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Abstract

Background To evaluate missing data methods applied to laboratory test results used for confounding adjustment,
utilizing data from 10 MID-NET®-collaborative hospitals.

Methods Using two scenarios, five methods dealing with missing laboratory test results were applied, includ-

ing three missing data methods (single regression imputation (SRI), multiple imputation (M), and inverse probability
weighted (IPW) method). We compared the point estimates of adjusted hazard ratios (aHRs) and 95% confidence
intervals (Cls) between the five methods. Hospital variability in missing data was considered using the hospital-
specific approach and overall approach. Confounding adjustment methods were propensity score (PS) weighting, PS
matching, and regression adjustment.

Results In Scenario 1, the risk of diabetes due to second-generation antipsychotics was compared with that due

to first-generation antipsychotics. The aHR adjusted by PS weighting using SRI, M, and IPW by the hospital-specific-
approach was 0.61 [95%Cl, 0.39-0.96], 0.63 [95%(Cl, 0.42-0.93], and 0.76 [95%(Cl, 0.46-1.25], respectively. In Scenario 2,
the risk of liver injuries due to rosuvastatin was compared with that due to atorvastatin. Although PS matching largely
contributed to differences in aHRs between methods, PS weighting provided no substantial difference in point esti-
mates of aHRs between SRl and M, similar to Scenario 1. The results of SRl and Ml in both scenarios showed no con-
siderable changes, even upon changing the approaches considering hospital variations.

Conclusions SRl and MI provide similar point estimates of aHR. Two approaches considering hospital variations did
not markedly affect the results. Adjustment by PS matching should be used carefully.
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Background

In April 2018, the operation of the Medical Informa-
tion Database Network (MID-NET®) began as a national
project aimed at utilizing real-world data for drug safety
assessments in Japan [1-4]. MID-NET® is a database sys-
tems network consisting of 10 collaborative organizations
(23 collaborative hospitals) that can analyze data derived
from claim data, diagnosis procedure combination data,
and electronic medical record (EMR) data at the individ-
ual-level [2].

Laboratory test results derived from EMR data have
detailed information on clinical symptoms [5] and are
expected to be used for confounding adjustments in drug
safety assessments. However, the appropriate use of these
test results is difficult since a number of data obtained
during routine medical care may be missing in datasets
for analysis. Therefore, it is essential to appropriately
select and apply existing methods to reduce bias due to
missing data (hereinafter referred to as “missing data
methods”).

Choosing a missing data method requires an under-
standing of the missing data sources and missing data
mechanism [6—8]. Raebel et al,, in their study using the
US Food and Drug Administration Mini-Sentinel Dis-
tributed Database [6], reported that missing data sources
of laboratory test results include testing outside of con-
tracted laboratories, patient location where testing was
conducted, patient clinical features, etc. In the study of
the 10 MID-NET®-collaborative hospitals of the Tokush-
ukai Medical Group [9], authors reported that patient
background and setting of ordering system of laboratory
tests were the main missing data sources. Although their
impact was not evaluated because they were unobserved,
the measurement policies by physicians and institutions
were considered as potential sources as well. Missing
data mechanism can be classified as missing completely
at random (MCAR), missing at random (MAR), or miss-
ing not at random (MNAR) based on the relationship of

Table 1 Missing data mechanisms and their examples
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missing data probability with missing data and observed
values [10] (See Table 1).

In the utilization of laboratory test results contained
in MID-NET® to confounding adjustments, it is not
clear what impact different missing data methods have
on the result. Furthermore, owing to the differences
between hospitals in terms of the proportion of patients
with missing data (hereinafter, “missing proportion”) and
the relationship between missing data and patient back-
ground [9], hospital variations regarding missing data
should be well-considered.

In this study, the application of missing data methods
was carried out to two scenarios of drug safety assess-
ment adjusted by one laboratory test item. We evaluated
the impact that missing data methods/approaches to hos-
pital variations had on the interpretation of effect esti-
mates and results.

Methods

Study’s scope

We considered a drug safety assessment to estimate
an exposure effect using the Cox proportional-hazards
model, which is commonly used in cohort designs.
Assuming one laboratory test item as a confounder, we
applied five missing methods.

