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Abstract 

Background Diabetic kidney disease (DKD) has become the largest cause of end-stage kidney disease. Early 
and accurate detection of DKD is beneficial for patients. The present detection depends on the measurement of albu-
minuria or the estimated glomerular filtration rate, which is invasive and not optimal; therefore, new detection tools 
are urgently needed. Meanwhile, a close relationship between diabetic retinopathy and DKD has been reported; thus, 
we aimed to develop a novel detection algorithm for DKD using artificial intelligence technology based on retinal vas-
cular parameters combined with several easily available clinical parameters in patients with type-2 diabetes.

Methods A total of 515 consecutive patients with type-2 diabetes mellitus from Xiangyang Central Hospital were 
included. Patients were stratified by DKD diagnosis and split randomly into either the training set (70%, N = 360) 
or the testing set (30%, N = 155) (random seed = 1). Data from the training set were used to develop the machine 
learning algorithm (MLA), while those from the testing set were used to validate the MLA. Model performances were 
evaluated.

Results The MLA using the random forest classifier presented optimal performance compared with other classifiers. 
When validated, the accuracy, sensitivity, specificity, F1 score, and AUC for the optimal model were 84.5%(95% CI 
83.3–85.7), 84.5%(82.3–86.7), 84.5%(82.7–86.3), 0.845(0.831–0.859), and 0.914(0.903–0.925), respectively.

Conclusions A new machine learning algorithm for DKD diagnosis based on fundus images and 8 easily avail-
able clinical parameters was developed, which indicated that retinal vascular changes can assist in DKD screening 
and detection.
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Introduction
Diabetic kidney disease (DKD) has already become the 
single largest cause of end-stage kidney disease (ESRD), 
and it was reported that even early stages of DKD pre-
sented an increased risk of cardiovascular disease [1]. 
Early detection of diabetic kidney disease will allow 
appropriate interventions and thus substantially reduce 
the health-care burden. Detection of diabetic kid-
ney disease depends on measurement of albuminuria 
or estimated glomerular filtration rate (eGFR) [2], but 
increasing evidence has shown that some DKD patients 
will not develop albuminuria [3]. Moreover, the measure-
ments of albuminuria or eGFR are not always convenient 
since serum or urine samples need to be obtained and 
they have limited precision at an earlier DKD stage [2]. 
Although promising new markers have been reported, 
none have presented better performance as a screening 
tool for DKD than albuminuria [4]. On the other hand, 
although kidney biopsy is an accurate approach to iden-
tify early disease, it is invasive and cannot be routinely 
used. Thus, there is a need for a noninvasive and easily 
available tool for diagnosing DKD.

Meanwhile, DKD and diabetic retinopathy (DR) are 
the most common microvascular complications of type 
2-diabetes mellitus [5]. A close relationship between 
DR and DN has been reported in epidemiologic studies 
[6], since they share similar structural and physiologi-
cal changes during early diabetes, which may be due to 
hyperglycemia, microangiopathy, inflammation, endothe-
lial dysfunction, oxidative stress and other processes [7, 
8]. As a result, DR measurements have the potential to 
allow optical monitoring of human microcirculation and 
to be a unique noninvasive predictor of DN [6]. In recent 
decades, a large number of studies have been conducted 
and have indicated that retinal changes measured from 
fundus photography are related to DKD, even without 
retinopathy [1, 9] However, the results were inconclusive 
[10], with limited sensitivity, specificity, convenience and 
extensibility.

