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Abstract
Background Obstructive sleep apnea (OSA) is a globally prevalent disease with a complex diagnostic method. 
Severe OSA is associated with multi-system dysfunction. We aimed to develop an interpretable machine learning 
(ML) model for predicting the risk of severe OSA and analyzing the risk factors based on clinical characteristics and 
questionnaires.

Methods This was a retrospective study comprising 1656 subjects who presented and underwent polysomnography 
(PSG) between 2018 and 2021. A total of 23 variables were included, and after univariate analysis, 15 variables were 
selected for further preprocessing. Six types of classification models were used to evaluate the ability to predict 
severe OSA, namely logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), 
adaptive boosting (AdaBoost), bootstrapped aggregating (Bagging), and multilayer perceptron (MLP). All models used 
the area under the receiver operating characteristic curve (AUC) was calculated as the performance metric. We also 
drew SHapley Additive exPlanations (SHAP) plots to interpret predictive results and to analyze the relative importance 
of risk factors. An online calculator was developed to estimate the risk of severe OSA in individuals.

Results Among the enrolled subjects, 61.47% (1018/1656) were diagnosed with severe OSA. Multivariate LR analysis 
showed that 10 of 23 variables were independent risk factors for severe OSA. The GBM model showed the best 
performance (AUC = 0.857, accuracy = 0.766, sensitivity = 0.798, specificity = 0.734). An online calculator was developed 
to estimate the risk of severe OSA based on the GBM model. Finally, waist circumference, neck circumference, the 
Epworth Sleepiness Scale, age, and the Berlin questionnaire were revealed by the SHAP plot as the top five critical 
variables contributing to the diagnosis of severe OSA. Additionally, two typical cases were analyzed to interpret the 
contribution of each variable to the outcome prediction in a single patient.
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Background
Obstructive sleep apnea (OSA) refers to apnea and 
hypoventilation caused by repeated collapse and obstruc-
tion of the upper airway during sleep. OSA leads to fre-
quent hypoxemia, hypercapnia, and sleep architecture 
disorders [1]. Epidemiological studies have shown that 
OSA has a high prevalence in adults, with approximately 
one billion people worldwide suffering from OSA, and 
the number of cases of moderate to severe OSA, for 
which treatment is generally recommended, is estimated 
to be almost 425  million [2]. As OSA progresses, the 
patient develops symptoms such as daytime sleepiness, 
hypomnesia, and inattention, which reduce their quality 
of life, impair work performance, and result in a higher 
risk of car accidents [3]. Moreover, severe OSA could 
cause dysfunction of multiple organ systems, such as the 
cardiovascular, endocrine, and nervous systems [4]. Due 
to the increasing prevalence and mortality of OSA and 
related complications [5], timely detection and treatment 
are crucial, especially in patients with severe OSA.

Because of the lack of symptom specificity and the 
complexity of diagnostic methods, OSA diagnosis 
remains difficult despite its high prevalence. One study 
showed that approximately 80% of patients with clini-
cal symptoms of OSA were not diagnosed promptly [2]. 
Polysomnography (PSG) is the gold standard for OSA 
diagnosis [6]. However, PSG has many limitations: (i) 
The test is not widely available, waiting times are long, 
and the test takes a substantial amount of time. (ii) PSG 
technology is complex and specialized, and the obtained 
data are numerous and highly variable, so data inter-
pretation is affected by personal factors and errors. (iii) 
The monitoring cost is high, and the economic burden is 
heavy. Therefore, it is crucial to develop a more conve-
nient and accurate method to detect OSA and determine 
its severity.

Previous studies used various physiological data to 
develop predictive models of OSA to compensate for the 
defects of PSG, including clinical information [7–13], 
electrocardiograms [14–16], electroencephalograms [17–
19], and oxyhemoglobin saturation [20–22]. However, the 
acquisition of partial physiological information requires 
evaluation by professional physicians and specialized 
equipment. In this respect, it does not minimize the 

preliminary screening process. Therefore, information 
that can be self-reported by patients is the most readily 
available and more suitable for inclusion in predictive 
models. Many parameters that are associated with the 
occurrence and severity of OSA have been identified in 
previous studies. The most well-recognized parameters 
are gender, age, body mass index (BMI), waist circumfer-
ence, neck circumference, unhealthy lifestyle habits, and 
symptoms suggestive of OSA [23–26]. However, there 
is currently a lack of methods that use these parameters 
to rapidly and robustly diagnose OSA and determine its 
severity.