Database and target hospitals

This study used the database system for MID-NET®-
collaborative organizations of Tokushukai Medical Group
(hereinafter, “Tokushukai database”), which has the larg-
est number of MID-NET®- collaborative hospitals (10
hospitals; Supplementary Table S1). Supplementary
Table S2 demonstrates the data items used for analysis.

Definition of missing data

As per a previous study, missing data were defined as
“data that would be meaningful for the analysis but
not available during a specific period before the first

Missing data mechanism Description

Example

Missing completely at random (MCAR)

The probability that values are missing is unrelated

Missing data due to equipment failure.

to either the specific missing values that should have
been obtained or the set of observed values.

Missing at random (MAR)

obtained.
Missing not at random (MNAR)

The probability that values are missing depends
on the set of observed values but is further unrelated
to the specific missing values that should have been

The probability that values are missing is related
to the specific missing values that should have been
obtained, in addition to the ones actually obtained.

Missing data of blood glucose can be said to be
MAR given age, if younger patients are less (or
more) likely to have their blood glucose meas-
ured than older patients.

If there are data that are unobtained but can
influence the missingness of blood glucose,
missing data of blood glucose cannot be said
to be MAR but said to be MNAR.
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prescription date” [9]. The specific period, based on the
results of this prior study, was set to 90 days.

Missing methods

MAR, the reasoning behind which is explained in Miss-
ing methods section, was assumed as the missing data
mechanism in this study. The following four methods
were considered as missing data methods providing
unbiased results (hereinafter, “MAR-based methods”)
when both the MAR assumption and the correct model
specification used in the missing data method (herein-
after collectively referred to as “missing data models”)
were correct: single regression imputation (SRI), multi-
ple imputation (MI), inverse probability weighted (IPW)
method, and likelihood-based method [11-14]. In the
MID-NET® database system, SAS version 9.4 (SAS Insti-
tute Inc., Cary, NC, USA) can be used. Since SRI, MI, and
IPW methods are implemented in SAS version 9.4, we
adopted these MAR-based methods.

In this study, five missing methods were applied in
order to evaluate their impact on the effect estimation
of the outcome model. The methods included the above
three MAR-based methods, a method excluding a labora-
tory test item from baseline covariates (Exclusion), and a
complete case (CC) method (Table 2). Table 2 provides
a brief description of the three MAR-based methods [7,
15-23] and the settings of this study. In the application
of MAR-based methods, two approaches were adopted
to consider hospital variations in missing data. The hos-
pital-specific-approach implements a missing data model
within each hospital cohort. The overall-approach, con-
sequently, implements a missing data model to the over-
all cohort (combined hospitals cohorts) and uses hospital
as a fixed effect covariate (Fig. 1).

Confounding adjustment and outcome model

For the confounding adjustment methods, we adopted
two propensity score (PS) methods (PS weighting and
PS matching) as well as an outcome model method with
confounding factors as covariates (regression adjust-
ment). The confounding factors, other than the labora-
tory test item, were patient related factors (see Table 3)
and the corresponding hospitals. Since the target popula-
tion in the scenarios of this study is an exposed popula-
tion, the standardized mortality ratio weighting (SMRW)
[27] was used for PS weighting.

Then, the point estimate of adjusted hazard ratio (aHR)
and 95% confidence interval (CI) were calculated using
the Cox proportional-hazard model. In PS matching,
stratified Cox proportional-hazard model by matched
pairs was used. Robust standard error was used to calcu-
late 95% CI. In the combination of PS methods and MI,
aHR estimation was performed for m imputed datasets,
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and m estimates were combined (“within approach”) [34]
(see Supplementary Fig. S1).