In the past few years, machine learning techniques 
have been used for the diagnosis [11, 12], prediction, and 
prognostic analysis of DKD [13, 14]. Most of the diag-
nostic models developed for DKD are based on demo-
graphic information, biochemical parameters (such as 
triglycerides, serum uric acid, urea nitrogen, etc.), genetic 
information and so on [11, 12]. However, biochemi-
cal parameters depend on the collection of blood and 
urine samples, so the model does not have a prominent 
advantage over the current diagnosis of DKD (based on 
urinary microalbumin). On the other hand, two studies 
in the past year explored the diagnostic value of fundus 
images for chronic kidney disease (CKD) based on artifi-
cial intelligence deep learning technology. Sabanayagam 

et al. developed a diagnostic model for CKD using only 
fundus image information, but their diagnosis of CKD 
relied only on the estimated glomerular filtration rate 
(eGFR) [7], so the early diagnosis value is unclear. Kang 
Zhang et  al. first used fundus photographic images to 
construct a diagnostic model for early DKD, and the area 
under the receiver operating characteristic curve (AUC) 
of the model was 0.800–0.864 [15]. This model directly 
input fundus images, but the defect lies in which specific 
image features are extracted; that is, the diagnostic prin-
ciple is unknown.

Nowadays artificial intelligence has been increas-
ingly used and has shown good performance in clinical 
diagnosis and treatment [7]. Thus, we aimed to develop 
a novel noninvasive detection algorithm for DKD using 
artificial intelligence machine learning technology based 
on measurable retinal vascular parameters from fun-
dus photographs combined with several easily available 
clinical parameters in type-2 diabetes mellitus (T2DM) 
patients.

Materials and methods
Study design and population
Data from 528 sequential eligible inpatients with T2DM 
from Xiangyang Central Hospital from 4 January 2021 
to 31 December 2021 were extracted retrospectively. 
Inclusion criteria were as follows: patients aged between 
18–80 years old with T2DM who had UACR and eGFR 
data and clear retinal photographs. Full exclusion crite-
ria were cataract or glaucoma (n = 1), severe systemic 
diseases (such as end-stage renal disease, severe heart 
or liver disease, or malignant tumor) or acute complica-
tions of DM (such as diabetic ketoacidosis, hyperglyce-
mic hyperosmolar state, lactic acidosis, or hypoglycemia 
coma) (n = 3); and patients without gradable retinal pho-
tographs (n = 9). Finally, 515 patients were included.

The study protocol was approved by the Ethics Com-
mittee of Xiangyang Central Hospital, an affiliated hospi-
tal of Hubei University of Arts and Science (Ethics batch 
number: XYSZXYY-LLDD-PJ-2022–034). The study was 
registered at the Chinese Clinical Trial Center (Regis-
tration number: ChiCTR2200060132) and performed in 
accordance with the guidelines of the Declaration of Hel-
sinki. Private personal information was removed during 
the process of analysis and publication. Informed consent 
exemptions were approved by the ethics committees.

Definition of diabetic kidney disease
T2DM was defined as fasting plasma glucose ≥ 7.0 mmol/L, 
2-h postprandial plasma glucose (2hPG) ≥ 11.1 mmol/L, gly-
cated hemoglobin (HbA1c) ≥ 6.5%, symptoms plus random 
plasma glucose ≥ 11.1 mmol/L [16], self-reported physician 
diagnosed T2DM or use of antidiabetic medications. The 
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urinary albumin to creatinine ratio (UACR) was calculated 
using spot urine collected in the morning. Albuminuria was 
categorized as normoalbuminuria (UACR < 30 mg/g creati-
nine) and albuminuria (UACR ≥ 30  mg/g creatinine). The 
estimated glomerular filtration rate (eGFR) was evaluated 
using the Chinese Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) formula as eGFR (ml/min/1.73 
 m2) = 175 × (serum creatinine mg/dL)−1.154 × (Age) −0.203 
(× 0.742 if female) [17]. UACR and serum creatinine were 
measured by a Beckman Coulter AU 680 (Brea, USA). DKD 
was defined as an eGFR of less than 60 ml/min/1.73  m2 or 
an albuminuria concentration of more than 30  mg/g after 
ruling out other possible causes of kidney injury [16]. If the 
data are available, only persistent albuminuria ≥ 30  mg/g, 
which is sustained over ≥ 90  days, will be considered 
“albuminuria”.

