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Abstract 

Background Radiofrequency ablation (RFA) for atrial fibrillation (AF) is associated with a risk of complications. This 
study aimed to develop and validate risk models for predicting complications after radiofrequency ablation of atrial 
fibrillation patients.

Methods This retrospective cohort study included 3365 procedures on 3187 patients with atrial fibrillation at a sin-
gle medical center from 2018 to 2021. The outcome was the occurrence of postoperative procedural complications 
during hospitalization. Logistic regression, decision tree, random forest, gradient boosting machine, and extreme 
gradient boosting were used to develop risk models for any postoperative complications, cardiac effusion/tampon-
ade, and hemorrhage, respectively. Patients’ demographic characteristics, medical history, signs, symptoms at presen-
tation, electrocardiographic features, procedural characteristics, laboratory values, and postoperative complications 
were collected from the medical record. The prediction results were evaluated by performance metrics (i.e., the area 
under the receiver operating characteristic curve (AUC), accuracy, sensitivity, specificity, F score, and Brier score) 
with repeated fivefold cross-validation.

Results Of the 3365 RFA procedures, there were 62 procedural complications with a rate of 1.84% in the entire 
cohort. The most common complications were cardiac effusion/tamponade (28 cases, 0.83%), and hemorrhage 
(21 cases, 0.80%). There was no procedure-related mortality. The machine learning algorithms of random forest (RF) 
outperformed other models for any complication (AUC 0.721 vs 0.627 to 0.707), and hemorrhage (AUC 0.839 vs 0.649 
to 0.794). The extreme gradient boosting (XGBoost) model outperformed other models for cardiac effusion/tampon-
ade (AUC 0.696 vs 0.606 to 0.662).

Conclusions The developed risk models using machine learning algorithms showed good performance in predict-
ing complications after RFA of AF patients. These models help identify patients at high risk of complications and guid-
ing clinical decision-making.
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Background
Atrial fibrillation (AF) is one of the most common sus-
tained heart rhythm disorders and a condition associated 
with high mortality and morbidity. There are nearly 335 
million patients with AF worldwide [1], with a preva-
lence rate of 2.9% [2]. The incidence of AF is increasing 
rapidly with the aging of the population and changes in 
lifestyle. The treatment consists of either antiarrhyth-
mic drug therapy or catheter ablation or both. While it 
is believed that the benefits of radiofrequency ablation 
(RFA) generally outweigh the risks in properly selected 
patients; however, RFA is associated with a risk of com-
plications leading to an increase in morbidity and mortal-
ity, increased in-hospital length of stay, and a substantial 
increase in healthcare costs. The risk of RFA postopera-
tive complications continues to be a cause of concern and 
accurate forecasts of postoperative complications could 
be useful to both physicians and patients. In patients 
undergoing AF ablation, a preoperative assessment of the 
procedural risks and outcomes should be undertaken and 
this was recommended by the recent AF guidelines [3].

Although preoperative assessment of the risks of the 
RFA procedure had been widely studied, there were still 
some limitations to clinical application. First, some stud-
ies have revealed risk factors for complications, but their 
results were inconsistent [4–10]. Thus, there remains 
a need to further investigate the risk factors. Second, 
in one study [11] of the limited predictive model, the 
researchers built a model with limited variables, but were 
lack of many important factors: including the type of AF, 
peri-procedural medicine, echocardiography, and labo-
ratory test results. Due to the lack of clinical factors, its 
reported AUC of any complications after RFA was 0.65 
(95% CI = 0.63-0.67) for the derivation cohort and 0.64 
(95% CI = 0.62-0.66) for the validation cohort, which was 
far from satisfactory.

To overcome the above-mentioned challenges, this 
study first collected a wide range of clinical factors, then 
define in-hospital complications as clinical outcomes. 
Finally, as a real-world observational study, this study 
may provide new evidence to relieve the inconsistency 
of reported risk factors. The objective of this study was 
to use machine learning techniques to develop an effec-
tive risk model for predicting complications after radiof-
requency ablation of atrial fibrillation patients and reveal 
important risk factors based on the developed model.

Methods
Study population
This retrospective cohort study took place at a large-scale 
hospital in East China (Shanghai Chest Hospital, Shang-
hai, China). Patients who underwent RFA after being 
diagnosed as AF from April 2018 to October 2021 were 

eligible for inclusion in this study. Patients who were 
younger than 18 were excluded. Patients who under-
went RFA procedure simultaneous cardiac valve surgery 
left atrial appendage surgery or pacemaker implantation 
were excluded. Patients who had more than one hospi-
tal visits of RFA procedure during the study period were 
treated as multiple samples in this cohort, meaning each 
RFA procedure of one patient was independent from 
other RFA procedures of the same patients. A total of 
3365 procedures were analyzed in the present study. This 
study was approved by the Ethics Committee of Shanghai 
Chest Hospital (Shang, China) with approval number KS 
(P) 22005. Since the data were collected retrospectively, 
consent was not required.