Scenarios

Based on our previous research [9], we selected the sce-
narios of two cohort studies that evaluated the relation
between drugs and their known risks (see Supplementary
Fig. S2). Scenario 1 was the risk of diabetes associated
with antipsychotic drug use. In Scenario 1, the blood glu-
cose level before prescription of antipsychotic drugs was
the target laboratory test item. Scenario 2 was the risk
of hepatic injury associated with HMG-CoA reductase
inhibitors (statins) use. In Scenario 2, the target labora-
tory test item was either the alkaline phosphatase (ALP),
alanine transaminase (ALT), low-density lipoprotein
cholesterol (LDL-chol), or triglyceride (TG) levels before
statins prescription. In Scenario 2, four laboratory test
items were included in the baseline covariates of the out-
come model, and CC method, SRI, M1, and IPW method
were set for each laboratory test item. Table 3 shows the
detailed settings of the scenarios, including cohort sizes
and the number of complete cases.

Protocol approval and statistical analysis

Our study protocol was approved by the Kyoto Univer-
sity Graduate School, Faculty of Medicine, and Kyoto
University Hospital Ethics Committee in November 2018
(R1793). Statistical analyses were performed using SAS
version 9.4 (SAS Institute, Cary, NC, USA).

Results

Overall cohort sizes and the numbers of complete cases
were summarized in Table 3 and Supplementary Figs. S3
and S4. Patient backgrounds including incidence rate are
demonstrated in Supplementary Tables S3-S6 (Tables S3
and S5 for overall cohorts and complete cases, and Tables
S4 and S6 for hospital cohorts).

Scenario 1
Confounding adjustment by PS weighting
The aHR of Exclusion was 0.52 (95% CI, 0.34-0.81)
(Fig. 2). CC method, SRI, ML, and IPW method contained
blood glucose level as a covariate. The aHRs of SRI and
MI by the hospital-specific-approach were 0.61 (95% CI,
0.39-0.96) and 0.63 (95% CI, 0.42-0.93), respectively;
the point estimates were relatively close, but the width
of the 95% CI was slightly narrower in MI. Conversely,
the aHRs of the CC and IPW methods by hospital-spe-
cific-approach were 0.78 and 0.76, respectively, and thus
higher than those of SRI and ML

The aHRs of SRI, MI, and IPW method by the overall-
approach showed no substantial differences compared
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Overall cohort
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Fig. 1 Overview of the two approaches considering hospital variations. Abbreviations: aHR, adjusted hazard ratio. t In the overall approach,
the effects of missing data sources at the hospital level, including unobserved missing data sources, can be considered as the hospital effect
of the fixed effect, if not all. # In the hospital-specific approach, the interaction of patient background factors with hospitals can be considered

with the estimates by the hospital-specific-approach
(Fig. 3).

Confounding adjustment by PS matching

The aHRs of SRI and MI by the hospital-specific-
approach were 1.10 (95% CI, 0.72-1.66) and 1.01 (95%
CI, 0.34-2.97), respectively. Although there were no sub-
stantial differences in point estimates, the width of the
95% CI was larger in MI (Fig. 2). The aHR of the IPW
method was 1.31 by the hospital-specific-approach but
reduced to 0.94 by the overall-approach (Fig. 3).

Regression adjustment

The aHRs of SRI and MI by the hospital-specific-
approach were relatively close in terms of the point esti-
mates and the 95% Cls (Fig. 2).

Scenario 2

Confounding adjustment by PS weighting

The aHR of Exclusion was 1.32 (95% CI, 0.83-2.08). CC
method, SRI, MI, and IPW method included each labo-
ratory test item as a covariate. The aHRs of SRI and MI
by hospital-specific-approach varied between 1.20 and
1.32 through all laboratory test items (Fig. 4). While there
were no substantial differences in the point estimates of
SRI and MI, the width of the 95% CI was slightly nar-
rower in MI; for example, the aHR of SRI and MI for
LDL-chol were 1.24 (95% CI, 0.78-1.96) and 1.20 (95%
CI, 0.84-1.71), respectively. The aHR of IPW method for
ALT was 1.21, whereas those for ALP and LDL-chol were
close to 1. The aHRs of the CC method varied depending
on the type of laboratory test item. Accordingly, the aHRs
for ALT and LDL-chol were 1.29 and 1.08, respectively.

