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Abstract
Objective Using two three-dimensional U-Net architectures for myocardium structure extraction and a distance 
transformation algorithm specifically for the left circumflex artery, we have designed a fully automated algorithm for 
coronary artery labeling in coronary computed tomography angiography (CCTA) images.

Methods In this retrospective analysis, a cohort of 157 patients who had undergone coronary computed 
tomography angiography (CCTA) was included. An automated coronary artery labeling algorithm was developed 
using a distance transformation approach to delineate the anatomical segments along the centerlines extracted 
from the CCTA images. A total of 16 segments were successfully identified and labeled. The algorithm’s outcomes 
were recorded and reviewed by three experts, and the performance of segment detection and labeling was assessed. 
Additionally, the level of agreement in manually labeled segments between two experts was quantified.

Results When comparing the labels generated by the experts with those produced by the algorithm, it was 
necessary to modify or eliminate 117 labels (5.4%) out of 2180 segments assigned by the algorithm. The overall 
accuracy for label presence was 96.2%, with an average overlap of 94.0% between the expert reference and 
algorithm-generated labels. Furthermore, the average agreement rate between the two experts stood at 95.0%.

Conclusions Based on the labels of the clinical experts, the proposed deep learning algorithm exhibits high accuracy 
for automatic labeling. Therefore, our proposed method exhibits promising results for the automatic labeling of the 
coronary arteries and will alleviate the burden on radiologists in the near future.
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Introduction
Coronary computed tomography angiography (CCTA) 
is a widely employed diagnostic tool for cardiovascular 
diseases [1]. In clinical practice, radiologists and cardi-
ologists traditionally engage in a manual reconstruction 
process using two-dimensional transaxial images before 
compiling the radiology report. Following the imaging 
guidelines established by the Society of Cardiovascular 
Computed Tomography (SCCT), radiologists and cardi-
ologists are required to document the pathological find-
ings of individual arteries or segments as determined 
through this reconstruction process [2–4]; however, 
this process is tedious. Furthermore, in clinical settings, 
during the analysis of CCTA images, extracting the cen-
terlines of the coronary arteries to obtain noninvasive 
information on the cardiovascular system is a vital first 
step, particularly when treating individuals with sus-
pected coronary artery disease [5]. However, manu-
ally extracting the centerlines of the coronary arteries is 
tedious and laborious; therefore, this process is not suit-
able in clinical settings. To resolve these concerns, auto-
mated labeling methods have been applied to extract 
coronary artery centerlines and label them. Automatic 
coronary artery labeling approach does not intend to 
replace physicians, but rather to hasten the preparation 
and generation of the patient’s report. Thus, it is impor-
tant to develop an accurate automatic labeling algorithm 
because coronary artery labeling forms the basis for diag-
nosing coronary artery disease.

Recently, several methods for coronary artery label-
ing have been developed [6–12]. Gulsun and colleagues 
employed topological and geometric data from the cor-
onary tree to establish the relationship between nodes 
within a labeled model and unmarked datasets [8]. Fur-
thermore, Guanyu et al. used a statistical coronary tree 
model to develop a two-step method. Initially, the iden-
tification of the four primary branches involved their 
alignment with the coronary tree model. Subsequently, 
the labeling of the segments in both the four main 
branches and side branches was determined based on 
clinical criteria [10]. Qing et al. devised a labeling algo-
rithm that assessed matching costs among segments 
within each subtree, aiming to establish an optimal cor-
relation between the model and the patient tree, utiliz-
ing three-dimensional (3D) models [7]. Additionally, 
TreeLab-Net was developed by Dan et al., combining 
a multilayer perceptron encoder network with bidirec-
tional tree-structured long–short-term memory [9]. Fur-
thermore, Akinyemi et al. introduced a method with two 
key phases: (1) training a multivariate Gaussian clas-
sifier using labeled anatomy to calculate mean vectors 
and a covariance matrix for each anatomical class, pool-
ing them over all classes with a set of features, and (2) 
generating all possible label combinations for each test 

anatomy based on a series of topological and geometric 
rules [6]. Nonetheless, it’s important to note that varia-
tions exist in the reported results of these CCTA-based 
labeling techniques, with overall accuracy ranging from 
85.0 to 92.0%.

