoost) built in validation cohort
AUC, the area under the curve; XGBoost, Extreme Gradient Boosting
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[18–20]. Additionally, the discriminative ability of several 
models becomes lower, when they have been validated in 
more than one external population [21]. This downward 
trend may be partly attributed to the utilization of diverse 
imaging modalities as well as the different definition of 
obstructive CAD, and model complexity. Importantly, 
with the development of social and extensive populariza-
tion of health knowledge, dietary habits, environmental 
exposures, and preventative practices are ever-changing. 
Therefore, previous models may not be comprehensive. 
That is, there is an urgent need for optimal predictive 
models for obstructive CAD in hypertensive patients. ML 
algorithms became an available and suitable option, as a 
result of two inherent characteristics. On the one hand, 
ML algorithms are superior to the one-dimensional tradi-
tional statistical methods in terms of finding correlations 
between variables; on the other hand, ML algorithms are 
optimal to make use of increasingly complex data that is 
pivotal to improving prediction performance. And not 
coincidentally, ML algorithms have been verified to be a 

powerful predictive tool in the context of cardiovascu-
lar applications [22–24]. Similarly, the predictive power 
of ML for obstructive CAD was superior to traditional 
models in this study. Meanwhile, the XGBoost model 
may be the optimal model given calibration and predic-
tive performance for the presence of obstructive CAD 
in patients with hypertension. This study upholds that 
intermediate to high-risk hypertensive patients evaluated 
by the XGBoost model to directly receive further testing 
such as CCTA and coronary angiography, as well as pre-
ventive therapies, may be reasonable and cost-efficient.

The importance of coronary artery calcium score
The current study uncovered that CACS is the most 
important factor among the diverse clinical parameters 
that can stratify hypertensive patients with the risk of 
obstructive CAD. Previous researchers have unveiled 
that the performance of predictive models was mark-
edly improved by the addition of CACS [10, 11, 25]. For 
example, the C-statistic increased from 0.79 to 0.88 with 

Fig. 4 Calibration curve for different models for prediction of the likelihood of obstructive CAD
LR, Logistic Regression; XGBoost, Extreme Gradient Boosting; RF, Random Forest; SVM, Support Vector Machine; NNET, Neural Network; CAD, coronary 
artery disease
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the addition of the CACS to extend CAD clinical score 
to forecast the presence of obstructive CAD on inva-
sive coronary angiography [26]. Furthermore, the Heinz 
Nixdorf Recall (HNR) study demonstrated the absence 
of coronary calcium represents a relatively low CVD 
risk regardless of BP stage in hypertensive patients. 
Namely, CAC was a more robust predictor for cardio-
vascular events than BP levels in the HNR study. What-
ever in any BP category, the adjusted hazard ratios of 
cardiovascular events grew with the increase of CACS. 
Meanwhile, an increasing BP level played no (or only a 
modest) role in CAD risk within each CACS category 
[27]. Taken together, the accumulated studies support 
that CACS is very valuable to optimize risk stratification 

in hypertensive patients. Most previous researches pro-
spectively focused on the relations between CACS and 
MACEs, however, cross-sectional studies evaluating 
the predictive performance of CACS for obstructive 
CAD in patients with hypertension were rare. Our study 
from cross-sectional data unveiled that CACS is a supe-
rior predictor for the occurrence of obstructive CAD in 
patients with different blood pressure levels. Given its 
high predictive value, CACS may be an applicable tool to 
guide clinical decision-making and optimize treatment 
strategies even in patients with prehypertension and mild 
hypertension, while without the symptoms of CAD. Our 
investigation greatly enhances the evidence of CACS as 
a significant risk stratification tool in hypertensive adults 

Fig. 5 Feature importance plot in the XGBoost model
The top 15 clinical variables are shown. The yellow and purple points in each row represent participants having low to high values of the specific vari-
able, while the x-axis gives the SHAP value which affects the model [i.e. does it tend to drive the predictions towards the event (positive value of SHAP) 
or non-event (negative value of SHAP)]
CACS, coronary artery calcium score; XGBoost, extreme gradient boosting; SHAP, Shapley additive explanation values; E/e’, early diastolic transmitral veloc-
ity to early mitral annulus diastolic velocity ratio; Carotid artery IMT, Carotid artery intima-media thickness
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and supports a stronger recommendation of the CACS in 
future clinical guidelines.