The aHRs of SRI and MI by the overall-approach
ranged between 1.19 and 1.32 through all laboratory
test items (Fig. 5). For some laboratory test items, espe-
cially ALP, the aHR of MI tended to be higher than
those determined by the hospital-specific-approach.

Confounding adjustment by PS matching

For all laboratory test items, the differences in aHR
between methods were higher and the width of 95% CI
was greater than the values obtained with other con-
founding adjustment methods.

Regression adjustment

The aHRs of SRI and MI by the hospital-specific-
approach ranged from 1.22 to 1.28 throughout all labo-
ratory test items. For the results in each laboratory test
item, both the point estimates and the 95% CIs were
relatively close in SRI and MI (Fig. 4). However, the
aHR of the IPW method was lower than those of SRI
and ML

Discussion

We evaluated the impact of five missing methods,
approaches to hospital variations, and confounding
adjustment methods on the effect estimation in two dif-
ferent scenarios. In Missing methods and Approaches
considering hospital variations sections, we excluded
discussions on PS matching in Scenario 2 were
excluded and were, instead, included in Confounding
adjustment methods section.
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Target Missing PS weighting PS matching Regression adjustment
test item method Nin N in Nin
. . HR (95%CI HR (95%CI HR (95%CI
with missing model e model ELEIR @0 model SR @Bl
Exclusion 3430 0.52(0.34-0.81) @ | 1,880 0.92(0.62- 1.37) [ 3430 0.60 (0.41-0.87) .|
Blood glucose CC method 2,990 0.78(0.51-1.21) o+ 1,550  0.88 (0.54-1.44) — o 2,990 0.78 (0.54 - 1.11) o+
SRI 3430 0.61(0.39-096) @ 1,852 1.10(0.72 - 1.66) —o— 3,430 0.70 (0.49 - 1.01) o
MI 3430 0.63(0.42-0.93) e 18521 1.01(034-297) +~ e~ | 3,430  0.69(0.48— 1.00) o
IPW method | 2,990 0.76 (0.46- 1.25) @1 1,568 1.31(0.78-2.19) [ P — 2,990 0.77(0.54- L.11) ol
T t T T T t T T T t T T
0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0 0.0 1.0 2.0 3.0

Fig. 2 Scenariol (the risk of diabetes associated with SGA compared to FGA use). Hazard ratios from outcome models with and without baseline
blood glucose (SRI, MI, and IPW method were applied by hospital-specific-approach). Abbreviations: aHR, adjusted hazard ratio; CC, complete cases;
Cl, confidence interval; IPW, inverse probability weighted; MI, multiple imputation; PS, propensity score; SRI, single regression imputation. 1The
sample size in PS matching with MI gives the mean of 10 matched samples

Target Missing Approach PS weighting PS matching Regression adjustment
testittm ~ method . aHR (95%C R aHR (95%CT) Ry aHR (95%CI)
with missing model oCI) model o model o
Blood ghicose  SRI Hospital-specific 3430 061(039-096) @+ 1,852 1.10(0.72 - 1.66) —— 3430 0.70 (0.49 - 1.01) =
Overall 3430 0.60(0.38-0.94)  +@— 1,864 1.00 (0.67 - 1.50) i 3.430 0.70 (0.49 - 1.00) -
MI Hospital-specific 3,430 0.63(0.42-0.93) O 1,8527 1.01(0.34-2.97) — 3.430 0.69(0.48-1.00) !
Overall 3.430 0.61(0.41-0.90) - 1,852 0.94(0.28 -3.17) —@————— | 3430 0.69(0.48-0.99) -0
IPW method _Hospital-specific 2,990 0.76 (0.46 - 1.25) ol 1,568 1.31(0.78 - 2.19) e— 2,990 0.77 (0.54 - 1.11) ok
Overall 2,990 0.70 (0.41 - 1.20) - 1,560 0.94 (0.59 - 1.51) — 2,990 0.74 (0.52 - 1.07) ol
oAlo 1.0 20 3'.0 oAlo 1.0 2{0 3‘.0 o_lo 1.0 20 3|.0