Data collection and definitions
Patients’ demographic characteristics, medical history, 
signs or symptoms at presentation, electrocardiographic 
features, laboratory values, and in-hospital clinical out-
comes were collected from hospital information systems, 
laboratory information systems, and electronic health 
records. For variables with multiple measurements such 
as heart rate, blood pressure, and other baseline variables 
like white cell count, and creatinine clearance rate, the 
last measurements before RFA were collected.

The primary outcome of interest was the occur-
rence of any complication after RFA, including 
pulmonary vein stenosis, phrenic nerve injury, periesoph-
ageal vagus nerve injury, arteriovenous fistulas/pseudoa-
neurysm, cardiogenic shock/arrest, cardiac effusion/
tamponade, thromboembolic events (ischemic stroke, 
transient ischemic attack (TIA), peripheral embolism, 
or pulmonary embolism), pneumothorax, hemorrhage 
events or myocardial infarction. Hemorrhage events 
included minor hemorrhages like access site hemorrhage 
and major hemorrhage. Major hemorrhage events were 
defined as any bleeding events requiring blood trans-
fusion. Besides, the occurrence of the two most com-
mon types of complications, including cardiac effusion/
tamponade and hemorrhage, are defined as secondary 
outcomes.

Data pre‑processing
The data format was unified, duplicates or unmatched 
items were dropped and outliers were replaced with 
null values. Q-Q plots, histograms, and Shapiro–Wilk 
tests were used to assess continuous variable distribu-
tions. Outlier was defined as values not lying within 1.5 
times the interquartile range from the median. Variables 
with more than 30% missing values were removed from 
the analysis. Other variables with equal or less than 30% 
missing values were imputed by the multivariate impu-
tation by chained equation (MICE) method [12]. The 
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binary variables like gender, drugs use, and medical his-
tory were encoded as 0 and 1 (0 = female/no, 1 = male/
yes). The model output corresponds to postopera-
tive complication and was represented as a binary class 
(0 = without complication, 1 = with complication).

Model construction
We evaluated the prediction performance of the Logistic 
regression model as well as 4 different machine learning 
models including decision tree (DT), random forest (RF), 
gradient boosting machine (GBM), and extreme gradi-
ent boosting (XGBoost) that have been demonstrated 
to apply to medical field and big data sets previously. A 
total of 59 different features (Table 1) were used as inputs 
into the prediction models. Multivariable logistic models 
were fitted using backward stepwise regression. For the 
stepwise method, Akaike Information Criterion (AIC) 
was used as the selection criteria to choose the predic-
tors. Moreover, known and potential risk factors such 
as age or gender were considered in the logistic model. 
For machine learning models, we applied the grid search 
method with five-fold cross-validation to identify the 
optimal hyperparameters, which yield the highest value 
of AUC.

Model evaluation
The performance and estimation of the general error of 
the models were assessed using 20 times repeated five-
fold cross-validation, where the data set is divided into 
5 equal parts. In each repetition, one of the 5 parts is 
used as a test set, while the remaining 4 parts are used 
as a training set to train the model. The performance of 
the model is evaluated on the test set, and the process is 
repeated until each part has been used as the test once. 
This procedure is repeated for a total of 20 times, with a 
different random seed used for each repetition to ensure 
the variability of the results. The final evaluation of the 
model is based on the average performance across all 
repetitions. Model discrimination was assessed using the 
area under the receiver operating characteristic curve 
(AUC). In addition, we calculated accuracy, sensitiv-
ity (recall), specificity, and F score with a cut-off point, 
which was estimated using the maximized Youden index 
in the training set. Model calibration was tested by the 
Brier score. The smaller the Brier score is, the better cali-
bration will be. 95% confidence intervals were calculated 
by 20 times repeated fivefold cross-validation for each 
metric. Shapley additive explanations (SHAP) were used 
to evaluate the importance of variables [13].

Feature ranking and selection
We used all candidate features to build the initial model. 
For ease of interpretation and application, machine 

learning models with top 5, top 10, top 15, and top 
20 features were constructed according to the ranked 
importance of the features. For each machine learning 
algorithm, the feature subset generating the highest AUC 
was selected as the optimal feature subset.

Statistical analysis
Data were presented as the mean ± standard deviation 
(SD) for normally distributed data, or medians and inter-
quartile range (IQR) for non-normally distributed data. 
Normally distributed variables were compared using 
Student’s t-test and non-normally distributed variables 
were compared using the Mann–Whitney U test. Cat-
egorical data were expressed as numbers and percent-
ages (%). Pearson’s χ2 test or Fisher’s exact test were 
used for categorical data, as appropriate. All P values 
were two-tailed, and a P-value of < 0.05 was considered 
to represent statistical significance. Statistical analysis 
was performed in R version 4.1.2 and Python 3.9.13. The 
model development, evaluation, and calibration were 
performed using the Scikit-learn (1.0.2) and xgboost 
package (1.7.4) in Python. SHAP values were computed 
and visualized with the shap package (0.41.0). The impu-
tation was performed in R using package “mice” (3.15.0). 
The sample data and code are publicly available on the 
project GitHub website at https:// github. com/ awei1 234/ 
Machi ne- Learn ing- Based- Risk- Models- for- Proce dural- 
Compl icati ons- of- RFA- for- AF- patie nts.

