
S O F T WA R E Open Access

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. Open Access This
article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence
and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated in a credit line to the data.

Russ et al. BMC Medical Informatics and Decision Making (2023) 23:238
https://doi.org/10.1186/s12911-023-02338-6

BMC Medical Informatics
and Decision Making

*Correspondence:
Daniel E. Russ
daniel.russ@nih.gov
1Division of Cancer Epidemiology and Genetics, National Cancer Institute,
9609 Medical Center Drive, Bethesda, MD 20892, USA

Abstract
Background Online questionnaires are commonly used to collect information from participants in epidemiological
studies. This requires building questionnaires using machine-readable formats that can be delivered to study
participants using web-based technologies such as progressive web applications. However, the paucity of
open-source markup standards with support for complex logic make collaborative development of web-based
questionnaire modules difficult. This often prevents interoperability and reusability of questionnaire modules across
epidemiological studies.

Results We developed an open-source markup language for presentation of questionnaire content and logic, Quest,
within a real-time renderer that enables the user to test logic (e.g., skip patterns) and view the structure of data
collection. We provide the Quest markup language, an in-browser markup rendering tool, questionnaire development
tool and an example web application that embeds the renderer, developed for The Connect for Cancer Prevention
Study.

Conclusion A markup language can specify both the content and logic of a questionnaire as plain text.
Questionnaire markup, such as Quest, can become a standard format for storing questionnaires or sharing
questionnaires across the web. Quest is a step towards generation of FAIR data in epidemiological studies by
facilitating reusability of questionnaires and data interoperability using open-source tools.

Keywords Surveys and questionnaires, Data collection, Data commons, Data science, Epidemiologic methods

Quest markup for developing FAIR
questionnaire modules for epidemiologic
studies
Daniel E. Russ1*, Nicole M. Gerlanc1, Brian Shen1, Bhaumik Patel1, Amy Berrington de González1, Neal D. Freedman1,
Julie M. Cusack1, Mia M. Gaudet1, Montserrat García-Closas1 and Jonas S. Almeida1

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-023-02338-6&domain=pdf&date_stamp=2023-10-23

Page 2 of 7Russ et al. BMC Medical Informatics and Decision Making (2023) 23:238

Background
Questionnaires are key instruments for collecting infor-
mation from participants in epidemiological studies.
Moving from paper to web-based questionnaires can
improve data quality and decrease the time and cost of
questionnaire delivery and completion. [1] The develop-
ment of web-based questionnaires can be facilitated by
web applications that support complex logic and user-
interface formatting, ideally following FAIR (Findable,
Accessible, Interoperable, and Reusable) principles [2] so
that the questionnaires are reusable and the data interop-
erable. Applications such as Survey Monkey or Google
Forms allow researchers to develop questionnaires
through proprietary user interfaces. However, these tools
do not support complex logic. To support web-based
administration, epidemiologists often use word process-
ing software to develop annotated questionnaire ver-
sions that contain the static question text, dynamic text
piped from responses, and logic that directs participants
along a personalized path through the module. In addi-
tion, annotated documents may contain user-interface
elements (e.g., introductory text, pop-up definitions,
formatting) desired in the final product presented to
the study participant. These documents are then used
by programmers to develop web-based questionnaires,
often using proprietary software that can handle the
complex logic. Proprietary questionnaire platforms, such
as Qualtrics, can handle complex questionnaires, but the
entire software ecosystem is managed internally, which
represents an impediment to the availability of question-
naire responses as data commons. [3] Clients program
questions through a graphical interface occasionally
adding custom code. While such platforms may share a
question library with other paying users, they lack open-
source representations that allow widespread reusability
of questionnaires.