Fig. 3 Scenariol (the risk of diabetes associated with SGA use compared to FGA use). The difference in hazard ratios between approaches
considering hospital variations. Abbreviations: aHR, adjusted hazard ratio; Cl, confidence interval; IPW, inverse probability weighted; MI, multiple
imputation; PS, propensity score; SRI, single regression imputation. TThe sample size in PS matching with Ml gives the mean of 10 matched samples

Target Missing PS weighting PS matching Regression adjustment
test item method Nin Nin + Nin
with missing model aHR (95%CT) model QHRICSCT) model aHR (95%CT)
Exclusion 4,119 1.32(0.83-2.08) e 3,056 1.78(0.98-3.24) ® i 4,119 1.25(0.80 - 1.96) e
ALT CCmethod | 3,761  1.29(0.79 - 2.09) He—i 2,772 1.45(0.84-2.53) e 3,761 1.27(0.79 - 2.03) He—i
SRI 4,119 1.30(0.82 - 2.05) He 3,050 1.17(0.68 - 2.02) [ — 4119 122(0.78 - 1.90) e
MI 4,119 125(0.87-1.79) e 3,052°  2.06(0.36-11.69) ° > [ 4119 122(0.78-1.92) -
TPW method | 3,761  1.21(0.73 - 2.00) le—i 2772 1.45(0.84-2.53) e 3,761 1.17(0.72 -1.90) [ —
ALP CCmethod | 2996  1.33(0.76 - 2.32) He— 2230  3.17(1.52-638) ; * 4 2,996 1.48(0.88 - 2.50) [ e
SRI 4,119 1.32(0.84 - 2.09) e 3,060 225(1.20-4.23) e i 4,119 128(0.83 - 1.98) He—
MI 4,119 1.27(0.89 - 1.83) e 3,057°  2.38(0.52-10.83) ; ) > | 4119 127(0.81-2.01) He—
IPWmethod | 2,996 098 (0.49 - 1.95) — 2,268 7.50(2.02 - 27.89) ° 2,996 1.12(0.60 - 2.09) [ —
LDL-chol CCmethod [ 3,176 1.08(0.66 - 1.77) R - 2,164 0.89 (045-1.75) [ — 3176 1.03 (0.64 - 1.66) i
SRI 4,119 1.24(0.78 - 1.96) e 3,018 1.15(0.68 - 1.95) [ — 4,119 123(0.78 - 1.92) He—
MI 4,119 120(0.84-1.71) [ - 3,015 1.93(031-11.9) ® 4,119 123(0.78-1.93) He—
IPW method | 3,176  1.05(0.63 - 1.75) [ 2,182 0.86(0.50 - 1.48) @ 3,176 1.01(0.61 - 1.66) >
TG CCmethod | 3306  1.25(0.76 - 2.06) He—i 2372 2.00(0.90 - 445) . — 3,306 1.12(0.69-1.82) o
SRI 4,119 131(0.83 - 2.06) He— 3,048 1.58(0.94-2.67) [ — 4,119 1.26 (0.80 - 1.96) e
MI 4,119 1.25(0.88 - 1.80) He— 3,048° 238 (0.59 - 9.67) 4 ° 4,119 1.26(0.80 - 1.97) He—i
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Fig. 4 Scenario2 (the risk of hepatic injury associated with rosuvastatin use compared to atorvastatin use). Hazard ratios from outcome models
with and without baseline ALT, ALP, LDL-chol, or TG (SRI, MI, and IPW method were applied by hospital-specific-approach). Abbreviations: aHR,
adjusted hazard ratio; ALT, alanine transaminase; ALP, alkaline phosphatase; CC, complete cases; Cl, confidence interval; IPW, inverse probability
weighted; LDL-chol, low-density lipoprotein cholesterol; MI, multiple imputation; TG, triglyceride; PS, propensity score; SRI, single regression
imputation. T Not shown in the forest plot if the aHR is 8.0 or more. $The sample size in PS matching with Ml gives the mean of 10 matched samples