All investigations into the automated labeling of CCTA 
images have consistently demonstrated high levels of 
accuracy, typically ranging from 87 to 100.0%, when it 
comes to the three principal arteries: the right coronary 
artery (RCA), left anterior descending artery (LAD), 
and left main coronary artery (LM). However, studies 
have noted that accuracy levels for the left circumflex 
artery (LCx) and its associated side branches tend to be 
relatively lower [4, 13], primarily due to notable vascu-
lar variations. Additionally, distinguishing between LAD 
and LCx using deep learning techniques and simple geo-
metric rules can be a challenging task. Furthermore, the 
intricate nature of vascular structures presents formida-
ble hurdles in the automated labeling of the entire vessel 
tree [14, 15]. Therefore, the development of an accurate 
automated labeling method is imperative to streamline 
the labeling process for both the principal arteries and 
their side branches, including LCx and the first and sec-
ond obtuse marginal branches (OM1 and OM2).

In the present study, we have presented an efficient 
automatic labeling algorithm for coronary anatomy by 
using a distance transformation algorithm and involving 
experts to evaluate the automatic identification results, as 
well as analyzed the consistency in coronary artery label-
ing among the experts.

Methods
Patient data
This study received approval from the Research Eth-
ics Board of our institution, and the institutional review 
board granted a waiver for informed consent. The study 
included retrospectively collected CCTA scans from 157 
patients acquired between June 20, 2017, and May 12, 
2019. Patients who had undergone cardiac procedures 
such as bypass surgery or percutaneous coronary inter-
vention were excluded. You can find the baseline charac-
teristics of these 157 patients in Table 1. It is important 
to note that all patients exhibited right coronary artery 
dominance.

CCTA acquisition
A 64-row detector CT system (LightSpeed CT, GE 
Healthcare, US), 128-row detector CT system (Brilliance 
CT, Philips Medical Systems, The Netherlands), and 
256-row detector computed tomography (CT) system 
(Revolution CT, GE Healthcare, US) were used for data 
acquisition. Furthermore, a prospective electrocardiog-
raphy-triggered CCTA with a 0.625-mm-thick slice. For 
body weights of < 100  kg, iodinated contrast medium 
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(either iopromide 370 or iohexol 350) was injected at 
the rate of 5 mL/s; on the other hand, for body weights 
of ≥ 100  kg, the medium was injected at a 6 mL/s rate. 
Thereafter, saline chaser bolus (50 mL) was administered.

Automatic labeling technique
Figure 1 illustrates the overview of the framework. In this 
study, three sequential steps were included based on the 
processing pipeline: (1) Centerline extraction from the 
segmented coronary arteries. (2) Extraction of the myo-
cardial structure and acquisition of 3D volume data. (3) 
Labeling of the artery branches using distance measure-
ments relative to the myocardium.

Centerline extraction
This algorithm depends on the centerline of the coronary 
arteries [13, 16, 17]. After obtaining the CCTA image 
set, coronary artery extraction was performed using the 
3D U-Net model described previously [18]. This convo-
lutional neural network model operates on 3D images 
and is trained on a large annotated 3D image dataset to 
predict segmentations. It comprises a U-shaped network 

with an encoding path that captures circumstances and 
a symmetric decoding path for precise localization. This 
method is particularly effective in tasks such as ours, typ-
ically achieving Dice coefficient values of 85–95%. For the 
extraction of the centerlines of the coronary arteries, a 
traditional skeletonization algorithm was used. This algo-
rithm uses iterative erosion but preserves the topological 
structure until the shape is reduced to a skeleton. Iterative 
erosion is a morphological image processing technique 
involving the repeated application of an erosion opera-
tion to an image. Erosion is a fundamental operation in 
the processing of morphological images that removes 
small objects or features from an image by shrinking the 
boundaries of the foreground regions. In iterative ero-
sion, the erosion operation is repeatedly applied to the 
image until a desired level of feature removal is achieved. 
In particular, this method is useful for removing small 
objects or features embedded within larger structures or 
regions of interest. The iterative nature of the technique 
helps fine-tune the amount of feature removal because 
the number of iterations can be adjusted to achieve the 
desired level of erosion. Furthermore, this method can 
remove small blood vessels or other structures that may 
interfere with the detection or segmentation of larger 
structures, including organs.