Machine learning (ML), a type of artificial intelli-
gence, has been widely used in medical data analysis in 
recent years [27]. ML can be employed to detect com-
plex relationships between predictors and outcomes and 
to improve the accuracy of analysis through continuous 
online learning. Because of its high efficiency, low cost, 
and convenience, ML has become a popular method for 
disease risk prediction and preliminary screening [28], 
including sleep medicine [29, 30]. ML shows the poten-
tial to overcome the challenges in OSA diagnosis.

Therefore, in the present study, we propose an inter-
pretable ML model for predicting the risk of severe OSA 
in adults and analyzing the risk factors. The determina-
tion of OSA severity is important in early screening in a 
clinical context. This model provides individual strategies 
for severe OSA patients and aids in timely diagnosis and 
treatment.

Methods
Study population
This was a retrospective study. All patients (n = 1656) 
presented at the Second Affiliated Hospital of Xi’an Jiao-
tong University, China, between 2018 and 2021. Inclu-
sion criteria were as follows: (i) age > 18 years old; (ii) 
with symptoms suggestive of OSA and related compli-
cations such as snoring, breathing cessations during 
sleep, and hypertension; and (iii) willingness to undergo 
PSG. Subjects were excluded (i) if they had craniofacial 
abnormalities/disorders; (ii) if they had neuromuscular 
disorders; (iii) if they were diagnosed with central sleep 
apnea syndrome based on PSG; (iv) if they had previ-
ously received sleep treatment; or (v) in case of long-term 

Conclusions We established six risk prediction models for severe OSA using ML algorithms. Among them, the GBM 
model performed best. The model facilitates individualized assessment and further clinical strategies for patients with 
suspected severe OSA. This will help to identify patients with severe OSA as early as possible and ensure their timely 
treatment.

Trial registration Retrospectively registered.

Keywords Obstructive sleep apnea, Prediction model, Machine learning, Risk factor, Shapley additive explanations, 
Gradient boosting machine
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usage of medications known to affect sleep. This study 
was approved by the Ethics Committee of the Second 
Affiliated Hospital of Xi’an Jiaotong University. All par-
ticipants provided informed consent for data collection 
and analysis. All data were anonymized.

Data collection and feature selection
All subjects underwent PSG in a temperature-controlled 
and sound-attenuated room, supervised by the night-shift 
staff. Two experienced sleep physicians scored the PSG 
findings according to the American Academy of Sleep 
Medicine (AASM) criteria [31]. The apnea-hypopnea 
index (AHI) was defined as the total number of apneas 
and hypopneas per hour of sleep. OSA was defined as 
AHI ≥ 5 and severe OSA was defined as AHI ≥ 30.

A literature search was conducted to identify collected 
variables, including demographic data, lifestyle hab-
its, medical history, symptoms suggestive of OSA, and 
sleep questionnaires. Demographic data included gen-
der, age, BMI, neck circumference, and waist circumfer-
ence. Lifestyle habits included smoking, drinking, lack 
of exercise, poor sleep, emotional instability, and stress. 
Hypertension, family history of hypertension, heart dis-
ease (self-reported arrhythmia, angina, coronary artery 
disease, or heart failure), diabetes, and hypothyroidism 
were self-reported medical history questions. Symptoms 
suggestive of OSA included snoring, breathing cessations 
during sleep, hypomnesia, and inattention. Sleep ques-
tionnaires included the Epworth Sleepiness Scale (ESS) 
[32], the Berlin questionnaire (BQ) [33], and the STOP-
BANG questionnaire (SBQ) [34].

By comparing the clinical characteristics of the severe 
and non-severe OSA groups, the risk factors for pre-
dicting severe OSA were analyzed using the univariate 
analysis, and they were incorporated into ML models as 
characteristic variables. Additionally, the multivariate 
logistic regression analysis were also used to obtain inde-
pendent predictors associated with severe OSA.

Machine learning models
Six advanced ML algorithms were used to detect severe 
OSA, namely adaptive boosting (AdaBoost) [35], logistic 
regression (LR) [36], multilayer perceptron (MLP) [37], 
bootstrapped aggregating (Bagging) [38], gradient boost-
ing machine (GBM) [39], and extreme gradient boost 
(XGBoost) [40].

Subjects were randomly divided into a training set and 
a test set with a ratio of 7:3. The training set was used to 
establish the prediction models. Each model was trained 
using 10-fold cross-validation, where each repetition 
was used as the test to overcome sampling bias. And the 
models were applied and validated in the test set.