Missing methods aHRs between SRI and MI. This might be due to the fact
SRl versus MI that we used the same covariates in imputation models.
Although the setting is different, Marshall et al. [35] However, for 95% ClIs, we found some differences
reported that the bias in SRI and MI, using the same between SRI and MI in confounding adjustment with
covariates in imputation models, is the same when the PS methods (PS weighting of Scenarios 1 and 2 and PS
missing proportion of a continuous variable is around  matching of Scenario 1). This will be further explained
25%, and that there was no substantial difference in bias  in Confounding adjustment methods section. Although
even if the missing proportion increased to 50%. In this ~ SRI is generally described as underestimating SE [36],
study, we had no difference in the point estimates of the reason that this study did not show a clear under-
estimation of SE regardless of the type of confounding
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Target Missing Approach PS weighting PS matching
test item method Nin Nin R Nin
with missing model aHR (95%CI) model aHR (95%CT) model aHR (95%CI)
ALT SRI Hospital-specific 4,119 1.30(0.82 - 2.05) HO— 3,050  1.17(0.68 - —@— 4,119 1.22(0.78 - 1.90) He—i
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Overall 2119 1.26 (0.88 - 1.81) He— 1.68 (0.47 - 6.08) ° 2,119 1.28(0.81-2.01) He—
IPW method Hospital-specific 2,996 0.98 (0.49 - 1.95) —— 7.50 (2.02 - 27.89) . 2,996  1.12(0.60 - 2.09) ——
Overall 2,996 123(0.69-2.18) —He—i 1.00 (0.54 - 1.86) —— 2996 130(0.76-2.22 He—
LDL-chol SRI Hospital-specific 2119 124(0.78 - 196) e 115 (0.68 - 195) o 4119 123 (0.78- 192) He—
Overall 1119 122(0.77- 1.94) He— 1.40 (0.78 - 2.50) e 2119 122(0.78 - 1.91) —e—
Ml Hospital-specific 4,119 1.20(0.84-1.71) Hl!_‘ 1.93 (0.31 - 11.9) ® 4,119 1.23(0.78 - 1.93) He—
Overall 2119 1.19(0.83 - 1.69) —o— : 2,50 (0.44 - 14.06) 3 2119 1.22(0.78- 1.93) e —
IPW method _Hospital-specific 3,176 1.05(0.63-1.75) 4 0.86 (0.50 - 1.48) @ 3,176 1.01(0.61 - 1.66) —9—
Overall 3,176  1.09 (0.66 - 1.80) 4 1.45(0.84 - 2.53) H-@—— 3,176 0.99 (0.61 - 1.62) —o—i
. SRI Hospital-specific 1,119 1.31(0.83 - 2.06) e 1.58 (0.94 - 2.67) [ 2119 126(0.80 - 196) He—
Overall 4,119 131 (0.83 - 2.06) D 1.73 (1.00 - 20 97) ° 2119 126 (0.80 - 1.97) [EY
MI Hospital-specific 4,119 1.25(0.88 - 1.80) HO— 2.38(0.59-9.67) ® 4,119 1.26 (0.80 - 1.97) —H@—
Overall 4,119  1.25(0.88-1.80) HO— 1.74 (0.34 - 8.79) ® 4,119 1.25(0.80 - 1.97) H@—
IPW method  Hospital-specific 3,306  1.13 (0.67 - 1.91) ’_‘!_‘ 2,368  1.87(0.99 - 3.54) — @ 3,306 1.06 (0.64 - 1.76)
Overall 3,306 121(0.73-2.02) >—:0—! 2350 L0820 H0—<‘ : : : | ‘ ‘ 3,306 1.10 (0.67 - 1.80) : —o— : :
0.'0 1.0 Z‘.O 3‘.0 0.0 10 20 30 40 50 60 7.0 80 0.0 1.0 20 3.0

Fig. 5 Scenario2 (the risk of hepatic injury associated with rosuvastatin use compared to atorvastatin use). The difference in hazard ratios
between approaches considering the hospital variations. Abbreviations: aHR, adjusted hazard ratio; ALT, alanine transaminase; ALP, alkaline
phosphatase; Cl, confidence interval; IPW, inverse probability weighted; LDL-chol, low-density lipoprotein cholesterol; MI, multiple imputation; TG,
triglyceride; PS, propensity score; SRI, single regression imputation. t Not shown in the forest plot if the aHR is 8. or more. +The sample size in PS

matching with MI gives the mean of 10 matched samples

adjustment method might be due to the targeted single
laboratory test item.