Clinical risk factors
To train models to predict DKD, 8 demographic and 
clinical risk factors linked to diabetic kidney disease were 
used as predictors, based on previous studies [2, 7, 10], 
and they were extracted from the hospital’s electronic 
medical records system, including: age, gender, duration 
of diabetes, hypertension, history of cardiovascular and 
cerebrovascular disease, smoking, BMI (kg/m2), and gly-
cosylated hemoglobin (%). Hypertension was defined as 
systolic blood pressure ≥ 140  mmHg or diastolic blood 
pressure ≥ 90  mmHg, self-reported physician-diagnosed 
hypertension or use of blood pressure-lowering medica-
tions. Cardiovascular and cerebrovascular diseases were 
defined as myocardial infarction, angina, heart failure or 
stroke. Body mass index (BMI) was calculated as follows: 
weight (kg) divided by height squared  (m2). HbA1c was 
measured with finger capillary blood using test paper 
produced by Hangzhou Liwei Technology Co., Ltd., 
China.

Fundus photographing
Color fundus photographs were obtained using a reti-
nal fundus camera (Canon, CR-2, Japan) at 45° of both 
eyes for each patient. Mydriatic agents were not applied. 
Macula-centered images were collected. The left eye data 
were used, and when unavailable, the right eye data were 
used. The images were obtained in JPG format. For all 
subjects with more than one visit, the most recent data 
and images were used.

The measurement was performed using a mature 
automatic computer program developed by the Key 
Laboratory of Biomedical Information Engineering 
of Ministry of Education, School of Life Science and 
Technology, Xi’an Jiaotong University, China, which 
had been verified to be accurate and effective [1, 8, 18]. 
First, the deep learning algorithm was used to find the 

optic disc of the fundus and separate the arteries and 
veins. With the optic disc as the center, blood vessels 
were divided into three regions: central zone (0.5–1 
times the diameter of optic disc [DD]), intermediate 
zone (1–2 times DD), and peripheral zone (> 2 times 
DD). The measured parameters included nonvascu-
lar area, total vessel tortuosity, total fractal dimension 
and vessel caliber. For vessel caliber, the above three 
regions were measured and averaged, and the arteries 
and veins were measured separately, but ultimately, the 
peripheral vein caliber and peripheral arterial caliber 
were selected as predictors since the difference in their 
measurements between DKD patients and non-DKD 
patients was most significant.

Machine learning algorithm development
Python 3.6.13 (library, scikit-learn) was used to develop 
and validate the machine learning-based algorithm. 
Patients were stratified by DKD diagnosis and split ran-
domly into either the training set (70%, N = 360) or the 
testing set (30%, N = 155) (random seed = 1). Data from 
the training set were used to develop the machine learn-
ing algorithm (MLA), while those from the testing set 
were used to validate the MLA. There was no overlap 
between the training set and the testing set. The input 
was measurable vascular parameters and 8 clinical 
parameters. The output was a binary classifier to classify 
the presence or absence of DKD. Four MLAs were devel-
oped using 4 different classifiers, including random forest 
(RF), support vector machine (SVM), gradient boosting 
decision tree (GBDT), and AdaBoost, to find an opti-
mal detection model. Stratified tenfold cross-validation 
and grid search were used to search the optimal hyper-
parameters of classifiers to increase the performance of 
the models in the training cohort. In the RF model, Gini 
importance was used as a general measure of feature rel-
evance. The accuracy, sensitivity, specificity, F1 score and 
area under the receiver operating characteristic curve 
(AUC) were calculated to evaluate the performance of 
the models. Predictive models were compared among 
classifiers, and the one with the best performance was 
selected (as summarized in Fig. 1).

Statistical analysis
Python 3.6.13 (library, scikit-learn) was used for devel-
opment and validation of the models. STATA Version 
16 (Stata Corporation, College Station, TX, USA) was 
used for statistical analysis. Continuous variables are pre-
sented as the mean ± standard deviation, and categorical 
variables are presented as percentages. Student’s t test 
was used for continuous data, and the χ2 test was used 
for categorical data. The accuracy, sensitivity, specificity 
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F1 score, and AUC were calculated to evaluate the per-
formance of the prediction models.

