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Abstract 

Background Despite the globally reducing hospitalization rates and the much lower risks of Covid‑19 mortality, 
accurate diagnosis of the infection stage and prediction of outcomes are clinically of interest. Advanced current tech‑
nology can facilitate automating the process and help identifying those who are at higher risks of developing severe 
illness. This work explores and represents deep‑learning‑based schemes for predicting clinical outcomes in Covid‑19 
infected patients, using Visual Transformer and Convolutional Neural Networks (CNNs), fed with 3D data fusion of CT 
scan images and patients’ clinical data.

Methods We report on the efficiency of Video Swin Transformers and several CNN models fed with fusion datasets 
and CT scans only vs. a set of conventional classifiers fed with patients’ clinical data only. A relatively large clinical data‑
set from 380 Covid‑19 diagnosed patients was used to train/test the models.

Results Results show that the 3D Video Swin Transformers fed with the fusion datasets of 64 sectional CT scans + 67 
clinical labels outperformed all other approaches for predicting outcomes in Covid‑19‑infected patients amongst all 
techniques (i.e., TPR = 0.95, FPR = 0.40, F0.5 score = 0.82, AUC = 0.77, Kappa = 0.6).

Conclusions We demonstrate how the utility of our proposed novel 3D data fusion approach through concatenat‑
ing CT scan images with patients’ clinical data can remarkably improve the performance of the models in predicting 
Covid‑19 infection outcomes.

Significance Findings indicate possibilities of predicting the severity of outcome using patients’ CT images and clini‑
cal data collected at the time of admission to hospital.
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Introduction
In the late 2019, Covid-19 pandemic was initially 
reported to rapidly infect residents of Wuhan city in 
China [1]. This previously unknown virus was then 
labelled as SARS-CoV2 by the International Committee 
on Taxonomy of Viruses (ICTV) and categorized under 
the family of corona viruses [2]. The infection caused by 
the Covid-19 was reported to be very similar to the dis-
ease due to the infection by SARS virus and could lead 
to severe respiratory syndromes and death [3, 4]. The fast 
and large increase in the number of infected individuals 
before vaccine roll-outs had resulted in a large increase 
in the number of referrals with critical conditions and 
admittance to the hospitals and clinics, imposing a bur-
den on the healthcare sector, globally. This important 
factor could potentially result in an increase in critical 
human error that could lower the diagnosis accuracy, 
subsequently. Recent analytical enhancements could 
assist in finding practical solutions to the urgent need 
for developing automated diagnosis platforms that can 
provide prognostic information about the evolution of 
infection in patients. Clinical observations confirm a 
large variety of symptoms for the infected individuals, 
where the milder initial symptoms could rapidly develop 
to critical situations. This itself could limit the clinical 
assessments or in more severe cases can eliminate the 
chances of treatment [5]. Therefore, clinical monitoring 
of patients and accurate prediction of infection devel-
opment during this period and/or even before their ini-
tial referrals can play an important role in saving lives 
[6]. Research suggest that the quality of patients’ chest 
Computerized Tomography (CT) scans are interpret-
ably linked to other observations from patients including 
their clinical examinations, laboratory tests, vital sig-
nals, patient history, and potential background illnesses 
[7]. Therefore, it is hypothesized that a proper combina-
tion of these data could be used for automatic prediction 
of both the severity and the developmental stage of the 
infection, more accurately [8].

Various applications of multi-modal data fusion tech-
niques on Covid datasets have been addressed in the lit-
erature. Studies suggest that chest X-ray images and lung 
CT scans can be fed into deep-learning-based models 
for diagnosis and classification of Covid-19-related con-
ditions [9–12]. Access to larger clinical datasets is cur-
rently a major challenge in the implementation of these 
techniques. Thus, various research have considered 
data augmentation techniques to cover these drawbacks 
[13–15]. Attempts show that predictive models fed with 
patients’ clinical data, demographic/historical condi-
tions and disorders, as well as laboratory tests can be 
used to predict outcomes [15–20]. Literature indicates 
possibilities of developing high-performance algorithms 

to accurately predict the severity of infection and fur-
ther diagnose healthy individuals from tested-positive 
cases. Successful algorithms have used combinational 
approaches through fusioning clinical observations data, 
CT images, vital signals, and background/historical con-
ditions [8, 17, 21–23]. These studies have initially com-
bined features extracted from CT images with features 
from the patients’ clinical data and fed the outputs into 
deep-net classifiers. For instance, studies show that the 
extracted features from the images can be combined with 
other available features/data (e.g., clinical observations/
measures) to create a more robust and consistent dataset 
that can provide detailed information for the deep-net to 
predict the severity of infection in the high- and low-risk 
patients [8, 14, 24].

In this work, we use data fusion of lung CT scan images 
and clinical data from a total of 380 Iranian Covid-
19-positive patients to develop deep-learning-based 
models to predict risk of mortality and outcomes in the 
high- vs. low-risk Covid-19 infected individuals. An over-
all schematic of the proposed approaches in this work 
is shown in Fig.  1. The article contributes to the field 
through:

1. Developing Visual Transformer and 3D Convolu-
tional Neural Network (CNN) predictive models 
fed with a series of fusion datasets from patients’ CT 
images and their clinical data. This includes intro-
ducing a novel heuristic concatenation approach, for 
integrating CT scan images with clinical data, which 
is inferred to have assisted with inter-network feature 
aggregations in the Transformer models.

2. Developing Visual Transformer and CNN-based pre-
dictive models fed with CT scan images only, and 
assessing the capabilities of genetic algorithm (GA) 
for hyper-parameter tuning of the 3D-CNN models 
fed with the fusion data and CT scan images.

3. Evaluating a series of conventional classifiers for pre-
dicting outcomes using patients’ clinical data only, 
and investigating strategies to select a set of proper 
clinical labels from the pool of clinical data for the 
classification of imbalance data. The paper further 
discusses imputation techniques to deal with missing 
values in the dataset.

Related work
Clinical data‑based detection
Here, only patients’ clinical data, including patients’ his-
tory and their lab test results, are used to develop predic-
tive models. Yue et al. have demonstrated that the use of 
clinical data and patients’ condition assessments at the 
time of admission can help to predict chances of mortality 
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at around 20 days [14]. They have achieved promising 
results by integrating predictive models including logistic 
regression (LR), support vector machine (SVM), gradi-
ent boosted decision tree (GBDT), and neural networks 
(NN) to predict the mortality risk (AUC: 0.924–0.976) 
[14]. Dhruv et al. have also shown that patients’ clinical 
data, blood panel profiles, and socio-demographic data 
can be fed into conventional classification algorithms 
such as Extra Tree, gradient boosting, and random for-
est for predicting the severity of Covid-19 [15]. Similar 
works show that clinical parameters in the blood sam-
ples can be infused into a combined statistical analysis 
and deep-learning model to predict severity of Covid-19 
symptoms and classify healthy individuals from tested-
positive cases [17].