In this study, skeletonization was performed to trans-
form the binary 3D representation of the segmented 
arteries into a 1-pixel-wide centerline structure that 
retains the general shape of the arteries; this provided an 
accurate depiction of their centerlines. We applied spa-
tial structure rules or the minimum 3D distance trans-
formation method to label and segment the centerlines 
of the left main coronary artery (LM), right coronary 
artery (RCA), left anterior descending artery (LAD), and 
left circumflex artery (LCx). Subsequently, the outcomes 
were compiled and visualized for diagnostic purposes 
(refer to Fig. 1). The centerlines of each artery were stored 
in separate VTK files, preserving the 3D coordinates of 
each point along the centerlines, with an index denoting 
the sequence of these points. The coordinate system had 
its positive directions aligned with the right-to-left, back-
to-front, and top-to-bottom orientations for the x, y, and 
z-axes, respectively.

Extraction of the myocardium structure
The algorithm served to acquire the coordinates for each 
point located on the myocardium’s surface. Within this 
process, an automated segmentation framework was 
established, employing a pair of 3D U-Net architectures 
to extract both the myocardial structure and 3D volume 
data. Figure  2 demonstrates that the network adopts a 
typical encoder–decoder structure and replaces the tra-
ditional 2D convolution with 3D convolution via 3D 
convolutions, up-convolutional layers, and max pooling. 

Table 1 Characteristics of the study patients
Characteristic (n = 157) Value
Age 66(59,71)
Male gender 102(64.6%)
Height (cm) 166.38 ± 9.97
Weight (kg) 72.2 ± 11.14
BMI (kg/m2) 26.4 ± 7.46
Heart rate (bpm) 66.94 ± 17.15
Smoker (%) 78(49.4%)
Hypertension (%) 109(69.0%)
Hyperlipaemia (%) 91(57.6%)
Diabetes (%) 68(43.0%)
Family history of coronary heart disease (%) 15(9.5%)
Other past medical history (%) 31(19.6%)

Fig. 1 Illustration of the steps involved in the identification of all coro-
nary artery segments. (A) Obtaining the CCTA image set; (B) Extracting the 
3D volume of the coronary arteries; (C) Extracting the centerlines of the 
coronary arteries; (D) Extracting the myocardium structure and 3D volume 
data based on a 3D-U-Net-based deep learning model; (E) Labeling and 
segmenting the centerlines of the LM, RCA, LAD, and LCx with the spatial 
structure rule or distance transformation method; (F) Assembling the re-
sults and visualizations for diagnosis
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The encoder comprises multiple convolutional and pool-
ing layers. The convolution layer uses a 3D convolution 
kernel as well as a rectified linear unit and batch nor-
malization for activation and normalization, respec-
tively. Subsequently, spatial down sampling was achieved 
using a 3D max pooling layer; this gradually decreased 
the spatial resolution of the feature map so as to extract 
higher-level features. The decoder comprises several con-
volutional and upsampling layers. In each decoder layer, a 
skip connection is introduced to connect the correspond-
ing layer feature map of the encoder with the decoder 
[19]. Class imbalance, where the scarcity of positive cases 
often leads to the development of biased models that are 
more accurate in predicting negative cases, is a common 
challenge in clinical image analysis. To tackle this con-
cern, techniques for image augmentation, including flip-
ping, rotation, and scaling, were employed to enhance 

the diversity of the training data and enhance the model’s 
performance.