Ideally, the annotated questionnaire document
would be in a human-readable, platform-independent,
machine-readable, plain-text format with questions and
logic that an application can render for the participant.
Markup languages meet these requirements and can
resemble the annotated documents produced by epide-
miologists. Originally used to simplify development of
HTML, markup has been used in many different contexts
including writing books, software documentation, and
within messaging applications. [4, 5] For questionnaires,
describing the complex logic between questions and the
interplay between questions and responses are easier to
define using a markup language than using annotated
word processing or spreadsheet documents. In addition,
markup languages promote equitable research by pro-
viding free, open-source tools that enable reuse of ques-
tionnaires by scientists who may not be able to afford

commercial tools, particularly those in low- and middle-
income countries.

We developed the Quest open-source questionnaire
markup and supporting applications in the public domain
with the aim to remove barriers that prevent adoption of
FAIR principles in epidemiology. [6] The major advance-
ments that Quest brings are: a markdown format that
allows reuse of questionnaire modules across studies;
providing a default markdown renderer that integrates
into a studies web application allowing studies to choose
a backend system instead of forcing vender-specific back-
ends; a standard markdown usable by commercial and
open systems facilitating interoperability.

Implementation
Basic quest markup
In this section, we describe the basics of the markup.
More complex markup is available, and a description
can be found online in the Quest wiki. [7] In this section,
italic text will be used to distinguish markup elements
and their orchestration from the text describing them.

The basic markup structure for a questionnaire mod-
ule is a series of questions. Questions are defined in the
markup with a question id surrounded by square brack-
ets followed by the question text and a set of responses.
The first letter of a question id must be a capital letter
(A-Z); the rest of the id can be capital letters, numbers,
underscores, or octothorps (hash tags). Examples of
valid question identifiers include [Q], [Q1], [Q#1], and
[THIS_IS_VALID]. The final question uses the question
id [END].

Question syntax
As is the case for markup languages in general, the ques-
tions themselves are composed of plain text. The ele-
ments of each question are represented with simplified
syntactic patterns mapped to another markup language,
HTML. In essence, this follows the same rationale asso-
ciated with other markup languages [4, 5]. Correspond-
ingly, each question block consists of the question text
and responses that can use a range of HTML form ele-
ments to handle different response types. The most
common cases are select one of the responses or select
multiple responses, which map into an HTML input
type = radio or type = checkbox, respectively. The markup
uses parentheses surrounding a value to represent a
radio button and square brackets surrounding the return
value for checkboxes. For the markup to remain consis-
tent, return values cannot be valid question ids. A wide
range of text and numeric input formats are supported,
which are specified using a vertical bar followed by two
underscores and another vertical bar, |__| for basic text
values, while numeric input is specific by |__|__|. Other
HTML element types can be specified using |date|, |tel|,

Page 3 of 7Russ et al. BMC Medical Informatics and Decision Making (2023) 23:238

and |SSN|. Quest’s GitHub wiki contains detailed infor-
mation on additional response types, and a summary of
current Quest markup is provided [see Supplementary
Tables 1, Additional file 1]. Advanced developers can
also have responsive grids that display multiple questions
with the same responses. An in-browser application is
provided at https://episphere.github.io/quest where the
questionnaire markup can be tested interactively during
development.

Questionnaire logic
The markup logic includes simple and more complex
syntax to allow for skip logic. The simple logic is the
arrow markup: response -> question id. The arrow indi-
cates that if this response is selected, go to the question
with the given id. This simple logic allows the developer
to skip parts of the module that are not applicable to the
participant. The no response markup, < #NR -> question
id>, can be used for cases when the user does not select
one of the responses.

The arrow markup adds a question to a stack (last in,
first out list) of questions that assembled for the partici-
pant. When the stack empty, next question is assumed
to immediately follow the current question. However,

questionnaire modules may include follow-up questions
for situations when the participant can choose multiple
responses. In this situation, each response may con-
tain arrows pointing to the follow up questions, and a
default next question, in which < -> question id > points
to the next question after all the follow-up questions
are answered by the participant. All selected responses
with arrows are added to the question list along with the
default next question. The default next question is always
added to the stack. Care should be taken with follow
up questions. All additional follow-up questions must
specifically be added to the stack with an arrow or the
default arrow, otherwise they will be ignored as the next
question will come from the stack regardless of where it
appears in the markup.

