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Abstract 

Background Genomics-based clinical diagnosis has emerged as a novel medical approach to improve diagno-
sis and treatment. However, advances in sequencing techniques have increased the generation of genomics data 
dramatically. This has led to several data management problems, one of which is data dispersion (i.e., genomics data 
is scattered across hundreds of data repositories). In this context, geneticists try to remediate the above-mentioned 
problem by limiting the scope of their work to a single data source they know and trust. This work has studied 
the consequences of focusing on a single data source rather than considering the many different existing genomics 
data sources.

Methods The analysis is based on the data associated with two groups of disorders (i.e., oncology and cardiology) 
accessible from six well-known genomic data sources (i.e., ClinVar, Ensembl, GWAS Catalog, LOVD, CIViC, and Cardi-
oDB). Two dimensions have been considered in this analysis, namely, completeness and concordance. Complete-
ness has been evaluated at two levels. First, by analyzing the information provided by each data source with regard 
to a conceptual schema data model (i.e., the schema level). Second, by analyzing the DNA variations provided by each 
data source as related to any of the disorders selected (i.e., the data level). Concordance has been evaluated by com-
paring the consensus among the data sources regarding the clinical relevance of each variation and disorder.

Results The data sources with the highest completeness at the schema level are ClinVar, Ensembl, and CIViC. ClinVar 
has the highest completeness at the data level data source for the oncology and cardiology disorders. However, there 
are clinically relevant variations that are exclusive to other data sources, and they must be considered in order to pro-
vide the best clinical diagnosis. Although the information available in the data sources is predominantly concordant, 
discordance among the analyzed data exist. This can lead to inaccurate diagnoses.

Conclusion Precision medicine analyses using a single genomics data source leads to incomplete results. Also, there 
are concordance problems that threaten the correctness of the genomics-based diagnosis results.
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Background
Introduction
Precision medicine has emerged as a novel medical 
approach, transforming traditional reactive medicine into 
a more proactive, patient-centered approach. One of the 
several artifacts for delivering individualized treatment is 
genomics-based clinical diagnosis, which sequences and 
analyzes the genome to discover patients’ predispositions 
to disorders, altered drug responses, or the origin of a 
disease [1, 2].

The advent of Next Generation Sequencing (NGS) 
techniques has significantly reduced the time and cost of 
genome sequencing [3]. However, genomics has become 
a big data problem, and developing an effective data 
management strategy remains a challenge. This situa-
tion is exacerbated by four factors; the first factor is the 
vast amount of genomics data publicly available, as well 
as the rapid rate at which we generate it. The pace at 
which new genomics knowledge emerges is the second 
factor; because of the ever-increasing amount of pub-
licly available genomics data, genomics knowledge con-
stantly evolves and changes, resulting in high variability 
over time [4]. The third factor is the significant disper-
sion of genomics knowledge; the available knowledge is 
dispersed across hundreds of data sources that diverge in 
content, size, format, and structure [5]. The fourth fac-
tor is the necessity for interoperability among genomics 
data sources. As previously stated, genomics information 
is widely dispersed, which causes it to be either isolated 
(i.e., only available in one database) or represented in a 
wide variety of notations and formats in the databases, 
resulting in integration issues.

In summary, the current genomics big data prob-
lem is caused by a massive amount of available data, 
the constant evolution of genomics knowledge, knowl-
edge dispersion across hundreds of data sources, and a 
lack of interoperability. These issues must be addressed 
if accurate genomics-based clinical diagnoses are to be 
achieved. Integrating and analyzing existing knowledge 
across genomics data sources is critical in guaranteeing 
that all available knowledge is captured. However, this is 
not common practice, and genomics experts frequently 
limit the scope of their work to a single data source they 
know and trust, causing them to miss relevant knowledge 
and fail to detect potentially relevant data concordance 
inconsistencies.

The purpose of this research is to evaluate the con-
sequences of failing to consider multiple genomics 
data sources in genomics-based clinical diagnoses. We 

conducted a comparative analysis of information from 
various well-known data sources about DNA variations 
associated with oncology and cardiology disorders. We 
used a data quality perspective to analyze a group of well-
known genomics data sources for oncology and cardiol-
ogy disorders. In particular, we evaluated two metrics 
(concordance and completeness).

Related work
There is very little literature describing comparative 
analyses of genomics data sources. Currently, no stud-
ies are describing a comparative analysis of the available 
information for DNA variations associated with cardiol-
ogy disorders. Still, there are some studies regarding vari-
ations related to oncology disorders. These studies have 
two major limitations. First, they only compare technical 
aspects and the type of information provided rather than 
the data provided by each data source. Second, they only 
compare data sources that only host oncology-related 
data. These studies are highlighted below.

Borchert et  al. analyzed genomics data sources con-
taining information on DNA variations associated with 
oncology disorders. Several technical characteristics were 
identified in the study, including license, accessibility, 
update frequency, percentage of somatic versus germline 
variations, and evidence tiers [6]. The authors compared 
each data source based on these characteristics but did 
not perform a direct comparison of the information pro-
vided by each source.

Yu et al. took a similar approach to Borchert et al. in their 
research, comparing a new data source called PreMedKB 
to other existing data sources that provide oncology-
related information [7]. Unlike Borchert et al.’s work, which 
focused solely on technical characteristics such as license, 
accessibility, and update frequency, Yu et  al. also consid-
ered term normalization, search methods, data structure, 
and visual representation. Notably, Yu et  al. also ignored 
the actual data provided by each source in their analysis. 
Instead, they focused on the technical characteristics that 
affect the usability and reliability of the information.