Results
Study sample and procedural complications
Three thousand sixty five consecutive RFA procedures 
on 3187 AF patients between April 2018 and October 
2021 were collected. Supplementary Figure S1 is a flow 
chart describing the procedure for subject selection. 
The variables used for model construction and missing 
rates were shown in supplementary Table S1. The base-
line characteristics of the patients and the comparisons 
between the two groups with or without complications 
are shown in Table 1. Patients in the complication group 
were older than those without complications (71 years, 
IQR 64.5–77  years vs 66  years, IQR 59–72  years). The 
proportion of male patients in the complication and 
non-complication groups was 59.7% and 62.7%, respec-
tively. The baseline characteristics of the patients and 
the comparisons between the two groups with or with-
out cardiac effusion or hemorrhage are shown in supple-
mentary tables S2 and S3. Table  2 displays the specific 
procedural complications and total complications. 
There were a total of 62 procedural complications with a 
rate of 1.84% in the entire cohort. No procedure-related 
death was observed. Cardiac effusion/tamponade was 
the most common and accounted for 0.84% of the 

https://github.com/awei1234/Machine-Learning-Based-Risk-Models-for-Procedural-Complications-of-RFA-for-AF-patients
https://github.com/awei1234/Machine-Learning-Based-Risk-Models-for-Procedural-Complications-of-RFA-for-AF-patients
https://github.com/awei1234/Machine-Learning-Based-Risk-Models-for-Procedural-Complications-of-RFA-for-AF-patients
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Table 1 Baseline characteristics of patients with or without complications

Variables Total (N = 3365) Without 
complications 
(N = 3303)

With complications (N = 62) P‑value

Demographic Gender 0.626

Male 2108 (62.6) 2071 (62.7) 37 (59.7)

Female 1257 (37.4) 1232 (37.3) 25 (40.3)

Age Median (IQR) 66 (59,72) 66 (59,72) 71 (64.5,77)  < 0.001

Height, cm Median (IQR) 168 (160,172) 168 (160,172) 165 (158,170) 0.043

Weight, kg Median (IQR) 70 (60,76) 70 (60,76) 65.6 (58.5,72.8) 0.02

BMI, kg/m2 Median (IQR) 24.7 (22.8,26.8) 24.7 (22.8,26.8) 24 (22.4,25.9) 0.076

Signs and symptoms at presenta-
tion

AF_category n (%) 0.293

Paroxysmal AF 1512 (48.9) 1492 (49.1) 20 (38.5)

Persistent AF 1365 (44.2) 1338 (44) 27 (51.9)

Chronic AF 214 (6.9) 209 (6.9) 5 (9.6)

HR, bpm Median (IQR) 77 (70,83) 77 (70,83) 74 (68,80) 0.088

DBP, mmHg Median (IQR) 86 (78,95) 86 (78,95) 82 (73.8,90) 0.01

SBP, mmHg Median (IQR) 137 (123,150) 137 (123,150) 138 (126.2,147.8) 0.696

HAS_BLED score Median (IQR) 1 (1,2) 1 (1,2) 2 (1,3) 0.002

CHA_2DS_2-VACS score Median 
(IQR)

2 (1,3) 2 (1,3) 3 (2,4)  < 0.001

Echocardiography LVESD Median (IQR) 29 (27,32) 29 (27,32) 29 (27,30.8) 0.335

LVEDD Median (IQR) 48 (45,51) 48 (45,51) 47 (44,50) 0.112

LAD, mm Median (IQR) 42 (37,46) 42 (37,46) 41 (37,46) 0.837

LVEF Median (IQR) 64 (61,66) 64 (61,66) 63 (60,66) 0.215

Preoperative laboratory values TSH, mIU/L Median (IQR) 1.8 (1.2,2.7) 1.8 (1.2,2.7) 1.7 (1.1,2.4) 0.597

FBG, g/L Median (IQR) 2.7 (2.3,3.1) 2.7 (2.3,3.1) 2.9 (2.3,3.1) 0.355

UA, μmol/L Median (IQR) 358 (299,424) 357 (299,423) 398 (316,462) 0.065

TT, s Median (IQR) 18.6 (17.6,20) 18.6 (17.6,20) 18.2 (17.2,20) 0.273

PTINR Median (IQR) 1 (1,1.2) 1 (1,1.2) 1.1 (1,1.2) 0.159

CREA,μmol/L Median (IQR) 75 (65,87) 75 (64,87) 80 (71,95) 0.021

Ccr, ml/(min × 1.73m2) Median 
(IQR)

78.6 (63.9,96.6) 78.9 (64.4,96.7) 61.9 (50.2,90.5)  < 0.001

DD, mg/L Median (IQR) 0.2 (0.2,0.4) 0.2 (0.2,0.4) 0.3 (0.2,0.6) 0.002

TnI, ng/mL Median (IQR) 0.00 (0.00,0.01) 0.00 (0.00,0.01) 0.01 (0.00,0.02)  < 0.001