During the preprocessing phase, the slight tilt of the 
organs was rectified via a rigid transformation involv-
ing rotation and translation operations. This correction 
ensured that the position and angle of the organs in the 
image were accurately adjusted. Furthermore, using stan-
dard methods described in our previous study, encom-
passing rescaling, windowing, and noise reduction, the 
images were further preprocessed [20]. In addition, 
cropping was conducted to concentrate on the region 
of interest and minimize computational requirements. 
Detailed specifications are summarized in our previous 
study. The preprocessed CCTA images were used as the 
input for the first U-net model, generating heart contour 
coordinates as an output. Subsequently, the second U-net 
model was adopted for fine-tuning the segmentation of 

Fig. 2 Automatic segmentation frame-work for myocardium structure and 3D volume data extraction. (a) The entire myocardium structure segmenta-
tion pipeline. The myocardium structure segmentation and extraction are automatically completed after two 3D U-Nets. (b) Schema and structure of the 
3D U-Net architecture
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the myocardium. We used 482 epochs and a batch size of 
32 as the model hyperparameters.

Distance transformation algorithm for LCx
In this research, we categorized and assigned labels to a 
total of 16 coronary artery segments, including the proxi-
mal (p), middle (m), and distal (d) sections of the right 
coronary artery (RCA), left anterior descending artery 
(LAD), and the proximal, middle, and distal sections of 
the left circumflex artery (LCx). Additionally, labels were 
applied to the right posterior descending artery (R-PDA), 
left main coronary artery (LM), right posterior lateral 
branch (R-PLB), ramus intermedius (RI), obtuse marginal 
branches 1 and 2 (OM1 and OM2), and the first and sec-
ond diagonal branches (D1 and D2). The labeling meth-
odology employed for the identification of RCA, R-PLB, 
R-PDA, LM, LAD, and their respective side branches 
followed the procedures outlined by Chenjun et al. [21]. 
Meanwhile, the LCx identification process was based on 
myocardium distance.

From an anatomical standpoint, the left circumflex 
artery (LCx) courses through the left atrioventricular 
groove, situated between the left ventricle (LV) and the 
left atrium (LA). On the other hand, the left anterior 
descending artery (LAD) is typically situated within the 
epicardial fat of the anterior interventricular septum. 
While there are occasional variations in artery anatomy, 
it is generally observed that the distances from the LA 
and LV to the LCx are consistently smaller than those 
to the LAD. Leveraging this anatomical characteristic, a 
distance transformation method was developed for the 
identification of the LCx. The labeling process was as 
follows:

1) The LCx extends positively along the y-axis 
and negatively along the x-axis. Utilizing this 
characteristic, we sequentially stored potential LCx 
candidates in an array termed “LCx_possible_list.“ 
The initial point of these candidate LCxs coincided 
with the starting point of the LAD, marking the 
endpoint of the LM.

2) Employing a modified distance transforma-
tion technique, we computed the distances from the 
centerline points of the potential LCx candidates 
to both the LA and LV as reference distances. Each 
point on the LCxs was represented by coordinates 
[x, y, z], while the coordinate sets for the LA and LV 
were denoted as A ([x1, y1, z1], [x2, y2, z2], [x3, y3, 
z3]…[xi, yi, zi]) and B ([x1, y1, z1], [x2, y2, z2], [x3, y3, 
z3]…[xj, yj, zj]), respectively. Subsequently, distances 
were calculated using Eqs. 1 and 2, with DminLA and 
DminLV representing the distances between these 
LCx points and the LA and LV, respectively. 

DminLA = min
(xi, yi, zi,) ∈A

√
(x − xi)

2 + (y − yi)
2 + (z − zi)

2

 (1) 
DminLV = min

(xi, yi, zi,) ∈B

√
(x − xj)

2 + (y − yj)
2 + (z − zj)

2
 (2)

3) In the context of each potential LCx candidate, 
we recorded the number of points with reference 
distances less than 25 mm to the LA and those with 
reference distances less than 30 mm to the LV as 
unique attributes.

4) The combined total of these two attributes for each 
centerline indicated the artery’s proximity to both 
the LA and LV. The candidate LCx with the highest 
cumulative value was chosen as the preferred option. 
Lastly, the LCx with the longest centerline length was 
established as the final selection.

Python 2.0 was used to complete the entire automatic 
labeling algorithm. In each case, based on the center-
line, 16 segments were identified. After completing the 
automatic labeling process, the results were reviewed by 
experts based on the SCCT label standards and judged 
for accuracy.