The relationship between Hypertension and coronary 
artery calcification
To a certain extent, this study further verified that hyper-
tension and coronary artery calcification mutually rein-
force. With the aging population and epidemic of obesity 
in recent years, the prevalence of hypertension is sched-
uled to gradually increase in the future. Moreover, hyper-
tension is an independent risk for the development of 
atherosclerosis [28]. Therefore, rational methods about 
how to early and non-invasively forecast the prevalence 
of CAD attract more and more attention in patients with 
hypertension. As far as we know, vascular calcifications 
are not only accelerated by hypertension but also contrib-
ute to hypertension. Current consensus holds that vas-
cular calcification, either intimal or medial, may directly 
increase arterial stiffness. Alternatively, arterial stiffness 
is closely linked to raised blood pressure [29]. Parallelly, 
the proportion of patients with CACS > 0 and CACS was 
significantly higher in the stage 3 hypertension group 
than in other groups in this study. Similar results were 
seen in the proportion of patients with diabetes, possi-
bly because there is a large overlap in etiology between 
hypertension and diabetes, the level of hypertension is 
closely related to the proportion of patients with diabetes 
[30]. Additionally, consistent with previous reports [10, 
17], CACS had a higher negative value for obstructive 

CAD. The reasonable explanation is that the presence of 
calcification may affect the accuracy of CCTA in assess-
ing the degree of coronary artery stenosis.

Limitation
Several limitations of the present study should be paid 
more attention to. Firstly, the present investigation was 
lack of external validation in an independent cohort, 
which was planned for subsequent analysis. Secondly, 
the presence of severe calcification may lead to overesti-
mates stenosis on CCTA. Hence, more than 50% stenosis 
on CCTA may not represent the accuracy > 50% stenosis 
evaluated by coronary angiography. Finally, the number 
of patients with stage 1 and stage 2 hypertension in our 
cohort was too small to be stratified separately, we will 
expand the sample size for further research.

Conclusions
The ML model, especially The XGBoost model, incorpo-
rating clinical features and CACS may accurately fore-
cast the presence of obstructive CAD on CCTA among 
patients with hypertension. It may be reasonable for 
intermediate to high-risk hypertensive patients evaluated 
by the XGBoost model to directly receive further testing 
such as CCTA and coronary angiography, as well as pre-
ventive therapies.
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Table 4 Baseline characteristics in different hypertensive 
subgroups

Hypertension
(stage3)

Hypertension
(stage1/2)

p

Age, y 58.8(14.2) 54.9(14.7) 0.001

Male, n (%) 592(54.2) 100(55.2) 0.795

Diabetes, n (%) 310(28.4%) 27(14.9%) 0.000

eGFR, (mL/min·1.73m2) 94.7(26.9) 100.9(29.1) 0.005

Cre, mmol/L 66.0(54.0-76.4) 65.0(52.0-76.2) 0.220

TC, mmol/L 4.8(1.1) 4.7(1.0) 0.532

TG, mmol/L 1.5(1.0-2.1) 1.3(1.0-1.9) 0.097

LDL-C, mmol/L 2.6(0.7) 2.6(0.6) 0.570

CACS > 0, n (%) 617(56.5) 78(43.1) 0.028

CACS, score 4.7(0.0-139.0) 0.0(0.0–56.0) 0.003
Values are presented as mean (SD), median (25th–75th percentiles) or n (%)

CACS, coronary artery calcium score; TC, total cholesterol; TG, triglyceride; 
HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein 
cholesterol; eGFR, estimated glomerular filtration rate; Cre, creatinine

Table 5 The predictive value and optimal cutoff stratified by subgroups in XGBoost
Cutpoint Sensitivity Specificity PPV NPV accuracy

XGBoost 0.254 0.837 0.786 0.389 0.950 0.767

Stage 3 0.224 0.820 0.876 0.579 0.931 0.848

Stage 1/2 0.202 0.869 0.905 0.533 0.923 0.887
PPV, positive predict value; NPV, negative predict value. XGBoost, Extreme Gradient Boosting; PPV, positive predictive value; NPV, negative predictive value.
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