Li et  al. examined and classified twenty-four data 
sources containing oncology-related information [8]. 
Like the two previous studies, their work aimed to pro-
vide a high-level description of the data sources rather 
than a comparative analysis of the information they con-
tained. Their research thoroughly understood the types 
of data stored in each source, including data format, 
source quality, and target users.
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The only study that closely resembles the approach 
taken in this work is that of Pallarz et al. [9], where the 
role of DNA variations in oncology disorders was com-
pared using data from seven oncology-specific data-
bases: CIViC, OncoKB, Cancer Gene Census, Database 
of Curated Mutations, and CGI Biomarkers. Their find-
ings revealed that while the information provided by each 
data source had significant overlap, each source also con-
tained unique information. Furthermore, no single data 
source supplanted the others, emphasizing the impor-
tance of combining data from various sources to under-
stand the role of DNA variations in oncology disorders. 
The findings of this study highlighted the importance 
of continuing research into the comparative analysis of 
oncology-related data sources.

This comparative genomics data analysis adds to 
the small body of literature on the subject. As dem-
onstrated by the studies mentioned above, most pub-
lications in this area focus either on disease-specific 
data sources or technical aspects rather than ana-
lyzing the data contained within these sources. This 
work is unique in two ways. First, we considered data 
sources for both disease-specific and general-purpose 
genomics (see Data sources). Second, we thoroughly 
examined the data contained in these sources, provid-
ing valuable insights into the potential clinical signifi-
cance of DNA variations in oncology and cardiology 

disorders. This enabled us to provide a holistic view 
of the available data in the fields of cardiology and 
oncology.

Methods
To conduct the comparative study, we followed the pipe-
line depicted in Fig. 1. This comparative analysis focused 
on studying the consequences of data dispersion. To do 
so, we examined data from five cardiology and five oncol-
ogy disorders using a variety of well-known genom-
ics data sources. Then, the experiment was designed by 
selecting the best data quality (DQ) metrics for measur-
ing data dispersion and developing a procedure for evalu-
ating them. To support this evaluation, we implemented 
an ETL procedure to gather the DNA variations associ-
ated with the selected disorders from each data source, a 
data integration procedure to integrate all the variations 
related to each disorder, and a set of scripts for the metric 
evaluation. These technological implementations facili-
tated the evaluate the DQ metric and the visual represen-
tation of the results. Finally, we evaluated the effects of 
data dispersion via a use case with eight real patients.

This Section describes the context, the experiment 
design, and the implementation phases while Results sec-
tion shows the results, Use case focuses on the use case, 
and Conclusions discusses our findings.

Fig. 1 Pipeline followed for performing the comparative analysis of genomic data sourcess
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Context
Disorders
This analysis studied DNA variations assocaited with five 
oncology disorders (see Table 1) as well as five cardiopa-
thy disorders (see Table  2). The disorder’s name, its ID 
in the Human Phenotype Ontology (HPO), and a brief 
description is shown on each table.

Data sources
The data compared in this study was collected from six 
of the most well-known and widely used genomics data 
sources. Four of them are general-purpose, meaning they 
contain information on various disorders. The other two 
data sources are disease-specific, meaning they only store 
information about specific disorders. Given the disorders 
under consideration in this study, one data source is ded-
icated to oncology and the other to cardiology.

The general-purpose data sources are ClinVar, GWAS 
Catalog, Ensembl, and LOVD. ClinVar [10] is a pub-
lic archive that contains information about the role of 
genetic variations in clinical disorders. GWAS Cata-
log [11] provides data about GWAS studies that seek 
to determine whether a genetic variation is statistically 
associated with the risk of developing a particular dis-
order. Ensembl [12] aggregates information from vari-
ous data sources, including ClinVar and GWAS Catalog. 
LOVD [13] is composed of several gene-specific data 
sources containing information about variation-disorder 
clinical relationships.

For the disease-specific data sources, we considered 
CIViC [14] and CardioDB [15]. CIViC provides informa-
tion about the role of variations in oncology disorders 
at various clinical dimensions. CardioDB is an expert-
curated data source that contains information about the 
variations associated with three specific cardiology disor-
ders, namely, Arrhythmogenic Cardiomyopathy, Hyper-
trophic Cardiomyopathy, and Dilated Cardiomyopathy.

DQ approach
Experts in genomics analyze genomic data sources on a 
regular basis to choose the most appropriate diagnoses 
and therapies for their patients. Assuring the quality of 
the data in these sources is crucial in this situation to pre-
vent risk to any patient’s health [16].

Despite the fact that many authors emphasize the 
importance of data quality in genomics [17, 18] and 
healthcare in general [16], there is no standardized para-
digm for evaluating data quality in these scenarios.

However, a recently-published comprehensive litera-
ture review on this topic proposes seven DQ metrics as 
a standard for healthcare [19]: Completeness [20], Cor-
rectness [20], Currency [21], Concordance [22], Usabil-
ity [19, 21], Relevance [20], and Duplication [19]. More 
details regarding these metrics in Table 3.

Experiment design
This section covers all of the relevant aspects concerning 
the experiment design.

Table 1 The oncology disorders selected for the comparative analysis

Name HPO ID Description

Acute Lymphoblastic Leukemia HP:0006721 Malignant hematopoietic disorder affecting the bone marrow and the peripheral blood, and charac-
terized by excess lymphoblasts.

Acute Myeloid Leukemia OMIM:601626 A group of neoplasms arising from precursor cells committed to the myeloid cell-line differentiation.

Neuroblastoma HP:0003006 A solid tumor that originates in neural crest cells of the sympathetic nervous system.

Retinoblastoma OMIM:180200 A malignant tumor that originates in the nuclear layer of the retina.

Osteosarcoma HP:0002669 A malignant bone tumor that tends to develop during adolescence and usually affects the long 
bones.

Table 2 The cardiology disorders selected for the comparative analysis

Name HPO ID Description

Arrhythmogenic Cardiomyopathy HP:0011663 A progressive replacement of right ventricular myocardium with adipose and fibrous tissue.

Dilated Cardiomyopathy HP:0001644 A left ventricular dilatation and left ventricular systolic dysfunction

Hypertrophic Cardiomyopathy HP:0001639 An increased ventricular wall thickness or mass.

Restrictive Cardiomyopathy HP:0001723 A ventricular filling pattern with increased myocardium stiffness.