The grid search and internal cross-validation were 
used to find the best hyperparameters of models in the 

training set (Table  1). Further analysis was performed 
using Python v3.10.9 with the pandas v1.5.3, stream-
lit v1.22.0, numpy v1.23.5, imblearn v0.10.1, matplotlib 
v3.7.0, sklearn v1.2.1, xgboost v1.7.5, shap v0.41.0, sea-
born v0.12.2 packages (the source code is available on 
https://github.com/Wu-Shi-Nan/SOSA).

Statistical analysis
All analyses were performed using R software (version 
3.6.0). ML models and web calculators were built using 
Python (version 3.8). Continuous variables are presented 
as the median with interquartile range (IQR). Categori-
cal variables are presented as numbers with proportions. 
Differences between groups were compared by the Wil-
coxon rank-sum test, the Chi-squared test, or Fisher’s 
exact test. Univariate and multivariate analyses were con-
ducted to analyze the risk factors for predicting severe 
OSA. P < 0.05 was set as the threshold for statistical sig-
nificance. The prediction performance of the models was 
evaluated based on the area under the receiver operat-
ing characteristic curve (AUC), accuracy, sensitivity, and 
specificity. SHapley Additive exPlanations (SHAP) plots 
were drawn to interpret predictive results and to analyze 
the relative importance of risk factors. An online calcu-
lator based on the model with the best AUC value was 
capable of estimating the risk of severe OSA in individu-
als. The proposed approach is shown in Fig. 1.

Results
Comparisons between patients with and without severe 
OSA
According to the PSG results, 1656 enrolled OSA patients 
were divided into the non-severe OSA group (AHI < 30 
per hour) and the severe OSA group (AHI ≥ 30 per hour).

The differences between the two groups in terms of 
gender, age, BMI, waist circumference, neck circumfer-
ence, smoking, drinking, lack of exercise, hypertension, 
snoring, breathing cessations during sleep, hypomnesia, 
ESS, BQ, and SBQ (hypomnesia P < 0.05, other P < 0.001) 
were statistically significant. Compared with the non-
severe OSA patients, the severe OSA patients were more 
likely to be male, to be older, to have a higher BMI, to 
have a larger waist circumference, to have a larger neck 
circumference, to smoke, to drink, and to not do exercise. 
Severe OSA patients had more pronounced symptoms of 
hypertension, snoring, breathing cessations during sleep, 
and hypomnesia, and their sleep questionnaire results 
were more serious (Table 2).

Univariate and multivariate logistic regression analyses
A total of 1159 patients were assigned to the training set 
(70% of the total population). In the training set, univari-
ate analysis revealed that male sex, age, BMI, waist cir-
cumference, neck circumference, smoking, drinking, lack 

https://github.com/Wu-Shi-Nan/SOSA
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Model Hyperparameters
AdaBoost n_estimators:10

learning_rate:1.0
algorithm: SAMME.R
base_estimator: deprecated

LR penalty:none
dual:False
tol:1e-4
c:1.0
fit_intercept: True
intercept_scaling:1.0
class_weight: None
solver:lbfgs
max_iter:100
verbose:0
warm_start: False
n_jobs: None

MLP hidden_layer_sizes:100
activation: relu
solver: lbfgs
alpha:0.0001
learning_rate: constant
learning_rate_init:0.01
power_t:0.5
max_iter:200
shuffle: True

Bagging n_estimators:10
bootstrap: True
bootstrap_features: False
oob_score: False
warm_start: False
n_jobs: None
verbose:0
base_estimator: deprecated
max_samples:0.5
max_features:0.5

GBM n_estimators:100
learning_rate:1.0
max_depth:1.0
subsample:1.0
criterion: friedman_mse
min_samples_split:2
min_samples_leaf:1
min_weight_fraction_leaf:0.0
min_impurity_decrease:0.0
init: None
max_features: None
verbose:0
max_leaf_nodes: None
warm_start: False
validation_fraction:0.1
n_iter_no_change: None
tol:1e-4
ccp_alpha:0.0

Table 1 The hyperparameters for proposed six machine learning models
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of exercise, hypertension, snoring, breathing cessations 
during sleep, hypomnesia, ESS, BQ, and SBQ (hypomne-
sia P < 0.05, other P < 0.001) were significantly associated 
with severe OSA. All these parameters were included in 
multivariate LR analysis. The results showed that male 
sex (OR: 1.509, 95%CI: 1.014–2.245, P < 0.05), age (OR: 
1.017, 95%CI: 1.005–1.029, P < 0.05), BMI (OR: 1.073, 
95%CI: 1.005–1.146, P < 0.005), waist circumference 
(OR: 1.045, 95%CI: 1.020–1.072, P < 0.001), smoking (OR: 