Evaluation measures
The labeling outcomes underwent independent assess-
ment by two experts, each possessing a minimum of 
4 years of experience in cardiac CT imaging. Labels 
were manually corrected in cases of absence or inaccu-
racy. In the event of disagreements between these two 
experts, a third expert with over 10 years of experience 
in cardiac CT imaging was consulted to make the final 
determination.

For each segment, both presence and overlap were 
subject to evaluation. Additionally, the agreement per-
centage between the two experts for each section was 
computed. To assess the performance of the automated 
labeling algorithm, a confusion matrix was employed. To 
maintain objectivity, the experts remained unaware of 
clinical histories and patient identities.

Presence
Since the automatic labeling algorithm might omit or 
inaccurately assign labels to certain segments, an assess-
ment was conducted to determine the presence or 
absence of each of the 16 segments. True positives (TP) 
were segments labeled by both the algorithm and the 
experts, while false negatives (FN) were segments labeled 
by the experts but not by the algorithm. False positives 
(FP) represented segments labeled by the algorithm but 
not by the experts, and true negatives (TN) were seg-
ments not labeled by both the algorithm and the experts. 
Precision, sensitivity, accuracy, and F1 scores were com-
puted to assess the segment detection performance for 
each segment.“
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Overlap
After confirming the presence of labels, the starting and 
ending points of a labeled segment, determined through 
the automatic labeling method, underwent initial evalu-
ation by the two experts. Subsequently, they assessed 
whether the label for the segment was accurate and 
recorded any necessary corrections.

For each label, if both experts concurred with the 
results produced by the automatic labeling algorithm, 
the automatically assigned label was considered cor-
rect. However, if there was a lack of agreement between 
the two experts regarding the results, the automatically 
assigned label was deemed incorrect. In cases where 
expert 1’s judgment differed from that of expert 2, the 
final decision was deferred to expert 3. Overlap was 
quantitatively measured to assess the accuracy of seg-
ment labeling, a method also employed in previous stud-
ies [8, 18]. The confusion matrix was utilized to provide 
insights into the performance of the automatic labeling 
algorithm.

Statistical analysis
The performance evaluation outcomes regarding the 
presence of a segment, which encompassed precision, 
sensitivity, accuracy, and F1 scores, were reported as 
numerical values. The level of agreement or disagreement 
pertaining to the presence of a segment was expressed 
as a percentage. Additionally, overlap accuracy was pro-
vided as a numerical value.

Results
Automatic labeling of the coronary tree was executed 
on a personal computer equipped with a Xeon Silver 
2.2 GHz processor and 64 GB RAM. The total number of 

segments subjected to labeling by both the algorithm and 
experts was 2148.

Table 2 displays the comprehensive findings. The over-
all accuracy for segment presence was 96.2%. Specifically, 
labels for three main arteries, namely, RCA, LAD, and 
LM, consistently achieved a 100.0% accuracy rate. Addi-
tionally, the labeling accuracy for pCx and LCx segments 
was notably high, at 99.4% and 96.2%, respectively. How-
ever, the labeling accuracy was relatively lower for R-PLB, 
D2, and RI segments, with respective accuracy rates of 
79.0%, 88.5%, and 84.7%, in comparison to the three pri-
mary arteries.

Figure 3 depicts the results of overlap accuracy deter-
mination. All labels exhibited overlaps exceeding 78.0% 
with pRCA, mRCA, dRCA, and pLAD. Remarkably, LM 
exhibited a 100.0% overlap. Moreover, pCx and LCx dis-
played high accuracy in overlap, achieving rates of 98.7% 
and 93.0%, respectively. After averaging the overlap dis-
crepancies between the experts, the average overlap 