Finally, for questions that cannot be skipped by any
other means, a displayif mechanism can skip a question
based on previous results. This basic syntax will cover the
most straightforward situations, but there are situations
where complex logic requires a more functional repre-
sentation than conditional event algebra. That expert
level logic grammar allows, for example, the definition of
loops within the module. This is explained in Quest’s wiki
[7] in detail.

Fig. 1 An example module of seven questions. The user is initially shown question QUESTION_1. If they select (1) then, they are immediately taken to
question END, otherwise they are taken to QUESTION_2. In QUESTION 2, the user can select multiple answers. Assuming they select 13:runny nose and
15:fever, questions DECON1, TEMP, and END are added to a stack of questions to ask. In question DECON1, if the user selects (1) Yes then DECON2 is added
immediately to the question stack, otherwise no questions are added, and the question stack is popped to select the question TEMP and then END.
Notice that in the TEMP question a minimum of 90 and a maximum of 120 degrees are enforced. The JSON returned would look like: {QUESTION_1:2,
QUESTION_2: [13,15], DECON1:0, TEMP:98}

https://episphere.github.io/quest

Page 4 of 7Russ et al. BMC Medical Informatics and Decision Making (2023) 23:238

Figure 1 is a simple example of a questionnaire module
using Quest markup. This example illustrates both the
markup and its rendering by the reference application:
the markup is available online as a text file at https://dan-
ielruss.github.io/questionnaire/paper_example1.txt

Supporting software
We developed a JavaScript library as an open-source ref-
erence implementation that renders the Quest markup
into HTML for display in a browser. Working inside the
browser provides access to all major computer oper-
ating systems, tablets, and smart phones. The library
follows the module logic found in the markup display-
ing the appropriate question based on current and past
responses. The quest library can be inserted into a stan-
dard HTML page or progressive web application using
a content delivery network that caches code on GitHub
(e.g. https://cdn.jsdelivr.net/gh/episphere/quest/replace2.
js). Our implementation caches the entire module in the
browser DOM, and participant responses are saved in
the browser’s indexedDB, an asynchronous NoSQL per-
sistent storage native to the modern browser [8]. Partici-
pants with spotty or intermittent internet capabilities can
therefore complete modules even if they lose the internet
connection. Finally, results are transmitted back to the
study via a callback function executed upon completion
of the module. To support different studies with differ-
ent preferences for data backend, Quest itself does not
specify how or where studies store results. That is instead
defined by the JavaScript callback function, which receive
as the input argument a JSON object populated by the
responses to the questionnaire.

We also provide an application for developing and
presenting the Quest markup, which provides the devel-
oper the same view of the questions as the participant.

As mentioned in the Methods section, the markup devel-
opment tool is available at https://episphere.github.io/
quest.

Styling the appearance and user interaction is a
major component of the Quest renderer, which we’ve
approached by independently parameterizing a Cas-
cade Style Sheet document (CSS). Naturally, if no style
is defined, for example rendering the questionnaire in a
web application, the styling will be that of the application
itself. This mimetic design implies that a cohort study
using Quest will render questionnaires with the appear-
ance of being native to the overall presentation config-
ured for the Web Application.

Results
Our JavaScript reference implementation markup devel-
opment tool provides live editing/rendering of the Quest
markup. Arguments are passed via the URL search
parameters. For example, the markup is passed using
the url parameter making the complete URL for markup
from Fig. 1 https://episphere.github.io/quest?url=https://
danielruss.github.io/questionnaire/paper_example1.
txt and a screen shot is shown in Fig. 2. Logic and styl-
ing are activated by appending the URL of the style sheet
to the style search parameters. A full screen participant
view, useful for module and styling development, can
also be triggered by adding the search parameter run.
(e.g., https://episphere.github.io/quest/?style=Style1.
css&run&url=https://danielruss.github.io/questionnaire/
paper_example1.txt). An example of embedding the
JavaScript markup renderer into a web application can be
found at https://github.com/danielruss/AppUsingQuest.