IPW method versus imputation methods (SRl and MI)

The degree of difference in the point estimates of aHRs
between the IPW method and the imputation methods
varied depending on laboratory test items. In particular,
there were large differences in Scenarios 1 and 2 adjusted
by blood glucose level and ALP, respectively. This might
be attributed to the large weights in the IPW method. In
the analyses of blood glucose level and ALP, some hos-
pital cohorts had IPWs of 20 or higher. Large weights
can contribute to estimation instability. Therefore, it is
important to check the stability of the effect estimation
using the truncation of large weights [23] as a sensitivity
analysis.

CC and exclusion methods

In the CC method, large differences in aHRs from those
in the MAR-based methods were observed, especially in
Scenario 1 adjusted by blood glucose level and in Sce-
nario 2 adjusted by LDL-chol. When the standardized
mean differences (SMD) [37] between complete cases
and overall cohorts were calculated for patient back-
ground factors, factors with SMD of 0.1 or higher existed
in Scenarios 1 and 2 (complete cases for LDL-chol) (Sup-
plementary Tables S3 and S5). Such factors were con-
sidered to have non-negligible differences in patient
backgrounds [38, 39], and the aHR difference between
the CC method and the missing data methods was due
to the fact that complete cases did not represent overall
cohorts.

In the method excluding the laboratory test item in
Scenario 1, a relatively large difference in aHR from those
in the MAR-based methods occurred. However, in some
Scenario 2 cases, the difference was relatively small and
no noticeable difference in the analysis for ALT existed.
This might be attributed to the fact that confounding by
ALT was small because mean ALTs were the same for
rosuvastatin and atorvastatin users.

Assumption of missing data mechanism

We considered the missing data mechanism in this study
was a mixture of MAR and MNAR. Applying the missing
data method based on the MNAR assumption requires
extensive modeling of the missing data process. In such
a case, the MAR-based method may be used as the main
analysis method. Then, to evaluate the stability of the
main results with the MAR assumption, the pre-planned
sensitivity analysis should be considered [40].

When applying the MAR-based methods, the validity
of the MAR assumption should be relatively increased by
considering as many factors affecting the missing data as
possible increases [41, 42]. In this study, all patient back-
ground characteristics were included in the missing data
model. However, other missing data sources, such as the
settings in the ordering system for laboratory tests, the
measurement policy of tests, and the preferences of doc-
tors were unobserved and could not be included in the
missing data models.

Approaches considering hospital variations
The results of SRI and MI, and some of those in the IPW
method showed no noticeable change in aHR due to
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different approaches. In the overall approach, hospitals
were included in the missing data model as a fixed vari-
able and were expected to capture some of the effects of
unobserved missing data sources at the hospital level.
In the hospital-specific approach, interactions between
patient backgrounds and hospitals can be considered. It
is not known whether the hospital effect can be explained
by the fixed effect. Additionally, the presence or absence
of interaction has not been evaluated, but the results of
this study indicate that the difference in approach may
not significantly affect the difference in aHRs.

Some changes in aHRs due to the difference in
approach in the IPW method may have been caused by
the change in the distribution of IPW. In the analysis
for ALP in Scenario 2 of the hospital-specific-approach,
unlike the overall-approach, some patients with an IPW
of 20 or higher existed.

Confounding adjustment methods
Confounding adjustment methods affected the results
in two ways. First, in PS methods (especially PS match-
ing), there was a difference in 95% Cls between SRI and
MI. For binary outcomes, Granger et al. [43] reported
that coverage of 95% CI was too high in the PS match-
ing compared to the PS weighting using SMRW due to
the overestimation of variances. A combination of the PS
matching and MI with the “within approach” may have
affected the difference in 95% Cls in this study as well.
Second, in the analysis using PS matching, the degree
of variation in aHRs and the ranges of 95% CI between
missing data methods were large. One of the reasons was
attributed to the decrease in the number of patients to
be analyzed (Figs. 2 and 3). In Scenario 2, the incidence
rate was low (Supplementary Table S5), and the impact
of decreasing sample size was large. PS matching should
be used carefully, considering the results from this study
and its features (e.g., the target population will no longer
be an exposed population if all patients in the exposed
population do not have matched controls).