Short QT Syndrome ORPHA:51083 A short QT interval on an EKG that does not significantly change with heart rate, tall 
and peaked T waves, and a structurally normal heart.
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DQ metric selection
As previously stated, the purpose of this study is to quan-
tify the consequences of failing to use multiple genom-
ics data sources when making clinical diagnoses based 
on genomics data. In this situation, two significant issues 
arise. The first issue is that not all relevant data about a 
disorder is available in a single data source. The second 
issue is that concordance inconsistencies in the data may 
not be identified.

As a result of the two issues mentioned above, we 
focused our efforts on two DQ metrics: completeness 
and concordance. Through the completeness study, we 
sought to determine whether relying on a single data 
source was sufficient for capturing all relevant informa-
tion. The concordance analysis allowed us to assess cur-
rent knowledge’s consistency and decide whether it was 
acceptable to make clinical decisions using only one 
genomics data source.

Metric evaluation definition
This section describes how each metric was evaluated. 
The metric of completeness was evaluated at two levels: 
schema and data [21]. Completeness at the Schema Level 
(CSL) measures how well the concepts required to rep-
resent variation information are represented in the data 
source schema. As a result, CSL evaluation is unaffected 
by the disorder under investigation. We used the Con-
ceptual Schema of the Human Genome -CSHG- (more 

details in the following section) to calculate the CSL, 
which helped us identify the entities a data source should 
represent in its schema.

The CSL of each data source was calculated as the ratio 
of the number of CSHG entities represented to the total 
number of entities in the CSHG (see Eq. 1).

The Completeness at the Data Level (CDL) metric 
assesses whether a particular data source contains every 
variation associated with a specific disorder reported 
in other data sources. Unlike the CSL metric, this met-
ric relies on both the data source and the disorder under 
investigation. CDL was calculated by dividing the num-
ber of variations in a data source by the total number of 
unique variations in all data sources (see Eq. 2).

The concordance metric determines whether all data 
sources show consistent associations between a variation 
and a specific disorder. Otherwise, the information is con-
sidered discordant (i.e., contradictory). This variation-disor-
der association is represented by either an “interpretation” 
approach, in which geneticists determine whether the vari-
ation causes or does not cause the disorder, or a “statistical 
association” approach, in which the strength of the associa-
tion between the variation and the disorder is calculated.

For the “interpretation” approach, the association 
between a variation and a disorder is considered con-
cordant if every interpretation available for such a 
variation reports the same disorder-causing effect. For 
instance, if two interpretations agree that a variation 
causes a disorder (i.e., the variation is pathogenic or likely 
pathogenic). In contrast, the information is discordant if 
one interpretation considers the variation to be disorder-
causing and the other does not (i.e., the variation is inter-
preted as benign or likely benign).

For the “statistical metrics” approach, we followed the 
recommendations made by our clinical partners. The 
association between variation and disorder is consid-
ered relevant if the p-value is less than 5x10−8 and the 
confidence interval (CI) does not cross one. Thus, when 
all available GWAS studies agree on whether or not the 
variation-disorder association is relevant, the variation is 
considered concordant.

(1)

CSL =

Number of entities of the CSHG represented

Total number of entities in the CSHG

(2)

CDL =

Number of variations in the data source

Number of unique variations in all the data sources

(3)Concordance =
Number of variations with concordant information

Total number of unique variations in all the data sources

Table 3 DQ metrics for Helthcare

Name Description

Completeness The extent to which data are in suf-
ficient breadth, depth, and scope 
for the task at hand.

Correctness The extent to which the data are 
correct, reliable, and free of error.

Currency The extent to which data is suf-
ficiently up-to-date for the task 
at hand.

Concordance The degree of agreement or com-
patibility between data elements.

Usability The extent to which the data 
is understandable and accessible.

Relevance The extent to which the data are 
applicable and useful for the task 
at hand.

Duplication Existence of multiple existences 
of the same data entity.
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Data model
The CSHG [23, 24] was designed to represent genomic 
information in its various dimensions. The ISGE method 
[25] was used to instantiate a subschema of the CSHG 
containing only the relevant information for the study of 
DNA variations. This new subschema (shown in Fig. 2) is 
divided into four views that structure all relevant details 
on DNA variations:

• The Structural view contains the structural compo-
nents of the human genome. It consists of the Gene 
entity, which represents the information about the 
genes where DNA variations are located.

• The Variation view describes changes that occur 
in our genome (i.e., DNA variations). It consists of 
the Variation, HGVSExpression, and Assem-
blyInfo entities. The Variation entity represents 
the intrinsic information about a variation. The 
HGVSExpression is the formal description of the 
HGVS notation, which is a standard used to rep-
resent changes at the DNA, RNA, or amino acid 
level. It describes the change and its location. Sev-
eral HGVSExpression can be associated with a 
Variation. Finally, the AssemblyInfo entity pro-
vides information about a Variation in the human 

genome (i.e., its position and alleles for a given 
coordinate system, called assembly).

• The Evidence view models the statistical metrics 
information. It represents the information used for 
establishing variation-disorder associations, includ-
ing genomics studies, relevant bibliography, statisti-
cal associations, and external sources. It consists of 
the GroupOfIndividuals, ExternalItem, Sta-
tisticalAssociation, Study, and Bibliography 
entities. The Bibliography entity represents exist-
ing literature with information about a variation. The 
Study entity represents different studies performed 
on a group of people for a given DNA variation (e.g., 
a GWAS study). The StatisticalAssociation 
entity represents the statistical metrics that result 
from a study. Finally, the GroupOfIndividuals 
entity represents the characteristics of the group of 
individuals for which the statistical association has 
been calculated.

• The Phenotype view models the interpretation 
approach. It details the two most relevant concepts 
about variations and their association with disor-
ders: the Phenotype and the Significance enti-
ties. The Phenotype entity represents the disorder 
associated with the variation. The Significance 

Fig. 2 Subschema of the CSHG obtained after carrying out the ISGE method. The variation view is depicted in blue. The evidence view is depicted 
in red. The phenotype view is depicted in yellow. The structural view is depicted in green
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entity represents the interpretation or role of varia-
tion for a specific disorder.