Image‑based detection
In this approach, only chest X-ray or CT scan images 
are used for classification of Covid-19 infected patients. 
Purohit et  al. have proposed an image-based Covid-19 
classification algorithm and demonstrated that, among 
various image sharpening techniques, utilization of cer-
tain sharpening filters such as canny, sobel, texton gradi-
ent and their combinations can help to increase training 
accuracy in multi-image augmented CNN [13]. Research 
shows that deep neural networks are able to automati-
cally diagnose Covid-19 infection in partial X-ray images 
of the lungs [25], or through fusioning deep features of 
CT images [26–28]. Our team has also previously shown 
that chest X-ray images can be fed into CNNs for Covid 
detection [29].

Visual Transformer (ViT) networks, along with the 
CNN models, have recently shown remarkable capabil-
ity in resulting higher performances in various applica-
tions, such as image classification, object detection, and 
semantic segmentation. Recent works show that ViT 
and in particular Video Swin Transformers can competi-
tively achieve better accuracies, compared to the CNN-
based methods, for the classification and identification 
of Covid-19 infected patients using chest CT scans [30] 
and X-ray images [31]. Research shows that the feature 
maps extracted from the CT scan images in the out-
put of a ResNet model can be used as inputs to a trans-
former model for the identification of Covid patients 
(~ 1934 images, > 1000 patients, recall accuracy 0.93) 
[32]. Transfer-learning in Visual Transformer models, fed 
with either CT images or their combinations with chest 
X-ray images, shows diagnostic possibilities of Covid-19 
patients and localization of the infected regions in the 
lungs [31, 33]. A recent work has shown that a combi-
nation of parallelly extracted features from CT scans 
through simultaneous application of Visual Transform-
ers and CNN can help to accurately classify Covid-19 
patients [34]. Fan et al. have reported a high recall perfor-
mance of 0.96 using 194,922 images from 3745 patients 
which suggests strong capabilities of combinational 
approaches [34].

Fusion‑based detection
This approach mainly aims to fuse patients’ clinical data 
with any other possible information, such as chest X-ray 
and/or CT images, to use as the inputs for predictive 

Fig. 1 The flow‑chart schematic of the proposed predictive machine‑learning approaches for the classification of high‑ and low‑risk Covid‑19 
infected patients. “N” denotes the number of total CT scan slices from each patient
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models. Using a relatively large CT image dataset from 
multiple institutions across three continents, Gong et al. 
have developed a deep-learning-based image processing 
approach for diagnosis of Covid-19 lung infection [21]. In 
their technique, a deep-learning model initially segments 
lung infected regions by extracting total opacity ratio and 
consolidation ratio parameters from CT images and then 
combines the outputs with clinical and laboratory data 
for prognosis purposes using a generalized linear model 
technique (reported AUC range: 0.85–0.93) [21]. Other 
studies have proposed robust 3D CNN predictive models 
fed with combined data from segmented CT images and 
patients’ clinical data to predict whether a Covid-19-in-
fected-individual belongs to the low- or high-risk group 
[8, 22, 23]. These studies have shown that their proposed 
approaches are independent of demographic information 
such as age and sex, and other conditions such as chronic 
diseases. Meng et al., have demonstrated that 3D-CNNs 
can perform much better when simultaneously fed with 
patients’ segmented CT scans and clinical data compared 
to the singular use of clinical data or CT images in CNN-
based or logistic regression models [22]. Ho et  al., have 
compared performances of three 3D CNNs where each 
was trained on the (1) raw CT images, (2) segmented CT 
images, and (3) on the long lesion segmented data. They 
reported higher performance from the last approach 
amongst all [23].

A recent study has initially trained a speech identifica-
tion model for Covid diagnosis using Long Short-Term 
Memory Networks (LSTM) that uses the acoustic aspects 
of patient’s voice, their breathing data, coughing patterns, 
and talking [35]. The patients’ chest X-ray images are also 
fed into general deep-net models, including a VGG16, 
a VGG19, a Densnet201, a ResNet50, a Inceptionv3, a 
InceptionResNetV2, and a Xception for Covid identifi-
cation. Images and audio features were then combined 
and used as inputs to a hybrid model to identify non-
Covid or Covid-positive patients. They have reported a 
lower accuracy for their hybrid model compared to their 
speech-based or X-ray image-based models [35].

Methods
Dataset
The dataset used in this research includes both lung CT 
scan images and their clinical data from a total of 380 
Covid-19 infected patients. Patients were diagnosed by 
clinicians according to the Iran’s National Health guide-
lines [36] through clinical assessments of their symptoms 
and lung CT images. The patients were hospitalized in 
the emergency unit at Imam Hussain Hospital, Tehran, 
Iran, between 22nd Feb 2020 to 22nd March 2020. All 
ethics of the current research have been approved by 
the Shahid Beheshti University’s ethics committee (Ref: 

IR.SBMU.RETECH.REC.1399.003). All patients have 
signed and submitted their informed consent to partici-
pate in the research and their data privacy has been fully 
considered [37]. Examples of the lung CT scans at differ-
ent slice locations from a high- and a low-risk patient are 
shown in Fig. 2A, B and  C, D, respectively.

From the total number of studied patients, 318 individ-
uals have recovered from the illness while 62 have died. 
Since our top goal in this research was to correctly pre-
dict the severity of outcomes (mortality risk) using data 
collected at or around the time of initial referral (the first 
examination after the initial admission), we categorized 
died patients (including ICU-hospitalized deaths) in the 
high-risk group (class 0) and labeled the recovered indi-
viduals as the low-risk class (class 1). As data collection at 
the initial admission often results in ‘data missing’, in the 
following sections, we will provide thorough explanations 
of our strategies for addressing missing data.

Our image datasets included a series of lung CT scans 
ranging between 50 and 70 images/slices depending on 
the length of the patient’s lung. The clinical data used 
in this research were used as sets of numerical data col-
lected for all patients, including demographic data, expo-
sure history, background illness or comorbid diseases, 
symptoms, presenting vital signs, and laboratory tests 
data. A full list of these parameters as well as their mean 
and standard deviation (mean ± std) are tabulated in 
Table A.1 of Appendix A.