A small number of missing data (2 patients were with-
out duration of diabetes, 17 were without BMI, and 74 
were without HbA1c) were imputed and replaced by the 
method of k-Nearest Neighbor (k-NN) imputation. In 
order to correct for dataset imbalance (149 patients with 
DKD in the overall cohort; 28.9%), two different over-
sampling algorithms were applied to all the models: ran-
dom oversampling, and synthetic minority over-sampling 
technique (SMOTE). Overfitting bias was defined as the 
difference between the accuracy observed at training and 
accuracy at validation, and the learning curve was used 
to display the degree of fitting of the selected model. 
Statistical significance was indicated by a P value < 0.05 
(two-sided).

Results
Basic characteristics and retinal measurements
The mean age of the 515 included patients was 54 years, 
and 329 (63.9%) were male. Moreover, 46.8% had hyper-
tension, while 17.3% and 42.7% ever had cardiovas-
cular/cerebrovascular diseases and smoking history, 

respectively. The median UACR and eGFR were 59.6 
mg/g and 110.3 ml/min/1.73  m2, respectively.

Compared with T2DM patients without DKD, those 
with DKD were older, had a longer duration and higher 
BMI, and more frequently had hypertension or cardio-
vascular/cerebrovascular diseases and a smoking his-
tory (P < 0.05). Moreover, patients with DKD seemed to 
have a higher BMI, but the difference was not statistically 
significant (as shown in Table 1). Regarding the vascular 
parameters, patients with DKD had a higher nonvascular 
area and vessel tortuosity and a lower fractal dimension. 
Vessel calibers were increased, especially in the periph-
eral zone (P < 0.05).

Evaluations of the developed models for detecting 
diabetic kidney disease
After tuning of hyperparameters, a RF algorithm with 
SMOTE correction for data set imbalance was selected as 
the best model and was validated in the testing data set. 
A detailed description of the applied supervised learning 
methods is provided in Supplementary Table 1 and Sup-
plementary Fig. 1, and the tunning of the RF model with 
SMOTE correction was shown in Supplementary Table 2.

Fig. 1 The workflow for developing machine learning models to detect diabetic kidney disease in this study
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It comprised 26 classification trees with a maximum 
number of 17 splits. One of the classification trees from 
this model using the RF classifier is presented in Sup-
plementary Fig.  2. The accuracy, sensitivity, specific-
ity, and F1 score for the optimal model in training were 
90.0%(95% CI 89.5–90.5), 91.8%(91.0–92.6), 88.3%(87.7–
88.9), and 0.902(0.896–0.908), respectively, and in vali-
dation were 84.5%(95% CI 83.3–85.7), 84.5%(82.3–86.7), 
84.5%(82.7–86.3), and 0.845(0.831–0.859), respectively, 
with an AUC of 0.914(0.903–0.925) (ROC curve shown in 
Fig. 2). The optimal model had a good fit, with accuracies 
of 90.0% in training and 84.5% in validation (As shown in 
Supplemenrary Fig.  3). The importance of each variable 
to the optimal prediction model was analyzed by SHAP 
(Shapley Additive Explanations) (As shown in Fig. 3).

Supplementary analyses
We further imputed the missing data by the method of 
backfilling missing values and retrained the machine 
learning models using the random forest model with 
SMOTE correction for data set imbalance, and the results 
were similar with an overall accuracy of 82.3%(95% CI 
80.8–83.8) and AUC of 0.903(0.888–0.918) (as shown in 
Supplementary Fig. 4a). And when the missing data were 
replaced by the mean value, the results remained almost 
consistent with those before, with an overall accuracy 
of 83.2%(81.5–84.9) and AUC of 0.920(0.903–0.937) (as 
shown in Supplementary Fig.  4b). Moreover, a few tipi-
cal samples’ (including 3 DKD patients and 3 non-DKD 
patients) clinical indicators and fundus images were dis-
played in Supplementary Fig. 5.