LDH, U/L Median (IQR) 202 (179,232) 202 (179,231) 215 (187,257) 0.036

AST, U/L Median (IQR) 23 (20,29) 23 (20,29) 25 (20,37) 0.092

ALB, g/L Median (IQR) 42 (41,44) 42.5 (41,44) 41 (38,44) 0.014

GLU, mmol/L Median (IQR) 5.9 (5.1,7.3) 5.9 (5.1,7.3) 6.1 (5.2,7.7) 0.257

CK, U/L Median (IQR) 91 (69,126) 91 (69,126) 88 (69,125) 0.841

NT-pro-BNP, ng/L Median (IQR) 477 (160,1040) 474.5 (159,1027.5) 749 (282,1735) 0.009
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entire procedures followed by access site hemorrhage 
or hematoma (0.62%), hemorrhage requiring blood 
transfusion (0.27%), thromboembolic events (0.12%), 
cardiogenic shock/arrest (0.06%), arteriovenous fistu-
las/pseudoaneurysm (0.06%), pneumothorax (0.03%), 

pulmonary vein stenosis (0.03%), and phrenic nerve 
injury (0.03%).

Table 1 (continued)

Variables Total (N = 3365) Without 
complications 
(N = 3303)

With complications (N = 62) P‑value

Preoperative drug Aspirin n (%) 78 (2.3) 76 (2.3) 2 (3.2) 0.632

Clopidogrel n (%) 83 (2.5) 80 (2.4) 3 (4.8) 0.224

Other antiplatelet agents n (%) 21 (0.6) 21 (0.6) 0 (0) 0.529

Antiplatelet agents n (%) 133 (4) 129 (3.9) 4 (6.5) 0.308

Warfarin n (%) 45 (1.3) 44 (1.3) 1 (1.6) 0.849

Dabigatran n (%) 194 (5.8) 194 (5.9) 0 (0) 0.049

Rivaroxaban n (%) 633 (18.8) 616 (18.6) 17 (27.4) 0.08

Heparin n (%) 2542 (75.5) 2497 (75.6) 45 (72.6) 0.584

Anticoagulants n (%) 2673 (79.4) 2623 (79.4) 50 (80.6) 0.812

Statins n (%) 1046 (31.1) 1017 (30.8) 29 (46.8) 0.007

ACEI/ARB n (%) 578 (17.2) 565 (17.1) 13 (21) 0.424

β blocker n (%) 786 (23.4) 766 (23.2) 20 (32.3) 0.095

Diuretics n (%) 1004 (29.8) 981 (29.7) 23 (37.1) 0.207

CCB n (%) 604 (17.9) 587 (17.8) 17 (27.4) 0.05

Antihypertensive agents n (%) 1749 (52) 1711 (51.8) 38 (61.3) 0.138

Medical history Angina n (%) 10 (0.3) 10 (0.3) 0 (0) 0.664

Heart failure n (%) 17 (0.5) 17 (0.5) 0 (0) 0.571

Stroke n (%) 419 (12.5) 408 (12.4) 11 (17.7) 0.203

PAD n (%) 202 (6) 196 (5.9) 6 (9.7) 0.219

COPD n (%) 75 (2.2) 74 (2.2) 1 (1.6) 0.74

Hypertension n (%) 1781 (52.9) 1742 (52.7) 39 (62.9) 0.112

Diabetes n (%) 528 (15.7) 515 (15.6) 13 (21) 0.249

Hyperlipidemia n (%) 87 (2.6) 85 (2.6) 2 (3.2) 0.748

MI n (%) 26 (0.8) 26 (0.8) 0 (0) 0.483

CHD n (%) 410 (12.2) 399 (12.1) 11 (17.7) 0.177

CKD n (%) 83 (2.5) 80 (2.4) 3 (4.8) 0.224

Prior RFA n (%) 998 (29.7) 979 (29.6) 19 (30.6) 0.864

Prior PCI n (%) 160 (4.8) 155 (4.7) 5 (8.1) 0.216

Prior CABG n (%) 17 (0.5) 17 (0.5) 0 (0) 0.571

Abbreviations ACEI Angiotensin-converting enzyme inhibitor, ALB Albumin, ARB Angiotensin receptor blocker, AST Aspartate transaminase, BMI Body mass index, 
CABG Coronary artery bypass grafting, CCB Calcium channel blocker, Ccr Creatinine clearance rate, CHD Coronary heart disease, CK Creatine kinase, CKD Chronic 
kidney disease, COPD Chronic obstructive pulmonary disease, CREA Creatinine, DD D-dimer, DBP Diastolic blood pressure, FBG Fibrinogen, GLU Glucose, HR Heart 
rate, LAD Left atrial diameter, LDH Lactate dehydrogenase, LVEF Left ventricular ejection fraction, LVEDD Left ventricular end diastolic diameter, LVESD Left ventricular 
end systolic diameter, MI Myocardial infarction, NT-pro-BNP N-terminal pro-B-type natriuretic peptide, PAD Peripheral artery disease, PCI Percutaneous coronary 
intervention, PTINR International normalized ratio, RFA Radiofrequency ablation, SBP Systolic blood pressure, TSH Thyroid-stimulating hormone, TnI Troponin I, TT 
Thrombin time, UA Uric acid
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Feature selection and ranking
When adding features according to their importance, the 
AUC of DT models consistently decreased (from 0.627 to 
0.580 for any complication, from 0.606 to 0.513 for car-
diac effusion/tamponade, and from 0.649 to 0.620 for 
hemorrhage). For postoperative cardiac effusion/tam-
ponade, the GBM model was an exception, showing an 
increasing trend in AUC with the increase in the num-
ber of features. Other machine learning models that used 
the top 5 ranked features performed better than models 
with more features. For any complication or hemorrhage, 
the RF, GBM, and XGBoost models demonstrated good 
performance, especially when using the top 10, 15 or, 20 
features were utilized. The corresponding AUCs were 
shown in Fig. 1. For any complication, the optimal num-