Data pre‑processing
An optimal data pre-processing is a critical initial step, 
prior to the initiation of training process, with possible 
boosting impacts on the overall performance of a model. 
A variety of pre-processing strategies can be chosen 
based on the type of data and/or algorithms used. In the 
following, we detail our pre-processing approaches for 
the numerical datasets and CT images.

Pre‑processing of clinical data
Dealing with clinical data often presents a range of 
unique challenges, some of which include handling 
missing data which can require strategic imputations or 
conversion of qualitative measurements into numeri-
cal formats. In fact, one of the primary challenges in 
working with clinical data is addressing missing values. 
Missing data can occur for various reasons, including 
non-response from patients, incomplete records, or data 
entry errors. Addressing these challenges requires care-
ful consideration and the implementation of specific 
strategies.

On the other hand, data often holds high dimension-
ality and strategies such as dimension reduction (data/
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feature/label selection) and feature extraction can help to 
represent data in a simpler format.

In this work, we initially adopted the widely accepted 
one-hot encoding [38] approach to convert qualitative 
data such as gender, etc., into numerical representations. 
This transformation allows us to incorporate these essen-
tial variables into our analytical models effectively. In the 
following, we explain our strategies for clinical data trim-
ming, data imputation, and preparation for analysis.

Clinical data trimming In the process of preparing 
our clinical dataset for analysis, we employed a series of 
meticulous data trimming strategies to enhance the qual-
ity and relevance of the data. These strategies aimed to 
strike a balance between maintaining a comprehensive 
dataset and ensuring data clarity and robustness.

Our initial data trimming step involved applying a 
thresholding criterion to identify and remove patients 
with a substantial amount of missing clinical data. Spe-
cifically, patients with at least 55% of their clinical data 
missing were excluded from the original clinical dataset. 
This step resulted in the removal of 59 patients, ensuring 
that our dataset primarily consisted of individuals with 
relatively complete clinical records. To further enhance 

the dataset’s robustness, we extended our data trim-
ming efforts by identifying and removing clinical labels 
with at least 60% missing values across the entire data-
set. This step eliminated 20 labels (out of a total of 87), 
streamlining our dataset and focusing our analysis on 
the most informative and complete clinical variables (i.e., 
67 labels). These specific threshold values were chosen 
based on manual assessments and observations.

After implementing these data trimming strategies, our 
dataset was refined to contain 321 patients out of the 
initial 380 patients. To facilitate subsequent analyses, 
we categorized patients into two classes based on clini-
cal outcomes. Patients who had unfortunately passed 
away were classified as “high-risk” (n = 57, class 0), while 
the remaining participants were labeled as “low-risk” 
(n = 264, class 1). These detailed data trimming strategies 
were essential in shaping our dataset to align with our 
research goals, ensuring that the resulting data analysis is 
meaningful.

Imputation of missing values The intensive work-load of 
clinical staff or unforeseen emergency situations/reasons 
may result in gaps or missing values within patients’ data 
records. It’s worth noting that working with the initial 

Fig. 2 Examples of the lung CT scans from the sequence of slices in the high‑ (A, B) and low‑risk (C, D) Covid‑19 infected patients. Arrows indicate 
infected regions
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format of imputed datasets can be challenging, making it 
crucial to employ appropriate algorithms to handle miss-
ing data [39]. In this work, to ensure the completeness of 
our clinical datasets, we employ imputation techniques 
to address these gaps effectively. Imputation involves esti-
mating missing values based on the available data, ensur-
ing that our datasets remain comprehensive and suitable 
for analysis. In the realm of machine learning, several 
methods can be applied for imputing missing data, and 
the choice often depends on the nature of the data and 
the research objectives. For instance, research shows 
that statistical approaches can be used to estimate miss-
ing data by utilizing key statistical parameters like mean 
and median derived from the entire dataset. Additionally, 
other machine-learning techniques such as linear regres-
sion or k-nearest neighbor (KNN) can be used to pro-
vide robust estimations for the missing values [40–44]. 
Here, for our specific implementation, we opted for the 
KNN algorithm with a parameter of k = 5. This approach 
allowed us to impute missing values by considering the 
closest neighboring data points, enhancing the preci-
sion of our imputations. By employing these methods, 
we aimed to ensure that our clinical dataset remained 
comprehensive and robust, enabling us to conduct analy-
ses and draw meaningful conclusions in the presence of 
missing data.

Dimension reduction Clinical datasets can exhibit high 
dimensionality due to the multitude of variables and fea-
tures. Managing high-dimensional data can be challeng-
ing and may lead to issues such as overfitting. To mitigate 
these challenges and simplify the data representation, 
we employ dimension reduction techniques. Gener-
ally, dimension reduction is performed via feature/label 
selection or feature extraction operations. Feature/label 
selection approaches are mainly concerned with distin-
guishing the most dominant features/labels while feature 
extraction strategies are employed to transfer data values 
into a new domain and sometimes define novel features 
based on the original ones. In this research, we investi-
gated the impact of both approaches on the feature-sets 
and assessed outcomes for each, both visually and by 
implementing a set of conventional classifiers, explained 
in the following, to identify the most informative and 
relevant variables, reducing the dimensionality of our 
dataset while retaining critical information. The final 
extracted features as well as the selected clinical labels 
from these attempts were later used in the training pro-
cess. In this study, we often refer to the selected clinical 
data as “clinical labels”.

Feature extraction: here, we extracted features from the 
clinical data by utilizing a commonly used dimension 

reduction technique, namely called principal component 
analysis (PCA) [45, 46]. PCA is an unsupervised and lin-
ear technique that uses eigen-vectors and eigen-values 
from a matrix of features to project lower dimensions 
from higher feature dimensions in the original matrix 
[47]. In the current study, an optimal number of required 
components in the PCA was found by using various 
numbers of extracted features. The output datasets from 
PCA were then fed into seven conventional classifiers 
including, SVM [38], MLP [46], KNN [47], random forest 
[48], gradient boosting [49], Gaussian naïve bayes [50], 
and XGBoost [51] to assess which number of feature-sets 
could lead to an optimal performance. This was accord-
ingly found to be associated with a set of 25 components.