Table 1 Baseline characteristics of participants

Abbreviations: DKD Indicates diabetic kidney disease, BMI Body mass index, HbA1c Glycosylated hemoglobin, UACR  Urinary albuminuria creatinine ratio, eGFR 
Estimated glumerular filtration rate, NVArea Non-vascular area, Tortuosity total Vessel tortuosity, FD total Fractal dimension, VW Vessel width, History History of 
cardiovascular and cerebrovascular disease (myocardial infarction, angina, heart failure or stroke)

non-DKD
(n = 366)

DKD
(n = 149)

Total
(n = 515)

P value

Risk factors
 Age (year) 52.8 ± 0.51 57.3 ± 0.94 54.1 ± 0.46  < 0.05

 Gender (Male %) 65.3 63.1 63.9 0.810

 Duration (month) 71.7 ± 4.0 105.9 ± 7.0 81.6 ± 3.5  < 0.05

 Hypertention 38.9 67.8 46.8  < 0.05

 History (%) 13.9 26.2 17.3  < 0.05

 Smoking (%) 42.5 45.0 42.7 0.799

 BMI (kg/m2) 25.5 ± 0.19 26.0 ± 0.31 25.6 ± 0.16 0.109

 HbA1c (%) 8.9 ± 0.13 9.7 ± 0.19 9.1 ± 0.12  < 0.05

 UACR (mg/g) 11.8 ± 0.56 176.9 ± 20.91 59.6 ± 6.90  < 0.05

 eGFR(ml/min/1.73m2) 115.2 ± 1.44 98.1 ± 3.53 110.3 ± 1.48  < 0.05

Vascular parameters
 NVArea /104 (μm2) 163.24 ± 0.39 172.77 ± 0.97 166.00 ± 0.44  < 0.05

 Tortuosity 0.481 ± 0.0005 0.483 ± 0.0009 0.481 ± 0.0108 0.0145

 FD 1.4229 ± 0.0001 1.4105 ± 0.0218 1.4193 ± 0.0001  < 0.05

VW(All) (μm)

 Central 57.10 ± 0.25 57.64 ± 0.41 57.24 ± 0.20 0.2651

 Middle 52.37 ± 0.24 53.57 ± 0.39 52.72 ± 0.20 0.0076

 Peripheral 42.97 ± 0.18 45.13 ± 0.32 43.60 ± 0.16  < 0.05

VW(Vein) (μm)

 Central 57.18 ± 0.25 57.64 ± 0.41 57.32 ± 0.20 0.334

 Middle 52.34 ± 0.23 53.56 ± 0.40 52.68 ± 0.20 0.0066

 Peripheral 42.96 ± 0.18 45.15 ± 0.31 43.60 ± 0.16  < 0.05

VW(Artery) (μm)

 Central 42.97 ± 0.18 45.13 ± 0.32 48.24 ± 0.24  < 0.05

 Middle 42.97 ± 0.18 45.13 ± 0.32 47.12 ± 0.20  < 0.05

 Peripheral 42.83 ± 0.19 44.40 ± 0.33 43.28 ± 0.16  < 0.05
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Discussion
DKD is the main cause of ESRD worldwide, account-
ing for approximately 20–40% of patients with diabetes 
[19, 20]. Early and accurate detection and intervention 
contributing to a better outcome is beneficial for the 
patients [13, 19]. The present detection of DKD depends 

on the measurement of albuminuria or the eGFR, which 
are invasive and not optimal. In the present study, we 
developed a new detection model for DKD based on ret-
inal vascular parameters measured from fundus images 
and 8 easily available clinical parameters using artificial 
intelligence machine learning technology.