bers of features were 5, 20,15, and 15 for DT, RF, GBM, 
and XGBoost, respectively. For cardiac effusion/tampon-
ade, the optimal numbers of features were 5, 5, 15, and 5. 
For hemorrhage, the optimal numbers of features were 5, 
15,15, and 10. The range of hyper-parameters was shown 
in supplementary table S4. The evaluation metrics with 

95% confidence intervals for each model with different 
features were shown in supplementary table S5.

Model performance and comparison
Of the considered machine learning models, the best-
performing models were RF for any complication, and 
cardiac effusion/tamponade, XGBoost for cardiac effu-
sion/tamponade. The AUCs for these models were as 
follows: 0.721 (95% CI = 0.713–0.729) for any compli-
cation, 0.696 (95% CI = 0.688–0.703) for cardiac effu-
sion/tamponade, and 0.839 (95% CI = 0.832–0.845) for 
hemorrhage.

The receiver operating characteristic (ROC) curves, 
and performance metrics, including AUC, accuracy, 
sensitivity, specificity, F score, and Brier score were pre-
sented in Fig. 2, and Table 3.

To stratify patients into different risk groups, for the RF 
model the predicted probability of 0–0.029 and > 0.029 
were selected to range as low and high risk, respectively. 
To validate the ability to stratify patients into different 
risk groups, in Fig. 3, the incidence rate of each risk group 
and inter-group differences in the test set were compared 
for the RF model.

Important features associated with postoperative 
complications
The result of the logistic regression model postopera-
tive complications is shown in Table 4. Higher values of 
CREA and AST were associated with increased prob-
abilities of procedural complications. The higher value 
of AST was associated with increased probabilities of 
procedural cardiac effusion. Persistent AF, higher values 
of CREA, DD, and TnI were associated with increased 
probability of hemorrhage.

Based on the RF, GBM, and XGBoost models, the 
important features among different outcomes have a 
high degree of coincidence (Fig S2). From the results of 

Table 2 Complicaitons following radiofrequency ablation in the 
study population

Complications Overall n (%)

Cardiac effusion/tamponade 28 (0.83%)

Access site hemorrhage/hematoma 21 (0.62%)

Major hemorrhage (any bleeding events requiring blood 
transfusion)

9 (0.27%)

Thromboembolic events 4 (0.12%)

Cardiogenic shock/arrest 2 (0.06%)

Arteriovenous fistulas/pseudoaneurysm 2 (0.06%)

Pulmonary vein stenosis 1 (0.03%)

Phrenic nerve injury 1 (0.03%)

Pneumothorax 1 (0.03%)

Any complication 62 (1.84%)

Fig. 1 AUC of the model with different numbers of the selected features. A: any complication; B: cardiac effusion/tamponade; C: hemorrhage
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the best algorithm models with different outcomes, it is 
known that the most important risk factors are: Ccr, ALB, 
CHA_2DS_2-VACs, DD, AST, NT-pro-BNP, LDH, TSH, 
CREA, age, UA, DBP, and LAD for any complication, car-
diac effusion/tamponade or hemorrhage (Fig.  4). In the 
SHAP summary plots (Fig S3), the distribution of SHAP 
value contributions is shown for the top-ranked features 
present in models for predicting different outcomes.

Figure 5 shows the SHAP dependence plot of the top 
10 most important features for any complication, show-
ing that higher CHA_2DS_2-VACs score, DD, AST, 
NT-pro-BNP, LDH, age, and lower Ccr, CREA were 
related to increased risk of any complication. An obvious 
U-shaped relationship exists between ALB or TSH and 
the risk of postoperative complication, as both too low 

Fig. 2 Receiver operating characteristic curves for the DT, RF, GBM, and XGBoost models in predicting any complication, cardiac effusion, 
and hemorrhage

Table 3 The evaluation metrics with 95% confidence intervals for each model using 20-round fivefold cross-validation

a AUC  Area under the ROC curve
b LR Logistic regression
c DT Decision tree
d RF Random forest
e GBM Gradient boosting machine
f XGBoost Extreme gradient boosting

outcomes Model AUC a (95% CI) Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) F score (95% CI) Brier score (95% CI)

Any complications LRb 0.650(0.645,0.655) 0.858(0.855,0.860) 0.352(0.339,0.366) 0.867(0.865,0.870) 0.084(0.081,0.087) 0.142(0.140,0.145)