Feature/label selection: here we assessed the capabili-
ties of two different approaches, namely “SelectKBest” 
[48, 49] and decision tree-based ensemble learning algo-
rithms [50] to select a set of clinical labels from the pool 
of original clinical data. The SelectKBest algorithm uses 
statistical measures to score input features based on their 
relation to outputs and chooses the most effective fea-
tures, accordingly. We used an ExtraTree classifier [51] 
for the decision tree-based ensemble learning approach 
where the algorithm randomly selects subsets of features 
to create the associated decision trees and evaluates min-
imal mathematical measures of each feature (typically 
the Gini Index [52]), while making the forest. Finally, all 
the extracted features are sorted in a descending order 
based on their measured Gini Index and user can choose 
to work with an arbitrary top k number of dominant fea-
tures from the list. An optimal number of clinical labels 
was found by assessing the performance optimality of 
the aforementioned seven conventional classifiers across 
a set of various numbers for the SelectKBest algorithm 
and ExtraTree classifier. A set of 13 selected clinical labels 
from the SelectKBest and a set of 30 selected clinical 
labels from the ExtraTree classifier were found to result 
in better performances compared with other combina-
tion sets (see Appendix B).

We further visually assessed the selected features using 
an unsupervised non-linear technique based on manifold 
learning, called t-distributed stochastic neighbor embed-
ding (t-SNE) [53]. The t-SNE is conventionally used for 
data visualization of large dimension datasets in 2 or 3 
dimensions. t-SNE aims to find an optimized value for 
its cost function by measuring embedded similarities 
within the dataset at both higher- and lower- dimen-
sions representations. In the t-SNE approach, a more 
visually separable data represents less complexity. Here, 
the t-SNE’s dimensionality parameter was set at 3 dimen-
sions, and then applied to the (1) main dataset including 
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all 67 clinical labels (with no dimension reduction), (2) a 
dataset including 13 selected clinical labels from Select-
KBest, 2) a dataset including 30 selected clinical labels 
from ExtraTree classifier, and 4) a dataset including 25 
extracted features from the PCA. Outputs of the t-SNE 
were then scatter plotted to visualize the complexity 
within each dataset (see Results section for the plots). 
Finally, we chose to carry on with the set of 30 selected 
clinical labels from the ExtraTree classifier approach 
which were found to lead to better classification results 
and represented less visual complexity in the t-SNE 
approach.

Pre‑processing of CT images
CT scan images of lung consist of a sequence of video 
frames at various sections (slices) along the patient’s 
lung, where the number of frames varies in individuals 
according to their length of lung or device settings. These 
images can be used as the inputs for predictive/classifica-
tion models where a certain number of input channels, 
that are compatible with the number of slices, must be 
used in the network’s architecture. Since the number of 
CT video frames varies across patients, an appropriate 
slice selection approach should be used to shape a uni-
form volumetric 3D input size for consistency across all 
models [54]. Various slice selection strategies consider 
manual selection of frames from the beginning, mid-
dle and end of a video set. The major problem with such 
approaches is that they neglect information connectivity 
across slices which can lead to loosing localized infor-
mation and provide a false representation for the entire 
video set. On the other hand, there are strategies that 
initially select a fixed number of frames from the entire 
video, and then interpolate data to generate a desired 
set of frames that provides a more accurate representa-
tion of the whole video set [54] compared to the manual 
approach.

Here, we chose to work with Spline Interpolated Zoom 
(SIZ) frame selection technique. An arbitrary number of 
frames (N) is initially selected in this technique to con-
struct a volumetrically uniform image-set that consists of 
a fixed number of CT slices for all individuals [54]. Then, 
depending on whether the patient’s video set contained 
higher or lower number of slices compared to the N, 
the sequence of slices was evenly sampled using a spac-
ing factor or interpolated to construct the missing slices, 
respectively. Here, the original size of the gray scale CT 
images was provided as 512 × 512 × 1, and we chose to 
work with N = 64 that represents the average number 
of frames in the videos from all patients. Therefore, the 
volumetrically uniform 3D inputs of the CNNs were re-
shaped to the size of 512 × 512 × 64 for all patients.

Data fusion
Here, we combined the clinical data/measures with the 
3D videos of the CT scan images from previous section, 
’pre-processing of CT images’, to shape more detailed 
fusion datasets for each patient.

To do so, we initially mapped the array of clinical labels 
(1xN) to a normalized vector with scaled numerical values 
ranging from 0 to 255. Next, we generated an empty 2D 
matrix with dimensions matching the size of 2D CT video-
frames (i.e., 512 × 512). To organize the data correctly, we 
created a 3D matrix of size 512 × 512xN by replicating this 
2D matrix N times, with N representing the number of clin-
ical labels. Subsequently, all data arrays in each 2D matrix 
within the 3D matrix were populated with the scaled values 
corresponding to the associated clinical labels/measures 
from the previous step. This approach helped to convert 
each of the scaled value from each clinical label into a 2D 
matrix (image). These 2D matrices were then concatenated 
to form a 3D matrix of clinical data, measuring 512 × 512xN 
(i.e., N images of size 512 × 512). This 3D matrix was then 
added to the CT video (i.e., 64 image slices of size 512 × 512 
forming a 3D matrix of 512 × 512 × 64 frames) to form a final 
3D fusion dataset measuring 512 × 512 × (64 + N) frames. 
This dataset was then used as inputs to the model described 
in ’3D swin transformer models on fusion data’ section, 
with N values varying - once with N = 30 (suggested from 
’Dimension reduction’ section) and once with N = 67.

Model training
The training process for each of the four previously out-
lined models, in the Introduction section and Fig. 1, are 
described in the following:

Approach #1: classification using clinical data only
Classification of datasets with imbalanced classes is 
associated with challenges and complexities which 
requires careful considerations. Data clustering is one of 
the useful approaches to handle such complexities and 
create more balanced datasets [55]. Here, we consid-
ered the following steps to create balanced datasets for 
training. Data were initially split into train and test sets 
(80% training, 20% test). The original ratio between class 
1 and 0 in the clinical dataset is nearly 5 (imbalanced 
data), hence we used Gaussian mixture clustering algo-
rithm [56] to divide the low-risk class in the training sets 
(n = 264, class 1) into five different clusters. Each of these 
clusters were then combined with data from the high-
risk class (n = 57, class 0). This approach helped to create 
5 separate balanced datasets which were then fed into 
seven different conventional classification algorithms, 
namely the SVM, MLP, KNN, random forest, gradient 
boosting, Gaussian naïve bayes, and XGBoost for clas-
sification. Each classification algorithm was accordingly 
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trained and tested on the five balanced train/test data-
sets resulting in five classification measures for classi-
fier (e.g., 5x trained/tested random forests). A voting 
approach was then applied to the outputs of these five 
blocks to determine the winning class. The class (e.g., 0 
or 1) with a larger number of votes (i.e., 3, 4, 5) from all 
blocks were chosen as the winning class.