This subschema served as a framework for deter-
mining whether a data source contains all the entities 
required to study variations correctly and measure the 
CSL metric.

Experiment implementation
An ETL process, a data integration process, and a DQ 
metrics evaluation process are the three technological 
implementations that aid in evaluating the DQ metrics. 
These three processes were developed using the R pro-
gramming language.

We obtained all variations associated with the five 
oncology and five cardiology disorders we selected using 
the ETL process. During the extraction stage, we imple-
mented a connection mechanism to each data source and 
the necessary filtering strategies in order to acquire only 
those variations related to the phenotype under investi-
gation. During the transformation stage, we transformed 
the data to follow a JSON format with a structure that 
adheres to the data model described in Data model.

A JSON file was generated for each data source and 
disorder. These files were consolidated into a single file 
in order to determine whether a variation was present 
across multiple data sources. This produced a JSON 
file containing a single instance of each variation asso-
ciated with a given disorder. Finally, algorithms were 
developed to automate the evaluation of DQ metrics 
(see formula in Metric evaluation definition).

Results
This section presents the results of evaluating the com-
pleteness and concordance metrics. First, Completeness 
at the schema level  shows the CSL evaluation results for 
each of the six data sources examined in our study. Then, 
Completeness at the Data Level illustrates the CDL analysis 
results for the oncology and cardiology disorders. Finally, 
Concordance presents the results of the concordance anal-
ysis for both groups of disorders.

Completeness at the schema level
We examined the entities of the CSHG subschema that 
each data source represents in its internal schema to 
obtain the CSL results. ClinVar, Ensembl, and CIViC con-
tain information on ExternalItem, Gene, HGVSExpres-
sion, Variation, AssemblyInfo, Significance, Phenotype, 
and Bibliography. LOVD and CardioDB, except for the 
HGVSExpression entity, contain information on the same 
entities mentioned above. These five data sources have 
one thing in common: they don’t store information about 
GWAS studies. As a result, the GroupOfIndividuals, 

StatisticalAssociation, and Study entities are not consid-
ered in their internal schema.

In the case of the GWAS Catalog, the CSHG entities 
represented in its database schema are those that allow 
characterizing the information about the GWAS studies: 
the GroupOfIndividuals, StatisticalAssociation, 
Study, Bibliography, Phenotype, Gene, and Varia-
tion entities.

Considering all the above, we applied Eq.  1 to calcu-
late the CSL of each data source. Table 4 summarizes the 
findings.

Completeness at the Data Level
In order to calculate the results for the CDL, we first 
studied the variations associated with oncology disor-
ders; we compared the variations provided by each gen-
eral-purpose data source and the cancer-specific data 
source for each of the five oncology disorders. Then, we 
compared the variations associated with cardiology dis-
orders provided by each general-purpose data source and 
the cardiology-specific data source for the five cardiology 
disorders. Completeness at the Data Level in oncology 
disorders and Completeness at the Data Level in cardiol-
ogy disorders report the results of the CDL for the oncol-
ogy and cardiology disorders, respectively.

Completeness at the data Level in oncology disorders
As described in Methods, we studied the variations pro-
vided by the general-purpose data sources (i.e., ClinVar, 
Ensembl, GWAS Catalog, and LOVD) and the oncology-
specific data source (i.e., CIViC) associated with five 
oncology disorders, namely, Acute Myeloid Leukemia, 
Neuroblastoma, Osteosarcoma, Retinoblastoma, and 
Acute Lymphoblastic Leukemia.

Figure  3 depicts the distribution of variations by data 
source and disorder using Venn diagrams. The distribu-
tion of variations is significantly heterogeneous among 
the five disorders. The only disorders for which all data 

Table 4 The results for the completeness at schema level for 
ClinVar, Ensembl, LOVD, CIViC, CardioDB and GWAS Catalog. The 
results have been calculated according to Eq. 1

Database Number of entities Completeness at 
the Schema Level 
(%)

ClinVar 8 72.72%

Ensembl 8 72.72%

LOVD 7 63.63%

CIViC 8 72.72%

CardioDB 7 63.63%

GWAS Catalog 7 63.63%
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sources report associated variations are Acute Myeloid 
Leukemia and Acute Lymphoblastic Leukemia. On the 
contrary, Retinoblastoma has the fewest data sources 
with associated information, with only two of them pro-
viding associated variations.

ClinVar and Ensembl are the only data sources that 
report variations associated with all the studied dis-
orders. For the other data sources, the GWAS Cata-
log contains information about four disorders, LOVD 
about three, and CIViC about two.

Fig. 3 Number of variations per database and oncology disorder. In yellow, the variations from CIViC. In blue, the variations from Ensembl. In 
purple, the variations from LOVD. In pink, the variations from ClinVar. In green, the variations from GWAS Catalog. In white, the data sources 
without variations
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Each data source has unique variations not found in the 
others (i.e., exclusive variations). For all disorders except 
for Acute Lymphoblastic Leukemia, the data source that 
provides the most exclusive variations is ClinVar. The 
GWAS Catalog data source provides the most exclusive 
variations for Acute Lymphoblastic Leukemia.

The most significant data overlap is between Clin-
Var and Ensembl, followed by the one between the 
GWAS Catalog and Ensembl. This was expected because 
Ensembl incorporates information from these two data 
sources. Other minor overlaps exist. There is an overlap 
in Acute Myeloid Leukemia information between Clin-
Var, CIViC, and Ensembl or in Neuroblastoma and Acute 
Lymphoblastic Leukemia data between LOVD, ClinVar, 
and Ensembl.

Table 5 summarizes the CDL results obtained using the 
formula in Eq. 2. Because of the numerous exclusive vari-
ations it reports, ClinVar has the highest CDL of any data 
source. On the contrary, LOVD and CIViC have the low-
est CDL for almost all disorders. Nevertheless, because 
none of the data sources includes every variation, those 
with low CDL should be kept because they have unique 
variations that can be clinically significant.