DTc 0.627(0.613,0.641) 0.599(0.584,0.615) 0.615(0.589,0.642) 0.599(0.584,0.615) 0.054(0.051,0.056) 0.401(0.385,0.416)

RFd 0.721(0.713,0.729) 0.834(0.832,0.836) 0.460(0.446,0.475) 0.841(0.838,0.843) 0.092(0.090,0.095) 0.166(0.164,0.168)

GBMe 0.688(0.679,0.697) 0.929(0.927,0.930) 0.239(0.225,0.252) 0.942(0.940,0.943) 0.110(0.103,0.116) 0.071(0.070,0.073)

XGBoostf 0.707(0.701,0.712) 0.899(0.897,0.901) 0.327(0.315,0.340) 0.910(0.908,0.912) 0.107(0.103,0.111) 0.101(0.099,0.103)

Cardiac effusion/
tamponade

LR 0.665(0.656,0.674) 0.921(0.918,0.923) 0.259(0.241,0.277) 0.926(0.924,0.929) 0.052(0.048,0.055) 0.079(0.077,0.082)

DT 0.606(0.589,0.623) 0.429(0.398,0.459) 0.711(0.673,0.749) 0.426(0.396,0.457) 0.020(0.019,0.021) 0.571(0.541,0.602)

RF 0.662(0.647,0.677) 0.918(0.917,0.919) 0.295(0.281,0.308) 0.923(0.922,0.924) 0.056(0.054,0.059) 0.082(0.081,0.083)

GBM 0.660(0.644,0.675) 0.945(0.944,0.946) 0.195(0.166,0.223) 0.951(0.950,0.952) 0.055(0.047,0.063) 0.055(0.054,0.056)

XGBoost 0.696(0.688,0.703) 0.681(0.671,0.692) 0.652(0.632,0.672) 0.682(0.671,0.692) 0.033(0.032,0.034) 0.319(0.308,0.329)

Hemorrhage/
hematoma

LR 0.745(0.737,0.752) 0.938(0.936,0.939) 0.207(0.190,0.225) 0.944(0.942,0.945) 0.051(0.046,0.055) 0.062(0.061,0.064)

DT 0.649(0.630,0.668) 0.807(0.799,0.814) 0.470(0.429,0.512) 0.809(0.801,0.817) 0.037(0.035,0.040) 0.193(0.186,0.201)

RF 0.839(0.832,0.845) 0.903(0.902,0.904) 0.463(0.440,0.486) 0.906(0.905,0.908) 0.071(0.067,0.075) 0.097(0.096,0.098)

GBM 0.780(0.766,0.795) 0.985(0.985,0.986) 0.161(0.151,0.171) 0.992(0.991,0.992) 0.148(0.140,0.157) 0.015(0.014,0.015)

XGBoost 0.794(0.783,0.806) 0.860(0.857,0.862) 0.450(0.428,0.472) 0.863(0.861,0.866) 0.049(0.047,0.051) 0.140(0.138,0.143)
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and too high levels of ALB or TSH were associated with 
an increased risk.

From outside to inside, the importance of the feature 
was successively decreased.

Discussion
The present study included 3187 patients undergo-
ing RFA (3365 procedures) in a large center that cap-
tured real-world clinical information and was used to 
develop a risk model for complications associated with 
the procedure.

In this study, the most common complication was 
cardiac effusion or tamponade (0.83%), similar to the 
results ranging from 0.5% ~ 1.3% previously reported 
[8, 14–19]. For vascular complications, previous studies 
reported incidences from 1.1% to 2.3% [16–18, 20, 21]. 
In our study, the incidence of access site hemorrhage 
was 0.62%; hemorrhage requiring transfusion, 0.27%; 
thromboembolic events, 0.12%; arteriovenous fistulas/
pseudoaneurysm, 0.06%; and pulmonary vein stenosis, 
0.03%. The overall rate of procedural complications in 
this study was 1.84%, which is a lower level compared to 
the complication rates previously reported ranging from 
3.3%-6.84% [7, 8, 15–27] to as high as 9.1% [28] in a sur-
vey of U.S. medicare patients. Several potential reasons 
were contributing to the low incidence of postoperative 
complications in this study. First, we excluded patients 
undergoing concomitant other surgeries like left atrial 
appendage closure, leading to a lower incidence of post-
operative complications. Second, this study was con-
ducted at a high-volume center, with more than 1000 

Fig. 3 Postoperative complication incidence rate and the number 
of patients in different risk groups in the test set. Note: The number 
in brackets, eg. ‘887’ in ‘low risk (887)’ represents the number 
of patients who are classified into the low-risk group. The grey dashed 
line represents the actual postoperative complication incidence rate 
in the test set