Approach #2: training on CT images only

3D‑CNN CT model Since the CT scan images are 
sequences of frames taken at different slices, therefore, 
they can be technically considered as 3D video data. 
Therefore, here we designed and trained a 3D-CNN 
with 3 convolutional layers on the training datasets. 
Here, inputs of the 3D-CNN classifiers are matrices of 
512 × 512 × 64 dimension from the pre-processing stage, 
where 64 is the number of CT scan frames (slices) for 
each patient. We further used Genetic Algorithm (GA) 
to automatically find and assign optimal values for the 
CNNs’ hyperparameters [57]. The specified hyperpa-
rameters included the number of layers, number of neu-
rons in each layer, learning-rate, optimization function, 
dropout size, and kernel size. The population size and 
the number of generation were set to 10 and 5, respec-
tively. We also used Roulette wheel algorithm for par-
ent selection followed by crossover mechanism. The GA 
were trained over 20 epochs and fitness values with lower 
FPRs were chosen, accordingly. The selected hyperpa-
rameters for the 3D-CNN-based models in this work are 
shown in Table C.1 in Appendix C.

3D swin transformer CT model Visual Transformers 
(ViT) are classes of deep neural networks that have been 
initially used for natural language processing (NLP) and 
sought as improved alternatives to other classes of deep-
nets (i.e., CNNs) with competitive performances for multi-
modal inputs [58]. An input image to a ViT is initially 
shaped as a set of image-patches (equivalent to the set of 
words in NLP) which is then embedded with the local-
ized information of the image to form inputs to an encoder 
network within the Transformer. The encoder unit con-
sists of a multi-head self-attention layer [59], which highly 
improves features learning such as long-range depend-
encies and aggregation of global information [60]. The 
multi-head self-attention layer therefore aggregates spatial 
locations’ information where global and local information 
are combined, accordingly. This operation is expected to 
help with inter-network feature extractions and lead to 
better outcomes compared to the CNN networks, where 
the receptive field sizes are fixed [61]. In CNNs, this can 
be equivalently achieved by increasing convolutional ker-
nels which largely increases the computations. While ViT 

generally require 4 times lower computational facilities, 
they can extraordinary outperform the ordinary CNNs 
if trained on satisfactory data. Transformers generally 
require larger datasets for training, where transfer-learn-
ing and self-supervised techniques could greatly help to 
largely overcome such challenges. On the other hand, 
high-resolution input images can increase the computa-
tional burden and lower the computational speed, sub-
sequently. To overcome this challenge, Swin Transfomer 
models have been introduced to deal with higher resolu-
tion data in computer vision applications [62]. Video Swin 
Transformer (VST) models have been further introduced 
to work with 3D datasets such as videos [63], where the 
application of transfer learning and pre-trained models 
have been helpful. In this work, we normalized and aug-
mented the CT scan images of each patient from ’pre-
processing of CT images’ section to form 3D inputs for a 
3D Swin Transformer. With the aid of transfer-learning, 
we used a pre-trained model, Kinetics-400 [63], to set our 
model’s initial weights. We trained the 3D Swin Trans-
former over 50 epochs using an Adam optimizer with a 
0.02 learning rate and 0.02 weight decay.

Approach #3: training on fusion data

3D‑CNN models on fusion data Here, we considered 
a terminal data fusion (on CTs + 30 clinical labels) and a 
medial data fusion approach (on CTs + 67 clinical labels) 
to combine the data. In the first approach, the terminal 
3D-CNN, CT scans are initially fed into the 3D-CNN to 
extract their features-vector. The output features-vector 
were then terminally combined with the numerical data 
from dimension-reduction stage including 30 selected 
clinical labels for each patient to shape the final fea-
tures-vector. The final features-vectors along with the 
labels were fed into the Naïve Bayes network [64] for 
training/classification. The schematic of this approach is 
shown in Fig. 3.

In the medial 3D-CNN approach, the extracted features-
vectors of CT scans using the 3D-CNN in the previous 
structure were medially combined with extracted fea-
tures from the original clinical data (67 clinical labels 
from each patient) using a 1D-CNN to create a more 
comprehensive features-set (Fig. 4). Two fully-connected 
layers were finally used at the end of this structure and 
the output was fed into a final classification layer.

3D swin transformer models on fusion data The com-
plementary 3D fusion data from ’data fusion’ section were 
used as inputs (512 × 512 × (64 + N) frames) to the 3D 
Video Swin Transformer to assess effectivity of data fusion 
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approach. The schematic of our proposed data-fusion-
based approach fed into the 3D Swin Transformer models 
is shown in Fig.  5. We tested the performance of the 3D 
Swin Transformer model under two different scenarios 
for N = 30 (associated with the selected clinical labels in 
’Dimension reduction’ section) and N = 67 (associated with 
all clinical labels).

Performance measure
A k-fold cross-validation approach (k = 5) was used for 
overall performance assessments of all models. We also 
used the StratifiedKFold, a stratified cross-validator algo-
rithm, to split the imbalanced dataset into train/test sets 
across 5 folds.

Performance measures such as Kappa and F0.5 score 
could provide better validation evaluations for the clas-
sification of imbalanced datasets compared to the 

standard conventional measures such as “accuracy” and/
or “precision/recall”. In fact, the later measures may not 
be reliable criteria when classification is performed on 
un-balanced data or when data is not normally distrib-
uted [65, 66]. AUC measure, however, includes the pro-
portional impacts of the precision and recall metrics in 
validation assessments. Also, false positive rate (FPR 
– i.e., fall-out) is clinically a critical measure (e.g., com-
pared to true positive rate (TPR) – i.e., sensitivity); this 
is mainly because this measure indicates how many of 
high-risk labels have been incorrectly classified in the 
low-risk class. Clinically, a high FPR rate is not acceptable 
as the misidentification of high-risk labels can be danger-
ous for patients who require treatments. Due to these 
reasons, our performance evaluation policy was focused 
on models that simultaneously achieved a minimal FPR, 
a higher TPR, a higher AUC, and higher F0.5 score and 
Kappa. This “trade-off” strategy was mainly targeted to 

Fig. 3 Schematic of network architecture for the terminal 3D‑CNN fusion model (on CTs + 30 clinical labels)

Fig. 4 Schematic of network architucure for the medial 3D‑CNN fusion model (on CTs + 67 clinical labels)
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find a model with the lowest missed/wrong identifica-
tions for the high-risk class. These performance measures 
are described in the following sections.