Table 2 Evaluation of whether the segment was present, including precision, sensitivity, accuracy, and F1 score
Segment TP TN FP FN Precision Recall Accuracy F1
pRCA 157 0 0 0 100.0% 100.0% 100.0% 100.0%
mRCA 157 0 0 0 100.0% 100.0% 100.0% 100.0%
dRCA 156 1 0 0 100.0% 100.0% 100.0% 100.0%
R-PDA 139 16 1 1 99.3% 99.3% 98.7% 99.3%
R-PLB 94 30 0 33 100.0% 74.0% 79.0% 85.1%
LM 157 0 0 0 100.0% 100.0% 100.0% 100.0%
pLAD 157 0 0 0 100.0% 100.0% 100.0% 100.0%
mLAD 157 0 0 0 100.0% 100.0% 100.0% 100.0%
dLAD 156 0 1 0 99.4% 100.0% 99.4% 99.7%
D1 152 3 0 2 100.0% 98.7% 98.7% 99.4%
D2 110 29 12 6 90.2% 94.8% 88.5% 92.4%
pCx 156 0 0 1 100.0% 99.4% 99.4% 99.7%
LCx 151 0 0 6 100.0% 96.2% 96.2% 98.1%
OM1 128 19 1 9 99.2% 93.4% 93.6% 96.2%
OM2 75 72 6 4 92.6% 94.9% 93.6% 93.8%
RI 46 87 11 13 80.7% 78.0% 84.7% 79.3%
In total 2148 257 32 75 98.5% 96.6% 95.7% 97.6%

Fig. 3 Overall overlap results for each segment
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accuracy for labeling the 16 segments stood at 94.0% (as 
depicted in Fig. 4).

To further analyze misclassified cases, normalized 
confusion matrices were employed for segments labeled 
as true positives (TPs) (Fig. 5). Notably, major branches 
such as mLAD and LCx exhibited low misclassification 
percentages. In contrast, side branches, including D1, D2, 
OM1, and RI, displayed relatively higher misclassification 
percentages. In our proposed method, 3.0% of D2 seg-
ments, 2.0% of OM segments, 11.0% of RI segments, and 
7.0% of RIs were misclassified as D1, LCx, D1, and OM1, 
respectively. Further examples of misclassifications are 
provided in Fig. 6.

When comparing the results between the two experts, 
we found that the two experts exhibited disagreements 
in the labeling of 126 (4.7%) segments within the 157 
patients. Disagreement percentages for OM1, R-PLB, 
OM2, D1, D2, and RI labeling were 20.6%, 19.1%, 15.9%, 
11.1%, 10.3%, and 9.5%, respectively. Conversely, agree-
ment percentages for pRCA, mRCA, dRCA, R-PDA, 
LM, pLAD, mLAD, dLAD, pCx, and LCx labeling were 
100.0%, 100.0%, 100.0%, 98.1%, 100.0%, 100.0%, 99.4%, 
99.4%, 98.1%, and 94.3%, respectively.

Discussion
In this study, we presented an automatic labeling algo-
rithm designed for coronary artery identification using 
CCTA images. Initially, we introduced the distance trans-
formation algorithm, highlighting its application in the 
automatic labeling of coronary arteries. Our algorithm 
efficiently identified coronary tree segments and assigned 
accurate labels. We conducted extensive evaluations on 
a dataset consisting of 157 patients, demonstrating out-
standing performance. Notably, our algorithm achieved 
an impressive overall accuracy of 94.0%, with remarkable 
results, especially for the four primary arteries.

Across all patients, labels for proximal segments, 
including pRCA, pLAD, pCx, and LM, consistently 
appeared. Agreement rates were higher in these seg-
ments compared to middle and distal segments. This 
observation aligns with the findings of Cao et al., who 
developed 3D models for both right- and left-dominant 
coronary circulation [7]. However, accuracy was lower 
for D1, D2, OM1, OM2, RI, and R-PLB segments. This 
discrepancy often occurred when diagnosing patients 
with absent or improperly extracted diagonal or marginal 
branches. Moreover, the agreement proportions for these 
segments were relatively small, indicating the challenges 
experts faced when distinguishing D1 from D2 and OM1 
from OM2.