Table 4 Stepwise multivariable logistic regression model of different outcome

LAD: normal: left artrial diameter < 41 mm in men or < 39 mm in women; enlargement: ≥ 41 mm in men or ≥ 39 mm in women; CREA: low or normal: ≤ 111 μmol/L in 
men or ≤ 81 μmol/L in women; high: > 111 μmol/L in men or > 81 μmol/L in women

variable Any complication Cardiac effusion/tamponade Hemorrhage

OR (95%CI) P value OR (95% CI) P value OR (95% CI) P value

Female 0.85 (0.49, 1.44) 0.54 0.91 (0.41, 1.96) 0.82 0.95 (0.41, 2.13) 0.90

Age (< 65 as reference) 1.43 (0.75, 2.87) 0.30 1.27 (0.57, 3.03) 0.56 2.23 (0.85, 6.98) 0.13

BMI (< 25 as reference) 0.76 (0.44, 1.29) 0.32 0.47 (0.19, 1.04) 0.08

HR (≤ 100 as reference) 0.85 (0.29, 1.98) 0.73

LAD (normal as reference) 0.70 (0.39, 1.28) 0.24 0.52 (0.21, 1.33) 0.16

CHA2DS2_VACS score (< 2 as reference) 1.73 (0.81, 3.91) 0.17

CREA (high vs normal or low) 2.44 (1.31, 4.36) 0.00 2.95 (1.24, 6.68) 0.01

TnI (≤ 0.04 ng/mL as reference) 2.23 (0.82, 5.08) 0.08 3.65(1.01, 10.42) 0.03

AST (≤ 40 U/L as reference) 2.29 (1.13, 4.32) 0.01 3.53 (1.40, 8.15) 0.00 2.70 (0.95, 6.60) 0.06

NT proBNP (300–900 as reference)

  < 300 ng/L 0.81 (0.39, 1.70) 0.58 1.00 (0.33, 3.16) 0.99

  > 900 ng/L 1.66 (0.88, 3.21) 0.12 2.17 (0.86, 6.19) 0.12

ALB (> 35 g/L as reference) 2.95 (0.82, 8.27) 0.06

AF_category (Paroxysmal AF as reference)

 Persistent AF 2.79 (1.11, 7.47) 0.03

 Chronic AF 1.69 (0.24, 7.52) 0.53

DD (≤ 0.55 mg/L as reference) 2.66 (1.15, 5.90) 0.02

Antiplatelet agents 2.58 (0.72, 7.27) 0.10

Hypertension 2.06 (0.83, 5.85) 0.14

Diabetes 1.88 (0.77, 4.32) 0.15
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RFA procedures performed annually. Complication risk 
was reduced when the surgery occurred in hospitals with 
high surgery volumes, similar to those reported previ-
ously [14, 21, 24]. Finally, the outcome of this study was 
only based on the in-hospital data.

Using 20 variables identified by machine learning 
techniques, we developed a predictive model for post-
operative complications with good predictive power in 
AF patients undergoing RFA. According to the defini-
tion of the literature [29, 30], the AUC value between 
0.7 and 0.8 is acceptable. The model shows better per-
formance (AUC = 0.721) than the model reported previ-
ously [11] (AUC = 0.64) and has the potential to be used 
in clinical practice, particularly for the outcome of hem-
orrhage, where the AUC reaches 0.839. To evaluate the 
clinical applicability of the model, patients was stratified 

into high-risk and low-risk groups according to the prob-
ability of the best performed machine learning model. 
The incidence of postoperative complications difference 
between two groups was statistically significant.

This study not only developed a more accurate risk 
model and identified previously unrecognized impor-
tant risk factors but also made it “explainable”. Our study 
benefits from the utilization of SHAP values to unveil 
the “black box” of machine learning models, thus, our 
model can furnish implications for patient manage-
ment even when implemented on individual patients. 
We employed radar plot and as well as SHAP depend-
ence plot for visualized at the feature and the individual 
level. Among the 10 most important features, most had 
an obvious cut-point at which the predicted risk abruptly 
changed. For example, Ccr < 50  ml/(min × 1.73m2), 

Fig. 4 Top-ranked features in predicting different complications. A: Top-ranked 10 features derived from the RF model in predicting any 
complication; B: Top-ranked 5 features derived from the XGBoost model in predicting cardiac effusion/tamponade; C: Top-ranked 10 features 
derived from the RF model in predicting hemorrhage; D: 13 important features in predicting any complication, cardiac effusion/tamponade 
or hemorrhage
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ALB > 50  g/L or < 35  g/L, CHA_2DS_2-VACs score ≥ 4, 
DD > 5  mg/L, AST > 100 U/L, NT-pro-BNP > 2000  ng/L, 
CREA < 50 μmol/L, or older than 80 resulted in a signifi-
cant increase in postoperative complication risk.