Completeness at the Data Level in cardiology disorders
As described in Methods, we studied the variations 
provided by general-purpose data sources (i.e., Clin-
Var, Ensembl, GWAS Catalog, and LOVD) and cardi-
ology-specific data sources (i.e., CardioDB) about five 
cardiology disorders, namely, Arrhythmogenic Car-
diomyopathy, Hypertrophic Cardiomyopathy, Restric-
tive Cardiomyopathy, Short QT Syndrome, and Dilated 
Cardiomyopathy.

The distribution of variations by data source and disor-
der is depicted by a Venn diagram (see Fig. 4). The distri-
bution of variations differs significantly across disorders. 
While all data sources report variations associated with 
Dilated and Hypertrophic Cardiomyopathy, only three 
data sources store variations associated with Restrictive 
Cardiomyopathy and Short QT Syndrome, the two con-
ditions with the fewest variations.

Like with oncology disorders, ClinVar is the data source 
with the most exclusive variations. However, other data-
bases have a large number of unique variations too. For 
instance, CardioDB reports 83 exclusive variations for 
Arrhythmogenic Cardiomyopathy and 265 exclusive vari-
ations for Dilated Cardiomyopathy.

In terms of data overlap, cardiology disorders have a 
high rate of overlap. However, none of the variations are 
reported in all data sources, and only one is found in four. 
ClinVar and Ensembl have the most significant overlap 
once again. There are also considerable overlaps between 
CardioDB and ClinVar, as well as LOVD and ClinVar, 

particularly for the Arrhythmogenic Cardiomyopathy 
and Dilated Cardiomyopathy disorders.

Table 6 summarizes the CDL results obtained using 
the formula in Eq. 2. ClinVar is, by far, the most com-
prehensive data source for cardiology disorders. 
In contrast, GWAS Catalog, LOVD, and CardioDB 
have the lowest CDL metric results. None of the data 

Table 5 The results for the completeness at data level for 
oncology disorders. Equation 2 was used to calculate these 
results. Note that the total number of unique variations does not 
equal the total number of variations stored in each database. This 
is because the same variation can be found in multiple databases 
(see Fig. 3)

Database Number of 
variations

Completeness at 
the Data Level 
(%)

Acute Lymphoblastic Leukemia

    ClinVar 51 25.37%

    Ensembl 43 % 21.39

    GWAS Catalog 144 71.64%

    LOVD 6 2.98%

    CIViC 10 4.98%

Number of unique variations 201

Acute Myeloid Leukemia

ClinVar 767 96.23%

    Ensembl 514 64.49%

    GWAS Catalog 2 0.25%

    LOVD 14 1.76%

    CIViC 8 1.00%

Number of unique variations 797

Neuroblastoma

    ClinVar 2,411 97.14%

    Ensembl 1,729 69.66%

    GWAS Catalog 62 2.50%

    LOVD 8 0.32%

    CIViC 0 0.00%

Number of unique variations 2,482

Retinoblastoma

    ClinVar 1,303 99.62%

    Ensembl 730 55.81%

    GWAS Catalog 0 0.00%

    LOVD 0 0.00%

    CIViC 0 0.00%

Number of unique variations 1,308

Osteosarcoma

    ClinVar 67 77.01%

    Ensembl 31 35.63%

    GWAS Catalog 17 19.54%

    LOVD 0 0.00%

    CIViC 0 0.00%

Number of unique variations 87
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sources achieved a CDL of 100%, indicating that those 
with a low CDL may still have exclusive variations that 
are clinically significant.

Concordance
In order to obtain concordance results, we measured 
the consensus between the associations provided by 
the data sources. Concordance in oncology disorders 

and Concordance in cardiology disorders  explore the 
levels of concordance for oncology and cardiology dis-
orders, respectively.

Concordance in oncology disorders
The results for the concordance in oncology disorders 
are summarized in Table 7. Clinical interpretation con-
cordance is greater than 99% for all oncology disorders. 

Fig. 4 Number of variations per database and cardiology disorder. In yellow, the variations from CardioDB. In blue, the variations from Ensembl. 
In purple, the variations from LOVD. In pink, the variations from ClinVar. In green, the variations from GWAS Catalog. In white, the data sources 
without variations
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This means that if a variation appears in multiple data 
sources, there is a high likelihood of agreement regard-
ing its clinical impact on a specific disorder. Despite 
this, there are some variations in Acute Myeloid Leu-
kemia and Neuroblastoma disorders with contradictory 
interpretations.

In the case of Acute Myeloid Leukemia, there are two 
variations (GATA2:c.1061 C>T and GATA2:c.1192C>T) 
with contradictory interpretations. The two variations 
have been interpreted as both Pathogenic and Likely 
Pathogenic in ClinVar. In this case, the conflicting inter-
pretations arise from discrepancies in the information 
provided by the same data source rather than differences 
among data sources. This finding adds a new dimension 
to the concordance problem, potentially making it even 
more challenging to understand the role of a variation in 
a specific disorder.

In the Neuroblastoma case, there are seven conflicting 
interpretations (KIF1:c.3787 C>T, KIF1B:c.2618C>T, 
ALK:c.3749T>C, ALK:c.3452C>T, ALK:c.3575G>C, 
ALK:3383G>C, and ALK:c.3824G>A). Six of them 
have discordance due to contradictory informa-
tion found in ClinVar. The discordance in the other 
case (KIF1B:c.2618C>T) is caused by the variation 
being interpreted as Uncertain Significance in Clin-
Var and Pathogenic in LOVD. As a result, a potential 

Table 6 The results for the completeness at data level for 
cardiology disorders. Equation 2 was used to calculate these 
results. Note that the total number of unique variations does not 
equal the total number of variations stored in each database. This 
is because the same variation can be found in multiple databases 
(see Fig. 4)

Database Number of 
variations

Completeness at 
the Data Level 
(%)