The first production use of the Quest markup and
application was the Connect for Cancer Prevention study.
[9] By calling the Quest JavaScript library, the study

Fig. 2 A screenshot of the live real-time composer/renderer showing a developer view of the module markup in Fig. 1 along with the unstyled, rendered
HTML

https://danielruss.github.io/questionnaire/paper_example1.txt
https://danielruss.github.io/questionnaire/paper_example1.txt
https://cdn.jsdelivr.net/gh/episphere/quest/replace2.js
https://cdn.jsdelivr.net/gh/episphere/quest/replace2.js
https://episphere.github.io/quest
https://episphere.github.io/quest
https://episphere.github.io/quest?url=https://danielruss.github.io/questionnaire/paper_example1.txt
https://episphere.github.io/quest?url=https://danielruss.github.io/questionnaire/paper_example1.txt
https://episphere.github.io/quest?url=https://danielruss.github.io/questionnaire/paper_example1.txt
https://episphere.github.io/quest/?style=Style1.css&run&url=https://danielruss.github.io/questionnaire/paper_example1.txt
https://episphere.github.io/quest/?style=Style1.css&run&url=https://danielruss.github.io/questionnaire/paper_example1.txt
https://episphere.github.io/quest/?style=Style1.css&run&url=https://danielruss.github.io/questionnaire/paper_example1.txt
https://github.com/danielruss/AppUsingQuest

Page 5 of 7Russ et al. BMC Medical Informatics and Decision Making (2023) 23:238

delivers multiple questionnaire modules into their par-
ticipant progressive web application. Figure 3 is a screen-
shot of the Connect participant application displaying
a question from a Connect questionnaire. Developers
learned the Quest markup quickly by coding straightfor-
ward questions first, and then gradually learning more
complex logic components such as those involving dis-
playif, looping and grid logic.

Discussion
We have developed a modular questionnaire markup lan-
guage that defines a declarative formalism for specifying
both the question content and the module logic. Quest
markup is rendered in real-time into HTML. Epide-
miologic studies can develop simple web-based applica-
tions, such as a PWA, that engage study participants and
directly collect responses as a zero-footprint solution:
no additional software is required to be installed to ren-
der a questionnaire formulated with the Quest markup
language.

Currently, no open standard exists for interchange of
questionnaires. In addition to markup, many other com-
monly used formats could have been chosen. We limited
our discussion to human readable formats because we
believe that benefits of easily understanding the format
outweigh benefits of binary formats. With other formats,
such as JSON or XML, the questionnaire programmer
must carefully follow the recursive data format. A JSON

brace in the wrong place or a misplaced XML end tag
leads to bugs. Questionnaire programmer would need
to convert every question into the format. In contrast,
Quest markup mimics the appearance of the annotated
documents provided by questionnaire developers. Fur-
thermore, Quest markup is also a good interoperable
standard because the human readable UTF-8 markup
text lends itself to ready serializing to machine-friendly
variable structures, such as JSON.

An additional major benefit of the combination of
human-readable markup, privacy-preserving computa-
tion and browser-based development, is our ability to
address FAIR principles. Specifically, Quest was designed
as a testing ground for questionnaire commons address-
ing all the FAIR principles. The markup design exercise
was put to the real-world test of making it work for the
NCI/DCEG Connect for Cancer Prevention Study, which
uses GitHub Pages to disseminate questionnaires with
versioning and on the Web.

The guiding principles of FAIR are laid out in Box 2 of
[2]. For findability, Quest accesses questionnaire mod-
ules via a persistent URLs acting as “globally unique and
persistent identifier” [2] of for data. Metadata and index-
ing requirements for the modules can then be associ-
ated with these identifiers as linked data. Accessibility
requires that the identifier be retrievable by “standard
communication” using and “open, free, and universally
implemented” protocol. [2] Quest then uses JavaScript to

Fig. 3 A screenshot of the Connect for Cancer Prevention progressive web application providing a questionnaire module. Notice that previous informa-
tion, in this case age, can be provided to the module and displayed within a question