Lastly, in machine learning, models are often evaluated 
using resampling methods such as k-fold cross-valida-
tion, which involves calculating and directly comparing 
mean performance scores of a model, across all folds. 
In this work, to assess whether the differences in mean 
scores among the top-performing models for all metrics 
across all folds are statistically significant, we further 
conducted a statistical analysis (i.e., p-values measures) 
between these models. This approach allows to further 
quantify the likelihood that the samples of scores in each 
fold were drawn from the same probability distribution 
across the 5-fold training sets, ensuring that the report-
ing performance evaluations are statistically significant. 
We employed a 95% confidence level (i.e., a p-value of 
0.05) as the criterion to determine the statistical signifi-
cance of the reported performance across these models.

Kappa
Kappa statistic is a performance measure that penal-
izes all positive or all negative predictions in its scoring 
regime. This approach is especially useful in multi-class 
imbalanced data classification and has been therefore 
commonly used in datasets with imbalanced classes [67, 
68]. Moreover, Kappa has been shown to provide better 
insights than other metrics on detecting performance 
variations due to drifts in the distributions of the data 
classes. Kappa statistic ranges between − 100 (total disa-
greement) through 0 (default probabilistic classification) 
to 100 (total agreement):

where xii is the count of cases in the main diagonal of the 
confusion matrix (successful predictions), n is the num-
ber of examples, c is the number of classes, and x.i , xi. are 
the column and row total counts, respectively.

TPR, FPR and Precision
The TPR (also called sensitivity or recall), in this article, 
indicates how many of the data are correctly classified in 
the low-risk group (class 1) while the FPR indicates how 
many of the data in the high-risk group are incorrectly clas-
sified in the low-risk group (class 1). Also, precision (or 
positive predictive value (PPV)) evaluates the number of 
TPs out of the total number of positive predictions which 
indicates how good the model was able to make positive 
predictions.

(1)Kappa
n c

i=1xii−
c
i=1xi.x.i

n2− c
i=1xi.x.i

x100

(2)TPR =
TP

TP + FN

(3)FPR
FP

FP + TN

(4)PPV =
TP

TP + FP

Fig. 5 Schematic of the 3D Swin Transformer model fed with the fusion of CT scan images and clinical data. “N” denotes the number of clinical 
labels
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F0.5 score
F0.5 score is the weighted version of F1 score where more 
weight is considered to precision than to recall (Eq.  5). 
This is particularly important where more weight needs 
to be assigned to PPV for situations where FPs are con-
sidered worse than FNs.

To report realistic performance measures for the 
imbalanced classes in this work, we have employed 
the Macro averaging method [69] to evaluate the F0.5 
score, recall, and precision metrics, in addition to 
reporting the actual TPR (sensitivity) and FPR (fall-
out) values. Macro averaging is a commonly used tech-
nique for evaluating the overall performance metrics 
in imbalanced data against the most common class 
label(s). It is insensitive to the class imbalance within 
the dataset and treats all classes equally. With Macro 
averaging, these metrics are computed independently 
for each class and then averaged, ensuring equal treat-
ment of all classes. Therefore, the reported metrics in 
this work include the TPR (sensitivity), FPR (fall-out), 
Macro-F0.5 score, Macro-recall, and Macro-precision 
measures.

Computing infrastructure
We used New Zealand eScience Infrastructure 
(NeSI) high-performance computing facilities’ Cray 
CS400 cluster for training and testing the models. 
The training process was executed using enhanced 
NVIDIA Tesla A100 PCIe GPUs with 40 GB HBM2 
stacked memory bandwidth at 1555 GB/s. Intel 
Xeon Broadwell CPUs (E5-2695v4, 2.1  GHz) were 
used on the cluster for handling the GPU jobs. The 
algorithms were run under Python environments 
(Python 3.7) using Pytorch deep learning framework 
(Pytorch 1.11).

(5)1.25

(

PPV × TPR

0.25PPV + TPR

)

Results
This section provides the obtained results for the pre-
processing, clinical-data-only trained models, CT scans-
only trained models, as well as the fusion approaches for 
both CNNs and Transformer models.

Pre‑processed clinical data
 Full results from the feature selection and feature extrac-
tion in the ’Dimension reduction’ section using the seven 
conventional classification algorithms for the (1) 67 original 
clinical labels, (2) 13 selected clinical labels from SelectK-
Best algorithm, (3) 30 selected clinical labels from ExtraTree 
classifier, and (4) 25 extracted features from PCA algorithm 
are shown in Tables D.1 to D.4 in Appendix D, respectively. 
A trade-off performance criterion for a lower FPR and a 
higher TPR, F0.5 score, and Kappa in these tables showed 
that the Gaussian Naïve bays (NB) performed much better 
across the four approaches above. The abstracted results in 
Table 1 further confirm that the classification of the clinical 
data using Gaussian NB fed with 30 selected clinical labels 
from the ExtraTree classifier has led to better performances 
compared to other approaches.

In addition, features-space assessments using the 
t-SNE algorithm on the four above schemes are shown 
in Fig. 6A and D, respectively. The features-space plots in 
this figure hold high-complexity and a visual binary clas-
sification seems to be a challenging due to the negligible 
differences between the images. Nevertheless, the appli-
cation of t-SNE on the 30 selected labels from ExtraTree 
classifier in Fig. 6C seems to provide a much better visu-
ally classifiable data.

Due to the above reasons, the dataset containing the 
30 selected clinical labels from ExtraTree classifier were 
used as the clinical dataset for models in Approach #1 
and Approach #3, where this data were further fused with 
the CT images to shape the fusion datasets.

Models on the clinical data only
 Results from the seven classification algorithms in 
Approach #1 are shown in Table  2. Each classifier 

Table 1 Comparison between the dimension reduction methods on the clinical data

Classifier Dimension reduction method Number of clinical 
labels /components

FPR TPR F0.5 score Kappa

Gaussian Naïve Bays N/A Raw data 67 labels 0.33 0.85 0.71 0.45

Clinical labels selection SelectKBest 13 labels 0.47 0.89 0.71 0.41

Clinical labels selection ExtraTree 30 labels 0.37 0.89 0.75 0.51
Feature extraction PCA 25 components 0.51 0.94 0.74 0.46
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was assessed using the 30 selected clinical labels from 
ExtraTree classifier. As shown, here the gradient boosting 
algorithm has outperformed the other algorithms.