Hypertrophic Cardiomyopathy

    ClinVar 15,374 91.29%

    Ensembl 4,388 26.06%

    GWAS Catalog 104 0.62%

    LOVD 480 2.85%

    CardioDB 1,022 6.07%

Number of unique variations 16,840

Dilated Cardiomyopathy

    ClinVar 29,216 97.89%

    Ensembl 8383 28.07%

    GWAS Catalog 66 0.22%

    LOVD 520 1.74%

    CardioDB 317 1.06%

Number of unique variations 29,845

Arrhythmogenic Cardiomyopathy

    ClinVar 6,769 96.70%

    Ensembl 400 5.71%

    GWAS Catalog 0 0.00%

    LOVD 249 3.55%

    CardioDB 110 1.57%

Number of unique variations 7,000

Short QT Syndrome

    ClinVar 538 98.90%

    Ensembl 42 7.72%

    GWAS Catalog 0 0.00%

    LOVD 4 0.74%

    CardioDB 0 0.00%

Number of unique variations 544

Restrictive Cardiomyopathy

    ClinVar 155 89.08%

    Ensembl 37 21.26%

    GWAS Catalog 0 0.00%

    LOVD 22 12.64%

    CardioDB 0 0.00%

Number of unique variations 174

Table 7 Results for the concordance dimension associated with 
oncology disorders

Analysis Number of 
variations

Concordance (%)

Acute Lymphoblastic Leukemia

    Concordant Interpretations 216 100.00%

    Discordant Interpretations 0 0.00%

    Concordant GWAS 143 99.31%

    Discordant GWAS 1 0.69%

Acute Myeloid Leukemia

    Concordant Interpretations 791 99.75%

    Discordant Interpretations 2 0.25%

    Concordant GWAS 2 100.00%

    Discordant GWAS 0 0.00%

Neuroblastoma

    Concordant Interpretations 2,477 99.72%

    Discordant Interpretations 7 0.28%

    Concordant GWAS 64 100.00%

    Discordant GWAS 0 0.00%

Retinoblastoma

    Concordant Interpretations 1,308 100.00%

    Discordant Interpretations 0 0.00%

    Concordant GWAS - -

    Discordant GWAS - -

Osteosarcoma

    Concordant Interpretations 87 100.00%

    Discordant Interpretations 0 0.00%

    Concordant GWAS 17 100.00%

    Discordant GWAS 0 0.00%
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misinterpretation of the variation’s role in Neuroblas-
toma may occur if only one of these two data sources 
is used.

The GWAS catalog results are generally consistent, 
with only one variation (IKZF1:c.*1656T>C) associated 
with Acute Lymphoblastic Leukemia providing contra-
dictory information. Concordance was not calculated for 
Retinoblastoma because no variation is associated with it 
in the GWAS Catalog.

Concordance in cardiology disorders
Table 8 summarizes the results of the concordance met-
ric in cardiology disorders. The clinical interpretation for 
cardiology disorders is significantly concordant, indicat-
ing a high likelihood of agreement on the clinical impact 
of variations reported across different data sources. 
Nevertheless, the large number of conflicting inter-
pretations cannot be ignored. For instance, more than 
120 conflicting variations are associated with Hyper-
trophic Cardiomyopathy, Dilated Cardiomyopathy, or 
Arrhythmogenic Cardiomyopathy. These discrepancies in 

the interpretations result from differences in the informa-
tion provided by different data sources as well as differ-
ences in the information reported by a single data source.

Let us illustrate this situation. Discordant interpreta-
tions exist for 229 variations in Hypertrophic Cardio-
myopathy, with the majority of these variations located 
in well-known cardiomyopathy-related genes such as 
MYBPC3 (68 variations), MYH7 (49 variations), TNNI3 
(20 variations), or TNNT2 (20 variations). For instance:

• The TPM1:c.842T>C variation is classified as Path-
ogenic by ClinVar and LOVD but as Uncertain Sig-
nificance by CardioDB.

• The variation TNNT2:c.886C>T is classified as 
Pathogenic by LOVD and has discordant inter-
pretations in ClinVar (Uncertain Significance, and 
Likely Pathogenic).

• The variation TNNT2:c.842A>T has conflicting 
interpretations in LOVD (Pathogenic and Uncer-
tain Significance).

Furthermore, 160 variations associated with Dilated 
Cardiomyopathy have contradictory interpretations. 
Almost every discordant variation is found on either 
the TTN gene (83 variations) or the Antisense TTN 
gene (TTN-AS1, 52 variations), both of which are well-
known cardiomyopathy-related genes. Most of the 
observed discordance results from information stored 
in the same data source, between “Likely Benign” and 
“Uncertain Significance” and between “Likely Patho-
genic” and “Uncertain Significance”. For instance, the 
TTN:c.93166C>T variation has been interpreted as 
Likey Pathogenic and Uncertain Significance in LOVD.

For Arrhythmogenic Cardiomyopathy, there are 120 
variations with contradictory interpretations; 83 of 
these 120 variations are located in the DSP gene, a rel-
evant gene when studying cardiomyopathy disorders. 
Some examples that highlight these discordances are 
the following:

• The DSP:c.7784C>T variation is reported as Patho-
genic in LOVD and as Uncertain Significance in 
CardioDB.

• The DSG2:c.961T>A variation is reported as Path-
ogenic in LOVD and Uncertain Significance in 
ClinVar.

• The DSP:c.7916G>A variation is reported as Benign 
in ClinVar and Pathogenic in LOVD.

Regarding the Short QT Syndrome, there is only one varia-
tion with contradictory interpretations (KCNJ2:c.431G>A). 
The discordance, in this case, is due to contradictory infor-
mation provided by the ClinVar data source. Finally, no 

Table 8 Results for the concordance dimension associated with 
cardiology disorders

Database Number of 
variations

Concordance (%)

Hypertrophic Cardiomyopathy

    Concordant Interpretations 16,551 98.64%

    Discordant Interpretations 229 1.36%

    Concordant GWAS - -

    Discordant GWAS - -

Dilated Cardiomyopathy

    Concordant Interpretations 29,706 99.46%

    Discordant Interpretations 160 0.54%

    Concordant GWAS 68 100.00%

    Discordant GWAS 0 0.00%

Arrhythmogenic Cardiomyopathy

    Concordant Interpretations 6,882 98.29%

    Discordant Interpretations 120 1.71%

    Concordant GWAS - -

    Discordant GWAS - -

Short QT Syndrome

    Concordant Interpretations 546 99.82%

    Discordant Interpretations 1  0.18%

    Concordant GWAS - -

    Discordant GWAS - -

Restrictive Cardiomyopathy

    Concordant Interpretations 176 100.00%

    Discordant Interpretations 0 0.00%

    Concordant GWAS - -

    Discordant GWAS - -
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variation associated with Restrictive Cardiomyopathy has 
contradictory interpretations.