Fig. 2 ROC curve of the best model using Random Forest classifier with SMOTE correction for data set imbalance in validation

Fig. 3 Relative variable importance for the accuracy of detecting diabetic kidney disease using the random Forest classifier with SMOTE correction 
for data set imbalance. Abbreviations: BMI indicates body mass index; HbA1c, glycosylated hemoglobin; NVArea, non-vascular area; Tor-All, 
total vessel tortuosity; FD-All, total fractal dimension; Width-PA, peripheral arterial width; Width-PV, the peripheral vein width; History, history 
of cardiovascular and cerebrovascular disease (myocardial infarction, angina, heart failure or stroke); SMOTE, synthetic minority over-sampling 
technique



Page 7 of 10Shi et al. BMC Medical Informatics and Decision Making          (2023) 23:241  

Compared with previous studies
Early detection of DKD is of great importance to pre-
venting the progression of nephropathy. Albuminuria 
or eGFR, currently used in clinical practice are not con-
venient enough and with limited precision at an earlier 
DKD stage [2]. Thus, multiple efforts have been made to 
explore new biomarkers for the early diagnosis of DKD. 
The potentical biomarkers of DKD studied in recent years 
included kidney injury molecule 1 (KIM-1), chemokines 
(such as CCL19, CCL5), multi-omics related biomark-
ers (such as CKD273 score, various miRNAs), and so on 
[21]. However, all have different limitations such as poor 
accuracy, sensitivity, reliability and convenience, which 
largely influence their clinial value, and none have pre-
sented better performance as a screening tool for DKD 
than albuminuria [4]. Although kidney biopsy is accurate 
as the gold standard for the diagnosis of DKD, it is inva-
sive and cannot be routinely used. Thus, noninvasive and 
easily available tools for detecting DKD are needed.

AI machine learning based on traditional risk fac-
tors has been increasingly used for the prediction of 
diabetic complications [22], chronic kidney disease, 
acute kidney injury, kidney function decline and so 
on, with an accuracy of 76–85.2% [13, 23–27]. For 
example, Makino developed a prediction model for 
6-month DKD aggravation in patients with DM with 
71% accuracy [20], and Belur Nagaraj et al. developed 
a prediction model for long-term ESRD in subjects 
with T2DM with 18 demographic and clinical param-
eters [23]. Few studies have focused on the detection 
of DKD. Maniruzzaman et al. developed a model with 
superior performance to detect DN using SVM-RBF 
(support vector machine-radial basis function) with 
13 parameters (sex, age, BMI, DM duration, FBS, 
HbA1c, LDL, HDL, TGs, SBP, DBP, DM treatment, use 
of statins), and the accuracy and AUC were 88.7% and 
0.9, respectively, when validated [22]. Satish Kumar 
David et al. developed a detection model for DKD with 
an accuracy of 93.7% using IBK and random tree clas-
sification techniques through 18 parameters (age, sex, 
serum albumin, sodium, potassium, urea, glucose, cre-
atinine, HbA1c, hemoglobin, white blood cell counts, 
red blood cell counts, hemoglobin (%), platelet counts, 
SBP, DBP, hypertension, and retinopathy) [19]. How-
ever, most biochemical parameters are not convenient 
enough, and retinal vascular parameters have not been 
used in formal models, although a large number of 
studies have indicated that retinal changes are related 
to DKD [1, 9].

On the other hand, AI deep learning, which uses imag-
ing data as a subset of machine learning, has achieved 
many recent advancements in the detection of vari-
ous diseases over the past 20  years, including medical 

kidney diseases [28]. To the best of our knowledge, only 
four relevant studies are available. Chin-Chi Kuo et  al. 
developed a prediction model for CKD (GFR of < 60 ml/
min/1.73 m2) with 4505 ultrasound-based images of 
the kidney, with an accuracy of 85.6% and AUC of 0.904 
without external validation [29]. Kitamura et  al. devel-
oped a diagnostic algorithm for DKD based on patho-
logical immunofluorescent images of kidneys, with an 
accuracy of 83.28 ± 11.64% [30]. Sabanayagam et  al. 
developed a diagnostic model for CKD using only fun-
dus image information, but their diagnosis of CKD relied 
only on the estimated glomerular filtration rate (eGFR) 
[7], so the early diagnosis value is unclear. Kang Zhang 
et al. first used fundus photographic images to construct 
a diagnostic model for early DKD, and the area under 
the receiver operating characteristic curve (AUC) of the 
model was 0.800–0.864 [15]. This model directly input 
fundus images, but the defect lies in which specific image 
features are extracted; that is, the diagnostic principle is 
unknown.