Ccr is accepted as the best overall measurement for 
assessing renal function [31], a Ccr < 60 ml/(min × 1.73m2) 
is considered compromised renal function. From the shap 
dependence plot, reduction of Ccr is shown to increase 
the risk of postoperative complication, which is consist-
ent with previous research fundings [7, 14]. In our study, 
ALB is another key predictor for postoperative complica-
tion. An obvious U-shaped relationship exists between 
ALB and the risk of postoperative complication, as both 
lower than 35 and higher than 50 g/L were associated with 
an increased risk. Serum ALB is usually used to reflect 
nutritional status and the ability of the liver to synthesize 
protein. Decrease in ALB level is indicative liver dam-
age or malnutrition. Meanwhile, several novel findings 
have been disclosed in our study. Preoperative elevated 
D-dimer was essential predictors of postoperative compli-
cations. Elevated D-dimer indicate a hypercoagulable state 
and secondary fibrinolysis, which may result in thrombotic 
disease [32, 33]. Whereas thromboembolic events were 
infrequent in this study, this could be due to the relatively 
short length of postoperative hospital stay. Patients with 
postoperative complications were at a hypercoagulable 

state at the early stage after ablation procedure but have 
not yet shown thromboembolic symptoms. Furthermore, 
preoperative elevated AST, and NT-pro-BNP were essen-
tial predictors of postoperative complications in our study. 
Patients with more comorbidities are more likely to exhibit 
dysregulated hepatic function, or myocardial function and 
significantly higher AST, or NT-pro-BNP levels.

The independent factors of procedural complications 
that have been reported previously were the gender of 
female [11, 15, 17, 18, 24, 25], older age [11, 16, 20, 24, 25], 
longer procedural duration [18, 34], the complexity of the 
procedure [20], CHA_2DS_2-VASc score [8, 9], smaller 
left atrium dimension [34], and comorbidities like conges-
tive heart failure [11, 16], renal insufficiency [7, 14], coagu-
lopathy [11], peripheral vascular disease [9, 11], chronic 
obstructive pulmonary disease [11], hypertension [14], 
mild liver disease [14], diabetes with chronic complica-
tions [14], and coronary artery disease [26]. Risk factors like 
CHA_2DS_2-VACs score, CREA, Ccr, and older age, which 
are in accordance with previous studies, play an essential 
role in our model. The inconsistencies between our find-
ings and previous studies are primarily due to the following 
reasons. Firstly, the differences between studies could result 
from differences in inclusion criteria or the number of sub-
jects enrolled. Secondly, previous studies mostly included 
limited variables and included few laboratory indicators. 

Fig. 5 SHAP dependence plot of the RF model in predicting any complication. It shows how a single feature (the top 10 important features) affects 
the output of the RF model. SHAP values for specific features exceed zero, representing an increasing risk of postoperative complication
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Compared to comorbidities or prior diseases, laboratory 
indicators for short-term outcome prediction were more 
objective and sensitive.

To reduce the risk of postoperative complications for 
AF patients requiring RFA, it is recommended to take the 
following measures. Firstly, preoperative comprehensive 
assessment and optimal control of correctable risk factors 
such as coagulation capability or renal function should 
be effectively and efficiently implemented in advance to 
achieve better outcomes. Secondly, the patient’s vital signs 
and cardiac function throughout the procedure should be 
closely monitored. Finally, for patients with high risk after 
RFA, appropriate postoperative care or surveillance is 
necessary for detecting early complications. Additionally, 
schedule regular follow-up visits for discharged patients 
are recommended to assess the patient’s recovery and to 
provide cardiac rehabilitation and health education.

This study provides additional evidence that can con-
tribute to further research in this field. In this retrospec-
tive study, we developed and evaluated different machine 
learning algorithms using a wide range of features to pre-
dict postoperative complications of RFA. Considering the 
composite outcome of any complication, we conducted 
sub-models of the most common complication to investi-
gate whether the predictors were different between those 
two groups. Moreover, for any complication, cardiac effu-
sion, or hemorrhage, over half of the top 10 features were 
laboratory features. This study demonstrated that the 
laboratory features, which instantly reflect physical con-
ditions and have been ignored by previous studies, may 
be more sensitive and more relevant to postoperative 
complication prediction. One of the advantages of this 
finding is that it uses variables that are easily accessible 
within the electronic medical records (EMR). As a result, 
the model can be integrated into a decision support sys-
tem under the EMR framework. In practice, this decision 
support system would access the clinical information of 
a new patient and calculate the risk of the patient experi-
encing a postoperative complication.

The present study also has several limitations. Firstly, 
generalizability is a potential limitation because all 
patients were included in a single center. Although 3365 
procedures were included in this study, with the data col-
lected for patients who presented between 2018 and 2021, 
the data from a single center, which could not represent 
the population of Chinese RFA patients, a multi-center 
study is needed to validate this result. Secondly, this was 
an in-hospital outcome prediction study based on ret-
rospective use of electronic medical record data, the 
complications that are known to occur late such as atrio-
esophageal fistula might not be captured. The complica-
tion rate might be underestimated. However, the majority 
of the complications occurred in a short period after the 

RFA procedure, so it is unlikely that a significant number 
of complications were missed. Finally, although we have 
included more variables than in previous studies, poten-
tial factors such as ablation duration and other intraopera-
tive variables were not available in our database.

Conclusions
We report an overall complication rate of 1.84% in a 
large data set of AF radiofrequency ablation. This study 
indicates that machine learning based on the RF, and 
XGBoost algorithms showed good performance in pre-
dicting different complications after RFA. The model 
developed in this study may assist clinicians in assess-
ing the risk of complications for patients with AF.
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