In our study, pCx and LCx segments demonstrated 
higher accuracy (98.7% and 93.0%, respectively) com-
pared to other methods, especially when consider-
ing the distance between LCx and the LA and LV [10, 

21]. Typically, distal segments within the same branch 
showed lower overlap compared to proximal and middle 
segments. In some cases, LCx was incorrectly classified 
as OM1 or OM2 (1.0%). This misclassification could 
occur due to missing OM1 labels or incomplete OM1 
extraction, leading to incorrect endpoint assignment 
for pCx [2]. Similarly, the absence of D1 and D2 extrac-
tion affected the accuracy of pLAD and dLAD. Incorrect 
labels or endpoint assignments in one segment could 
propagate errors to subsequent segments. Despite the 
anatomical challenges presented by side branches, our 
method outperformed others, primarily due to the higher 
accuracy in pCx and LCx labeling [7, 10]. The lower over-
lap for RI and R-PLB was primarily attributed to diffi-
culties in RI and R-PLB detection. To improve labeling 
accuracy, additional efforts are required for RI and R-PLB 
detection. Additionally, variations in start point defini-
tions contributed to the small agreement ratios for OM1, 
R-PLB, and RI labels.

Comparing our results with other algorithms, 
Akinyemi et al. utilized a Gaussian classifier based on 
geometric features of coronary arteries. However, ana-
tomical differences in training datasets could affect label 
accuracy. In contrast, our method exhibited robustness 
by utilizing distances to the LA and LV [6]. Addition-
ally, Mehmet et al. proposed a labeling method involving 

Fig. 5 Confusion matrices for the method

 

Fig. 4 An agreement between expert 1 and expert 2
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geodesic paths in a standard model of coronary trees [8]. 
They relied on four-chamber positions to set coronary 
tree coordinates, while we improved accuracy by using 
distances between each centerline point and the LA and 
LV. Moreover, Mehmet et al. did not include RI in their 
labeling method. Compared to their labeling results 
(overall accuracy of 86.5% for coronary arteries) for auto-
matically detected centerlines, our algorithm achieved a 
higher labeling accuracy (94.0%). Fischer et al. employed 
Tree-LSTM, a recurrent neural network, achieving an 
impressive average accuracy of 96%, although the LCx 
accuracy was relatively lower (89.7%) [22]. Overall, our 

method outperformed others, primarily due to the higher 
accuracy in pCx and LCx labeling.

In our study, we utilized the U-Net architecture, as 
described by Çiçek et al., and specifically trained a 
model for coronary artery segmentation [18]. The U-Net 
model was trained using methods outlined in our pre-
vious study, tailored for coronary artery segmentation, 
and exhibited excellent performance in this study [20]. 
Additionally, we employed a distance transformation 
algorithm to label LCx and pCx segments, achieving 
accuracies of 99.4% and 93.0%, respectively. However, 
direct comparisons with other methods are challenging 
due to differences in principles and datasets used. Varia-
tions in data distribution, quality, feature representation, 
and biases introduced by different datasets can impact 
method performance and generalizability, making defini-
tive conclusions about relative effectiveness difficult.

This study has several limitations. First, we did not label 
L-PDA and L-PLB due to their limited consideration in 
right-dominant diagnostic processes. Second, the per-
formance assessment of the automatic centerline extrac-
tion method significantly influenced labeling results. 
In the future, we will focus on improving artery center-
line extraction to enhance labeling accuracy and avoid 
missed or misclassified arteries. Third, the sample size, 
particularly for a neural network approach, is relatively 
small. Multicenter studies with larger sample sizes are 
warranted to further enhance the method. Future stud-
ies will include additional CCTA procedures at our hos-
pital and leverage publicly available datasets to broaden 
our research scope and increase data diversity, enhancing 
comparability. Fourth, evaluations in this study were con-
ducted at the segment level rather than the patient level, 
making it challenging to assess patient-level variabil-
ity. Future evaluations will consider both segment- and 
patient-level assessments.

In summary, the labeling algorithm presented in this 
research offers the potential for precise and entirely auto-
mated coronary artery labeling in CCTA images. More-
over, this algorithm is applicable to both pathological and 
healthy datasets. The integration of this algorithm into 
coronary artery labeling processes holds promise for sig-
nificantly reducing the radiologists’ workload in the fore-
seeable future.
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