Page 6 of 7Russ et al. BMC Medical Informatics and Decision Making (2023) 23:238

fetch the module needed to generate the corresponding
HTML questionnaire rendering. If needed, applications
using Quest can require authentication and authoriza-
tion, for example, through external OAuth2 services
along the interoperability standards gaining adoption for
HL7-FHIR patient centric designs. [10] Interoperabil-
ity is provided by the standard Quest markup itself, as
the knowledge representation of questionnaires. Finally,
reusability addresses attributes, licensing, provenance,
and standards. Since the Quest renderer uses URLs as
unique identifiers, updated versions of questionnaires
receive new URLs documenting the historical lineage of
marked up document.

In addition to the zero-footprint nature of web appli-
cations and the inherent privacy protection of operating
client side, the reliance on web technologies to assemble
in-browser applications brings with it an open-ended
engineering platform. Specifically, additional client-side
libraries can be integrated, as illustrated by the Con-
nect for Cancer Prevention PWA calling the occupation
coding service provided by SOCcer [11, 12]. The same
extensibility is at hand for styling the questionnaire, by
calling customized Cascading Style Sheets (CSS files).
Notably, wearable and IoT devices are entering the com-
munication ecosystem that surrounds study participants.
Accordingly, online questionnaires follow advances in
web technologies widening the range of participation
models (e.g., voice, location, sensors, etc.).

Finally, Quest markup lays the foundation for other
questionnaire rendering software. Allowing other teams
to create more innovative, performant, and feature-rich
online questionnaire software with a minimum shared
set of expected features for epidemiological studies.

Conclusion
Funding organizations, such as the NIH, increasingly
expect grantees to make their data and software compli-
ant with FAIR principles. [13] Accordingly, Quest markup
language was developed to facilitate the collaborative
development and maximize the reusability of question-
naire modules across multiple studies. As illustrated by
the reference in-browser markup renderer, no specialized
questionnaire servers are required. Neither to describe
the questionnaire elements nor the logic underlying their
presentation to cohort study participants. In a nutshell,
Quest aims to enable the emergence of Questionnaire
Commons that make the most of the nimble, extensive,
and transparent nature of Web computing. To that end,
Quest is provided with open source and in the public
domain, with no restrictions on use or modification.

Availability and requirements
Project name: Quest.
Project home page: https://github.com/episphere/quest.

Operating System(s): Platform independent.
Programming language: Quest markup and JavaScript.
Other requirements: Chrome based browser 108+,
Firefox 108+.
License: MIT, U.S. federal employee – no copyright in
US.
Any restriction to use by non-academics: no restrictions,
please attribute work by citing this paper.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s12911-023-02338-6.

Supplementary Material 1

Acknowledgements
We appreciate the support testing and developing Quest markup from the
IMS team including Jennifer Boyd-Morin, Deepti Joshi, and Rose Woodruff.

Authors’ contributions
MGC and JSA identified the need for the FAIR practices in questionnaire
development. JSA developed the proof-of-concept prototype. DER, NMG,
JSA developed the markup, ABdG, NDF, MMG, MGC assessed the usefulness
of the markup and Quest library for the Connect for Cancer Prevention
Study. DER, BS, and BP led development and implementation for the Quest
library and interfacing the Connect for Cancer Prevention Study progressive
web application with the Quest library. JMC and NMG led the software and
data testing effort. MGC, JSA, and MMG oversaw the work. DER drafted the
manuscript and all authors edited and approved the final document.

Funding
This work was supported by the Intramural Research Program of the Division
of Cancer Epidemiology and Genetics, National Cancer Institute, National
Institutes of Health.
Open Access funding provided by the National Institutes of Health (NIH)

Data availability
Not Applicable.

Declarations

Ethics approval and consent to participate
Not Applicable.

Consent for publication
Not Applicable.

Competing interests
The authors declare no competing interests.

Received: 3 January 2023 / Accepted: 13 October 2023

References
1. van Gelder MM, Bretveld RW, Roeleveld N. Web-based questionnaires: the

future in epidemiology? Am J Epidemiol. 2010;172(11):1292–8. https://doi.
org/10.1093/aje/kwq291. [published Online First: 20100929].