Models trained on CT images only
Results of the 5-fold cross-validation from the 3D-CNN 
and 3D Swin Transformer models in Approach #2 
(trained on the CT-images only) are shown in Table  2. 
Results from the Transformer model on the CT images 
only shows improvement for all measures including FPR 
(0.45 lower), Kappa (0.27 higher), and F0.5 score (0.11 
higher) compared to the 3D-CNN.

Models trained on fusion data
Results of the 5-fold cross-validation for each of the 
data-fusion approaches in Approach #3 are also shown 
in Table 2. As shown, the Transformer fusion models as 
well as the Terminal 3D-CNN have resulted in improved 
overall scores, across all measures, compared to the 
medial 3D-CNN fusion approach.

 ROC curves of the top performing models from each 
section as well as the top performing 3D-CNN on the 
fusion data are shown in Fig.  7. Performance measures 

of the top performing models in Fig.  7, including the 
3D Swin Transformer on fusion data (CT + 67 labels), 
3D Swin Transformer on CTs only, Terminal 3D-CNN 
fusion (CT + 30 labels), and Gradient Boosting, for all 
metrics across all 5 folds, showed statistical significance 
(p-value < 0.05).

Discussion
This paper, for the first time, demonstrated how a 3D 
data fusion approach of combining CT scan images and 
patients’ clinical data can help to improve the perfor-
mance of Visual Transformer and CNN models for pre-
dicting high-risk Covid-19 infection. Other studies have 
mainly focused on feeding such networks with either CT 
scan images or patients’ clinical data. The paper explored 
a comprehensive set of strategies to evaluate optimal pre-
dictive model across a number of classifiers tested on a 
relatively large dataset of 380 patients. This research 
demonstrates the superiority of data-fusion approaches 
used in 3D Swin Transformers for better identification of 
high-risk Covid-19 infected patients.

Here we showed that the performance of a 3D 
Swin Transformer model tested on the fusion of 
CT scan images and the original set of 67 clinical 

Fig. 6  Visual representations from the t‑SNE approach using A: the main dataset including all 67 clinical labels (with no dimension reduction), B: 13 
selected clinical labels from SelectKBest, C: 30 selected clinical labels from ExtraTree classifier, and D: 25 extracted features from PCA. blue: high‑risk 
(class 0), orange: low‑risk (class 1)



Page 13 of 17Tehrani et al. BMC Medical Informatics and Decision Making          (2023) 23:265  

Fig. 7 Mean ROC curves from the top performing models. Bold line: 3D Swin Transformer on fusion data (CT + 67 labels), dashed‑dotted line: 3D 
Swin Transformer on CTs only, dotted line: Gradient Boosting, dashed line: Terminal 3D‑CNN fusion (CT + 30 labels)

Table 2 Performance results of the classifiers

a ROC Receiver Operating Characteristics Curve, AUC Area under the ROC Curve
b Denotes the macro-averaging evaluation method

Model category Model name FPR TPR F0.5  score† ROC/ AUC a Recallb Precisionb Kappa  (‑1, 1)

Approach #1: Clinical data only (on the set 
of 30 selected clinical labels from ExtraTree 
classifier)

Gaussian NB 0.49 0.70 0.57 0.60 0.61 0.59 0.19

Random Forest 0.07 0.56 0.60 0.74 0.74 0.64 0.27

Gradient Boosting 0.14 0.70 0.66 0.78 0.78 0.68 0.37

XGBRF 0.16 0.65 0.62 0.72 0.73 0.64 0.28

k‑nearest neighbors 0.47 0.58 0.50 0.55 0.56 0.52 0.05

SVM 0.18 0.18 0.32 0.50 0.50 0.42 0

MLP 0.40 0.40 0.22 0.50 0.50 0.20 0

Approach #2: CTs only 3D‑CNN 0.83 0.84 0.63 0.57 0.57 0.78 0.22

3D Swin Transformer 0.38 0.89 0.75 0.75 0.75 0.75 0.49

Approach #3: Data fusion Terminal 3D‑CNN 
on CTs + 30 labels

0.36 0.90 0.75 0.76 0.76 0.76 0.51

Medial 3D‑CNN
on CTs + 67 labels

0.65 0.98 0.70 0.66 0.66 0.67 0.37

3D Swin Transformer
on CTs + 30 labels

0.35 0.91 0.78 0.78 0.78 0.80 0.55

3D Swin Transformer 
on CTs + 67 labels

0.40 0.95 0.82 0.77 0.77 0.83 0.60
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labels outperformed all other strategies in this work 
(FPR = 0.40, TPR = 0.95, F0.5 score = 0.82, AUC = 0.77, 
Kappa = 0.60) where the models were fed with fusion-
type datasets, CT scan images only, and clinical data 
only. Here, we formed 3D fusion datasets by re-shaping 
the clinical data into 512 × 512x’number of clinical labels’ 
format and combined them with CT scan images of size 
512 × 512 × 64 to create our fusion dataset. It is inferred 
that our strategy for the dimension expansion of clinical 
data and fusing them with the CT scan images has suc-
cessfully helped the self-attention layers within the Swin 
Transformer model to effectively rate interconnectivity 
between the clinical data and the CT images for better 
classifications.

We further tested and compared the performance of a 
terminal 3D-CNN model (on the CT + 30 clinical labels), 
a medial 3D-CNN (on the CT + 67 clinical labels), 3D 
Swin Transformers (on the CT + 30 clinical labels and 
on the CT + 67 clinical labels, respectively) to the origi-
nal approach. Results from Table  2 indicates that our 
selected set of 30 clinical labels from the original pool of 
67 clinical labels fused with the patients’ CT scan images 
has been consistently and effectively helpful to achieve 
competitive performances compared to the 3D Swin 
Transformer on the CT + 67 clinical labels. Here, the 3D 
Swin Transformer model on the fusion of CT + 30 clinical 
labels achieved FPR = 0.35, TPR = 0.91, F0.5 score = 0.78, 
AUC = 0.78, Kappa = 0.55, and the terminal 3D-CNN 
model on the fusion of CT + 30 clinical labels achieved 
FPR = 0.36, TPR = 0.90, F0.5 score = 0.75, AUC = 0.76, 
Kappa = 0.51. These closer performance measures from 
the selected set of 30 clinical labels suggest that these 
dominant labels may hold clinical values in the clinical 
settings for a better identification of the illness and could 
be looked at in details in future studies. These clinical 
labels have been listed in Table A.1 of Appendix A.