Table 4 Main findings in this study

(2023) 23:242
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In scenario 1, unlike a previous study [44], the
increased risk of diabetes associated with SGA use
was not observed. In our study, although we did not
confirm the frequency of laboratory measurements
during the follow-up period, there were differences
between groups in the missing proportion before drug
prescription (SGA users: 20.6%, FGA users: 9.2%),
suggesting that a detection bias may have existed and
affected the results. In scenario 2, the point estimates
of aHR were around or over 1, consistent with previ-
ous studies [32, 33].

When selecting scenarios and laboratory test
items, we also considered the feasibility of the num-
ber of events; thus, it was not covered in this study,
but the following case can also be a typical scenario
under which missing laboratory values occur in the
MID-NET® based on the knowledge from our previ-
ous study [9]; the scenario using laboratory tests with
restrictions on the implementation interval based on
the health insurance system (e.g., measurement can
only be performed once every 3 months) that may
be unique to the Japanese medical environment. It
is important to Considering the impact and charac-
teristics of missing data is important when planning
research.

There are two main limitations to this study. The
first is that the scenarios and laboratory test items
were limited. Since we used five missing methods, two
approaches for considering hospital variations, and
three confounder adjustment methods, we had to limit
the scenarios and the number of laboratory test items.
As more than one laboratory test item can be a con-
founding factor, further studies focusing on such situ-
ations are needed. The second is that we only examined
the Tokushukai Database. When applying the missing
data method to the entire MID-NET®, one must refer
to the findings of this study considering the differences
from the Tokushukai Database regarding the target
population and missing data sources.

#  Brief description

1 Point estimates for aHR can be similar for SRl and MI, but there may be differences in 95% Cl when adjusted with PS methods (especially PS match-

ing)

In the IPW method and imputation methods, aHR may be similar, but differences can occur.

In the CC method and the method excluding the laboratory test item, aHR may be similar to that of the MAR-based method, but differences can

occur.

It can be pointed out that the difference in approaches considering hospital variations may not significantly affect the difference in aHR.

5 It can be pointed out that the difference in confounding adjustment methods can be different for aHR, especially between PS matching and other

methods.

Abbreviations: aHR Adjusted hazard ratio, CC Complete case, C/ Confidence interval, IPW Inverse probability weighted, MAR Missing at random, M/ Multiple imputation,

PS Propensity score, SRI Single regression imputation
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Conclusions

Based on the five main findings of this study (Table 4),
we concluded that, although the different missing
methods may contribute to differences in param-
eter estimates of the outcome model, SRI and MI can
provide similar point estimates, and two approaches
considering hospital variations do not have a major
impact on the results. Confounding adjustment by PS
matching gave unstable point estimates and wide con-
fidence intervals and should therefore be used care-
fully. Although we report findings based on a case
study and cannot draw generalizable recommendation,
our research results may help in the selection of miss-
ing data imputation methods and the interpretation of
obtained results in the future utilization of MID-NET®.

Abbreviations

aHR Adjusted hazard ratio

ALP Alkaline phosphatase

ALT Alanine transaminase

CcC Complete case

cl Confidence interval

EMR Electronic medical record

FGA First-generation antipsychotic
HbAlc Hemoglobin Alc

ICD International Classification of Diseases
IPW Inverse probability weighted

JDS The Japan Diabetes Society
LDL-chol  Low-density lipoprotein cholesterol

MAR Missing at random

MCAR Missing completely at random

MNAR Missing not at random

Ml Multiple imputation

NGSP The National Glycohemoglobin Standardization Program
PS Propensity score

SGA Second-generation antipsychotic
SMD Standardized mean differences

SMRW Standardized mortality ratio weighting
SRI Single regression imputation

TG Triglyceride
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