Use case
According to our findings, none of the data sources under 
consideration are complete, and numerous variations 
have contradictory interpretations. The DNA sequences 
of nine patients (see Table 9) were examined to see if any 
of them carried a genetic variation with inconsistent clin-
ical interpretation. This study allowed us to determine 
the true impact of these discrepancies and whether they 
could hinder the correct diagnosis and treatment of these 
nine patients.

First, we examined the DNA sequence of four patients 
who had an oncology disorder (i.e., Onco-1, Onco2, 
Onco-3, and Onco-4). Onco-1 and Onco-2 patients 
have Neuroblastoma and share an identical variation: 
Chr2:g.29222407-29222407:G>A(GRCh38). Only Clin-
Var reports this variation, classified as Pathogenic, Risk 
Factor, Likely Benign, and Uncertain Significance for 
Neuroblastoma-related phenotypes. There are obvi-
ous contradictions in the role of this variation, mak-
ing it difficult to determine whether the Neuroblastoma 
presented by both patients has a genetic origin or not. 
This case demonstrates how a lack of concordance, not 
only among data sources but also within the informa-
tion provided by the same data source, complicates 
the correct diagnosis of patients. Patients Onco-3 and 
Onco-4 have osteosarcoma and the same mutation: 
Chr14:g.104780214-104780214:C>T(GRCh38). This vari-
ant is exclusively reported by ClinVar and is classified as 
likely pathogenic. Because none of the data sources are 
complete, clinicians should use a combination of them to 
make accurate genomic-based diagnoses.

Then we focused on the five patients who suffer from 
a cardiology Disorder. Cardio-1 and Cardio-2 patients 
are affected by arrhythmogenic cardiomyopathy. The 
Chr18:g.31542655-31542655:G>A variation, identified in 
Cardio-1 patient, is classified as Benign by ClinVar but as 
Pathogenic according to LOVD, indicating a major dis-
crepancy. The Chr12:g.32896656-32896656:C>T variation, 
identified in Cardio-2 patient, is classified as Uncertain 

Significance by LOVD and Benign by ClinVar. These cir-
cumstances make it extremely difficult to assess whether a 
patient’s cardiac disorder has a genetic origin.

Cardio-3, Cardio-4, and Cardio-5 patients are affected 
by Hypertrophic Cardiomyopathy. The information asso-
ciated with the Chr11:g.47360070-47360070:C>T varia-
tion, identified in Cardio-3 patient, is concordant because 
it is classified as Pathogenic by both ClinVar and Cardi-
oDB. Cardio-4 patient has a variation classified as Uncer-
tain Significance in ClinVar and as Pathogenic in LOVD. 
These differences between the classifications provided 
by LOVD and ClinVar complicate the clinical diagnosis 
of this patient. The same happens to Cardio-5 patient. In 
that case, the concordance issue occurs between ClinVar 
and CardioDB. The Chr14:g.23417598-23417598:C>T 
variation was identified in this patient, classified as Likely 
Pathogenic in ClinVar and as Uncertain Significance in 
CardioDB.

Discussion
Analyzing the completeness and concordance of infor-
mation about DNA variations in six well-known data 
sources allowed us to characterize the big data problem 
that challenges genomics-based clinical diagnosis in 
greater detail.

Regarding the study of completeness at the schema 
level, there is a high degree of heterogeneity between 
data sources that use an "interpretation" approach (i.e., 
geneticists determine whether the variation causes 
or does not cause the disorder) and those that use a 
"statistical metrics" approach (i.e., the strength of the 
association between the variation and the disorder is 
calculated). When it comes to data sources that use 
the same approach, their structures and semantics dif-
fer significantly. As a result, data analyses like the one 
performed in this work are complex. These issues were 
addressed by creating a conceptual schema based on the 
CSHG, which guided the characterization of information 
provided by heterogeneous data sources and improved 
semantic interoperability and data integration processes.

In terms of the data completeness metric, there is a 
significant difference in the variations provided by each 
data source.

Table 9 Patients studied per group of disorder. Four patients suffered from an oncology disorder, while five suffered from a cardiology 
disorder

Group of disorder Disorder Patient ID

Oncology Disorder Neuroblastoma Onco-1, Onco-2

Osteosarcoma Onco-3, Onco-4

Cardiology Disorder Arrhythmogenic Cardiomyopathy Cardio-1, Cardio-2

Hypertrophic Cardiomyopathy Cardio-3, Cardio-4, Cardio-5
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• ClinVar and Ensembl offer variations for every oncol-
ogy and cardiology disorder. The reason ClinVar pro-
vides such a large number of variations is that it has 
been widely adopted by genomics professionals and 
that the most popular variant interpretation stand-
ards encourage using it [26]. However, Ensembl only 
provides that degree of coverage because nourishes 
from ClinVar.

• LOVD reports a few variations associated with 
oncology disorders. Furthermore, no variants 
for Osteosarcoma or Retinoblastoma have been 
reported. Even though LOVD is a collection of gene-
based data sources with no limitations on the dis-
eases that can be studied, oncology experts appear to 
prefer reporting their findings to other data sources 
rather than LOVD.