We also assessed classification capabilities of a 
3D-CNN model and a Video Swin Transformer on sets of 
3D CT scan images only. Here, the 3D Swin Transformer 
achieved much better results (FPR = 0.38, TPR = 0.89, 
F0.5 score = 0.75, AUC = 0.75, Kappa = 0.49) compared 
to the 3D-CNN with higher FPR, lower AUC and Kappa 
(FPR = 0.83, TPR = 0.84, F0.5 score = 0.63, AUC = 0.57, 
Kappa = 0.22).

Our assessments also showed that conventional classi-
fiers, fed with patients’ clinical data only, poorly classified 
the data compared to the other two approaches above, 
namely the fusion and CT-only strategies (see Table  2). 
Amongst the conventional classifiers, Gradient boost-
ing was found to outperform the other ones when only 
fed with the clinical data (FPR = 0.14, TPR = 0.70, F0.5 
score = 0.66, AUC = 0.78, Kappa = 0.37).

An overall trade-off assessment shows that the 3D 
Swin Transformer fed with the fusion of CT scan images 
and the full set of 67 clinical labels identified high-risk 
patients from the low-risk class more accurately com-
pared to the other approaches. This was closely followed 
by 3D Swin Transformer model fed with a fusion of CT 
images and the set of 30 selected clinical labels from 
ExtraTree classifier. The 3D Swin Transformer again 
demonstrated superiority compared to the 3D-CNN 
approach, even when both models were fed with CT 
images only; however, the overall performance was found 
to be lower than the data-fusion approach. Classification 
performances remarkably decreased across all the seven 
conventional models when only the clinical data were 
used. The mean ROC curves in Fig. 7 from the top per-
forming models in each section demonstrate how the 3D 
Swin Transformer on fusion data (CT + 67 labels) out-
performed the other approaches. We have also provided 
the ROC curve of the top performing 3D-CNN model 
on the fusion data, namely the Terminal 3D-CNN fusion 
(CT + 30 labels) to show how the choice of 30 selected 
clinical labels could also help our proposed CNN-based 
model to achieve competitive performances compared to 
the 3D Swin Transformer on the fusion data.

Overall, we expect potential clinical utility for the pro-
posed 3D Video Swin Transformer fed with fusion data-
sets from patients’ CT images and clinical data for reliable 
prediction of outcomes in Covid-19-infected patients. The 
improved performances of the Transformer models show 
robust capability for a future validation study on larger 
datasets. We encourage readers to apply the proposed 
fusion scheme in this work to larger clinical datasets for 
further validity assessments. Results from this research 
highlight the possibilities of predicting the severity of 
Covid-19 infection, at the time of admission to the clini-
cal centers, when effectivity of early treatments is evident.

Limitations and future work
There are several limitations and avenues for future 
research emerging from the current study:

Data sample size: Our study’s dataset comprises 380 
Covid-19 diagnosed patients, which is relatively large. 
However, the study acknowledges the inherent varia-
tion in Covid-19 outcomes across demographic groups, 
regions, and healthcare systems. Consequently, the gen-
eralizability of our findings may be limited. To enhance 
the robustness of predictions, future research should 
focus on incorporating more diverse datasets, encom-
passing various patient profiles and geographical 
locations.

Data imbalance: The study employs imputation 
techniques to address missing data, a common prac-
tice in data analysis. Nevertheless, it is important to 
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acknowledge that imputation introduces potential 
biases that can affect the accuracy of predictive models. 
Although we provide transparency regarding our impu-
tation methods, the chosen criteria and various factors 
within the strategy may impact results. Hence, one limi-
tation of our study relates to potential biases introduced 
by these imputation procedures, which could have influ-
enced algorithm performance.

Label selection: Our study involves the selection of 
clinical labels from a comprehensive pool of clinical data. 
The choice of labels significantly influences predictive 
model performance. Therefore, future research would 
benefit from a more comprehensive assessment of label 
selection criteria and an exploration of how this choice 
affects both model accuracy and clinical relevance.

Overfitting, external validation & model interpret‑
ability: To gauge the generalizability and real-world 
applicability of our models, external validation using 
an independent dataset is imperative. The absence of 
external validation in this study could be considered as 
a limitation that restricts our ability to demonstrate the 
models’ practical utility. In the clinical context, valida-
tion on a larger, unseen dataset is essential to ensure 
interpretability. Future research efforts can be tailored to 
enhance model predictions, thereby providing trustwor-
thy decision-making indicators.

Long‑term outcome: While our study primarily focuses 
on predicting Covid-19 outcomes during or shortly 
after hospital admission, we recognize the potential for 
enduring effects and complications that extend beyond 
immediate hospitalization. Exploring the prediction and 
monitoring of post-recovery complications or long-term 
outcomes, especially in relation to the parameters exam-
ined in this study, represents a valuable avenue for future 
research. Such exploration holds significance for both 
patients and healthcare providers, enhancing the com-
prehensive management of Covid-19 cases.

Clinical utility: One limitation of this study was the 
inability to assess the robustness of the proposed models 
under conditions such as variations in data quality, imaging 
equipment, or specific clinical practices. Recognizing how 
these proposed models could potentially enhance patient 
outcomes is vital for their acceptance in healthcare settings. 
Consequently, future research should encompass clinical 
validation to evaluate the practical impact of employing 
these predictive models in clinical decision-making.

Conclusion
This paper demonstrated how the performance 
of Visual Transformers, namely a 3D Swin Trans-
former, could remarkably improve for predicting 

Covid-19 outcomes when fed with a novel 3D data 
fusion approach of integrating CT scan images with 
patients’ clinical data. The paper further explored and 
compared capabilities of a series of models including 
Transformers (on CT images only), 3D-CNNs (both 
on the fusion dataset and on CT images only) as well 
as conventional classifiers (on the clinical data only). 
Results showed that the use of fusion dataset provided 
opportunity for the 3D Swin Transformer model to 
better aggregate globally and locally interconnected 
features of the data and perform better compared to all 
other models. Results confirmed that this was valid for 
the larger fusion dataset of 64 CT scans + 67 clinical 
labels and the 64 CT scans + 30 selected clinical labels. 
The paper further discussed how genetic algorithm 
(GA) is a suitable choice for hyper-parameter tuning 
of the 3D-CNN models. We also investigated a series 
of strategies to find and select a proper set of clinical 
labels from the pool of clinical data for the classifica-
tion of imbalance data. The paper further discusses 
imputation techniques to deal with missing values in 
the dataset. Overall, this paper demonstrates possibili-
ties of predicting the severity of outcome in Covid-19 
infected individuals at or around the time of admission 
to hospital using fusion datasets from patients’ CT 
images and clinical data.
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