Our model was the first to use retinal vascular param-
eters and 8 easily available clinical parameters combined 
by machine learning to detect DKD [16], with an overall 
accuracy of 84.5%.

The strength of the present study
Although the performance of our model is not as good, 
it was the first to integrate data of measurable retinal 
vascular parameters and simple risk factor information 
to detect DKD, which is a noninvasive, low-cost, nonra-
dioactive and easily available option and can be widely 
used as a real-time screening and diagnostic tool, since 
DR is suggested to be screened routinely by fundus 
photography annually in diabetes care [31]. Although 
the cost of the measurement of albuminuria or eGFR, 
the present detection methods of DKD, is already low, 
and we have not performed cost-effectiveness studies, 
the present model may reduce the screening cost fur-
ther, since it may be integrated into the fundus cameras 
in the future which can screen for DKD while screen-
ing for DR at no additional cost. It has the potential to 
minimize unnecessary detection procedures for DKD, 
especially in primary care institutions with limited 
resources, thus improving the efficiency of the current 
medical system. Moreover, our model captured some 
information from the entire retinal images that cannot 
be recognized by doctors prior to clinical DKD diag-
nosis, such as changes in peripheral vascular caliber, 
vessel rarefaction and other changes; therefore, it is 
possible that it has some early diagnostic value beyond 
albuminuria or at least assists the present diagnosis 
method, which deserve further study. Thus, the present 
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model sheds light on the future development of a better 
detection method for DKD.

Analysis of the shortcomings and limitations
There are some limitations in this study. First, this is 
a retrospective study. The dataset used for the present 
model had a specific demographic sample, so we cannot 
guarantee its performance in other populations. Sec-
ond, the study is cross-sectional, limiting the ability to 
track changes in retinal parameters or clinical variables 
over time, and the output of our study is binary classi-
fier to classify the presence or absence of DKD, instead 
of a spectrum. Third, a sample size of 515 patients may 
be insufficient to capture the significant heterogeneity 
of DKD. Fourth, DKD may be closely associated with 
other factors not incorporated into the analysis, such as 
medication use, family history, lifestyle factors and so 
on. Fifth, in the present study, DKD was defined as an 
eGFR of less than 60 ml/min/1.73  m2 or an albuminu-
ria concentration of more than 30 mg/g and not based 
on pathology, and whether albuminuria is persistent 
(sustained over ≥ 90 days) could only be confirmed in a 
few patients. Sixth, the present model lacks prospective 
validation and external validation. Seventh, we were 
unable to elucidate the interpretability of the present 
model, which is considered as a common "black box" 
property of machine learning algorithms. Based on 
the above considerations, it is possible to optimize the 
model in the future. In addition, how will the present 
model to be fitted into the existing clinical workflows 
and its efficacy to the existing standard tests need to be 
clarified in the future.

On the other hand, the performance of the model was 
not good enough, which may be determined by the dif-
ferences between the pathogenesis of DKD and that of 
DR, since they were not always consistent. Although 
DR and DN share similar structural and physiological 
changes during early diabetes [7, 8], their causes are not 
absolutely the same, as they have different pathogenic 
cytokines and different associations with neuropathy, 
obesity, hypertension and so on [6, 9, 32]. Thus, better 
studies with larger samples and studies that are based 
on pathological diagnoses are needed.

Conclusion
In conclusion, a new machine learning algorithm for 
DKD diagnosis based on fundus images and 8 easily 
available clinical parameters was developed, and it shed 
light on areas for future exploration, which indicated 
that fundus photography can be used as an adjunctive 
tool for screening and detecting DKD.
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