• GWAS Catalog only provides data on two cardiology 
disorders (Dilated and Hypertrophic Cardiomyopa-
thy), even though it is a general-purpose data source 
that can report on several forms of cardiovascular 
disorders and many others. The disparity in preva-
lence rates of the disorders appears to be the cause 
of this. GWAS studies require a large enough sample 
of well-characterized patients to produce statistically 
significant evidence, meaning they are more feasible 
for more prevalent disorders. Dilated and Hyper-
trophic Cardiomyopathies are the most common, 
with prevalence rates of 1:500 and 1:2500, respec-
tively. Still, other types of cardiomyopathies, such as 
Arrhythmogenic Cardiomyopathy, have an incidence 
of 1:1000 to 1:5000, and restrictive cardiomyopathy 
is the least common form of this condition in the 
population, representing 2 to 5% of all cases. Fur-
thermore, some less common forms of cardiomyo-
pathy, such as Arrhythmogenic Cardiomyopathy, 
tend to coexist with more common ones like Dilated 
Cardiomyopathy [27].

• Despite the fact that CIViC focuses on cancer-related 
variations, it does not report on variants associated 
with Neuroblastoma, Retinoblastoma, and Osteo-
sarcoma oncology disorders. One possible reason 
is that these cancers has a very low incidence (7.3% 
for Neuroblastoma, 2.8% for Retinoblastoma, and 
2.4% for Osteosarcoma [28]), and CIViC contributors 
concentrate their efforts on more common cancers. 
For instance, CIViC reports variants associated with 
Acute Myeloid Leukemia and Acute Lymphoblastic 
Leukemia, both which have a much higher incidence 
(i.e., 30% [28]).

• CardioDB does not report on variations associated 
with Restrictive Cardiomyopathy or Short QT Syn-
drome. This is because CardioDB data was obtained 
from a study comprising 7,855 cardiomyopathy cases, 

and none suffered from Restrictive Cardiomyopathy 
or Short QT Syndrome. However, its relevance for 
the remaining conditions (i.e., Hypertrophic Cardio-
myopathy, Dilated Cardiomyopathy, and Arrhythmo-
genic Cardiomyopathy) is significant.

Table  10 summarizes the CDL results for oncology and 
cardiology disorders. ClinVar is the most comprehensive 
database for both types of disorders. Although the CDL 
of the other data sources is significantly lower, they still 
contain unique variations. For instance, there are 30 vari-
ations associated with the oncology disorder Acute Mye-
loid Leukemia (4 in CIViC, 10 in Ensembl, 14 in LOVD, 
and 2 in GWAS Catalog) not reported by ClinVar, and 
sixteen of them have been reported to be disorder-caus-
ing. This demonstrates the importance of not focusing 
solely on ClinVar, as necessary information for clinical 
diagnosis will be missed.

The results of our concordance analysis show that the 
information available in the studied data sources is highly 
concordant. Our findings support previous research on 
the consistency of interpretations of variations reported 
in ClinVar. Harrison et  al. examined 244 variations and 
discovered that 87.6% of them had a majority consensus 
[29]. Yang et al. also examined the ClinVar classifications 
of 27,224 variations [30]. They found that, in general, a 
majority consensus was reached on nearly 90% of varia-
tions. However, the percentage of cardiology-related vari-
ations with majority consensus fell to 85%. These findings 
are consistent with ours (92.88% concordance for cardiol-
ogy disorders).

Despite the high percentage of concordance for varia-
tions, hundreds of variations with discordant interpreta-
tions are reported. A situation like this must be carefully 
considered. Indeed, 93% of clinical experts claim to have 

Table 10 Results for the completeness at data level dimension 
per group of disorder

Database Number of variations CDL (%)

Oncology disorders

    ClinVar 4,599 94.33%

    Ensembl 3,047 62.50%

    GWAS Catalog 225 4.62%

    LOVD 38 0.78%

    CIViC 18 0.37%

Cardiology disorders

    ClinVar 52,052 92.88%

    Ensembl 13,250 23.64%

    GWAS Catalog 167 0.30%

    LOVD 1,442 2.57%

    CardioDB 1,649 2.94%
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encountered a variation with ambiguous interpretation 
[31]. This requires experts to invest additional time and 
effort to analyze those variations, resulting in delays in 
therapeutic decisions and actions.

Table  11 summarizes the concordance results for 
oncology and cardiology disorders. Although only 0.94% 
of variations associated with cardiology disorders are 
discordant, this percentage still includes 510 variations. 
Compared to oncology disorders, cardiology disorders 
have more reported variations as well as more discordant 
interpretations. This suggests that as more variations are 
linked to a disease, their concordance decreases, which is 
a challenge in this rapidly expanding domain that has yet 
to be solved.

Concordance issues have a direct impact on clinical 
care because different experts evaluate these conflicts dif-
ferently [32]. This is consistent with the findings reported 
in Use case, which revealed that even a tiny fraction of 
discordant information makes it difficult to diagnose 
patients.

Conclusions
The completeness and concordance of six well-known 
genomic data sources (i.e., ClinVar, Ensembl, GWAS Cat-
alog, LOVD, CardioDB, and CIViC) in the context of two 
groups of disorders (cardiology and oncology disorders) 
were examined in the present research. Our findings 
show that relying solely on the information provided by 
some of these data sources is insufficient, and that there 
are concordance issues among this information.

Complete and consistent data is required to pro-
vide an accurate genomics-based diagnosis. How-
ever, assessing the completeness and concordance of 
genomics data is a time-consuming and labor-inten-
sive task that is ignored too frequently. This is due to 
the immense amount of available data, the constant 

evolution of genomic knowledge, the dispersion of 
genomics data across hundreds of data sources, and 
the lack of interoperability. As a result, future work 
will focus on systematizing the process described in 
this work to evaluate the completeness and concord-
ance of genomics data associated with a given dis-
order. As a result of this systematization, more and 
more insights will be generated, taking into account 
additional data sources and groups of disorders. An 
additional line of research is to evaluate other DQ 
metrics. This study evaluated those DQ metrics that 
more accurately depict the effects of just taking into 
account a small number of data sources for interpret-
ing genomics variations. However, to assess the utility 
of each data source in a specific context, it may be cru-
cial to examine more DQ metrics (see Table 3).
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