2. Wilkinson MD, Dumontier M, Aalbersberg IJ, et al. The FAIR Guiding principles
for scientific data management and stewardship. Sci Data. 2016;3:160018.
https://doi.org/10.1038/sdata.2016.18. [published Online First: 20160315].

3. Grossman RL, Heath A, Murphy M, Patterson M, Wells W. Comput Sci Engg.
2016;18:10–20. A Case for Data Commons: Toward Data Science as a Service.

https://github.com/episphere/quest
https://doi.org/10.1186/s12911-023-02338-6
https://doi.org/10.1186/s12911-023-02338-6
https://doi.org/10.1093/aje/kwq291
https://doi.org/10.1093/aje/kwq291
https://doi.org/10.1038/sdata.2016.18

Page 7 of 7Russ et al. BMC Medical Informatics and Decision Making (2023) 23:238

4. Cone M. The Markdown Guide. https://www.markdownguide.org/
getting-started/.

5. Xie Y, Allaire Jj, Grolemund G, Markdown ER. The definitive guide. 1st ed. Mil-
ton: Chapman and Hall/CRC; 2018. https://bookdown.org/yihui/rmarkdown/.

6. García-Closas M, Ahearn TU, Gaudet MM, et al. Moving towards FAIR practices
in epidemiological research. [Manuscript submitted for publication]; 2022.

7. Episphere. Quest Wiki: https://github.com/episphere/quest/wiki, 2022.
8. World Wide Web Consortium. Index Database API 3.0. https://www.w3.org/

TR/IndexedDB/ 2020.
9. Division of Cancer Epidemiology. Connect for Cancer Prevention Study.

Secondary Connect for Cancer Prevention Study 2020. https://dceg.cancer.
gov/research/who-we-study/cohorts/connect.

10. Khurshid A, Oliveira E, Nordquist E, Lakshminarayanan V, Abrol V. FHIRedApp:
a LEAP in health information technology for promoting patient access to
their medical information. JAMIA Open. 2021;4(4):ooab109. https://doi.
org/10.1093/jamiaopen/ooab109. [published Online First: 20211228].

11. Russ DE, Ho KY, Johnson CA, Friesen MC. Computer-based coding of Occupa-
tion codes for epidemiological analyses. Proc IEEE Int Symp Comput Based
Med Syst. 2014;2014:347–50. https://doi.org/10.1109/CBMS.2014.79.

12. Russ DE, Ho KY, Colt JS, et al. Computer-based coding of free-text job descrip-
tions to efficiently identify occupations in epidemiological studies. Occup
Environ Med. 2016;73(6):417–24. https://doi.org/10.1136/oemed-2015-
103152. [published Online First: 20160421].

13. National Institutes of Health. Final NIH Policy for Data Management. 85 Fed.
Reg., 68890. (Oct. 10, 2020) https://www.federalregister.gov/d/2020-23674.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://www.markdownguide.org/getting-started/
https://www.markdownguide.org/getting-started/
https://bookdown.org/yihui/rmarkdown/
http://github.com/episphere/quest/wiki
https://www.w3.org/TR/IndexedDB/
https://www.w3.org/TR/IndexedDB/
https://dceg.cancer.gov/research/who-we-study/cohorts/connect
https://dceg.cancer.gov/research/who-we-study/cohorts/connect
https://doi.org/10.1093/jamiaopen/ooab109
https://doi.org/10.1093/jamiaopen/ooab109
https://doi.org/10.1109/CBMS.2014.79
https://doi.org/10.1136/oemed-2015-103152
https://doi.org/10.1136/oemed-2015-103152
https://www.federalregister.gov/d/2020-23674

	Quest markup for developing FAIR questionnaire modules for epidemiologic studies
	Abstract
	Background
	Implementation
	Basic quest markup
	Question syntax
	Questionnaire logic

	Supporting software
	Results
	Discussion
	Conclusion
	Availability and requirements
	References