1.539, 95%CI: 1.172–2.020, P < 0.05), snoring (OR: 5.859, 
95%CI: 1.597–21.418, P < 0.05), breathing cessations dur-
ing sleep (OR: 1.656, 95%CI: 1.206–2.273, P < 0.05), mod-
erate ESS (OR: 1.956, 95%CI: 1.389–2.754, P < 0.001), 
high ESS (OR: 2.692, 95%CI: 1.738–4.170, P < 0.001), BQ 
(OR: 3.782, 95%CI: 2.217–6.452, P < 0.001), and SBQ (OR: 
2.108, 95%CI: 1.379–3.223, P = 0.001) were independent 
predictors of severe OSA (Table 3).

Fig. 1 Schematic overview of the proposed method
OSA, obstructive sleep apnea

 

Model Hyperparameters
XGBoost n_estimators:360

max_depth:1
learning_rate:1.6

AdaBoost, adaptive boosting; LR, logistic regression; Bagging, bootstrapped aggregating; MLP, multilayer perceptron; GBM, gradient boosting machine; and 
XGBoost, extreme gradient boost

Table 1 (continued) 



Page 6 of 15Shi et al. BMC Medical Informatics and Decision Making          (2023) 23:230 

Variables Total (n = 1656) Non severe OSA (n = 638) Severe OSA (n = 1018) P value
Demographic data
 Gender [n (%)] < 0.001
 Female 298 (18) 182 (29) 116 (11)
 Male 1358 (82) 456 (71) 902 (89)
 Age (years) [M (Q1, Q3)] 40 (33, 50) 38 (30, 50) 41 (34, 50) < 0.001
 BMI (kg/m2) [M (Q1, Q3)] 26.52 (24.33, 29.07) 25.02 (23.1, 27.34) 27.68 (25.44, 29.98) < 0.001
 Waist circumference(cm) [M (Q1, Q3)] 97 (91, 104) 93 (86, 99) 100 (95, 106) < 0.001
 Neck circumference(cm) [M (Q1, Q3)] 39 (37, 41) 38 (35, 40) 40 (38, 42) < 0.001
Lifestyle habits
 Smoking [n (%)] < 0.001
  0 966 (58) 468 (73) 498 (49)
  1 690 (42) 170 (27) 520 (51)
 Drinking [n (%)] < 0.001
  0 1043 (63) 472 (74) 571 (56)
  1 613 (37) 166 (26) 447 (44)
 Lack of exercise [n (%)] < 0.001
  0 656 (40) 287 (45) 369 (36)
  1 1000 (60) 351 (55) 649 (64)
 Poor sleep [n (%)] 0.976
  0 896 (54) 346 (54) 550 (54)
  1 760 (46) 292 (46) 468 (46)
 Emotional instability [n (%)] 0.472
  0 1186 (72) 450 (71) 736 (72)
  1 470 (28) 188 (29) 282 (28)
 Stress [n (%)] 0.904
  0 1211 (73) 465 (73) 746 (73)
  1 445 (27) 173 (27) 272 (27)
Medical history
 Hypertension [n (%)] < 0.001
  0 1226 (74) 530 (83) 696 (68)
  1 430 (26) 108 (17) 322 (32)
 Family history of hypertension [n (%)] 0.458
  0 1157 (70) 453 (71) 704 (69)
  1 499 (30) 185 (29) 314 (31)
 Heart disease [n (%)] 0.715
  0 1535 (93) 589 (92) 946 (93)
  1 121 (7) 49 (8) 72 (7)
 Diabetes [n (%)] 0.384
  0 1586 (96) 615 (96) 971 (95)
  1 70 (4) 23 (4) 47 (5)
 Hypothyroidism [n (%)] 0.310
  0 1616 (98) 619 (97) 997 (98)
  1 40 (2) 19 (3) 21 (2)
OSA related symptoms
 Snoring [n (%)] < 0.001
  0 39 (2) 36 (6) 3 (0)
  1 1617 (98) 602 (94) 1015 (100)
 Breathing cessations during sleep [n (%)] < 0.001
  0 312 (19) 194 (30) 118 (12)
  1 1344 (81) 444 (70) 900 (88)
 Hypomnesia [n (%)] 0.020
  0 626 (38) 264 (41) 362 (36)
  1 1030 (62) 374 (59) 656 (64)

Table 2 Comparisons of variables between patients with and without severe OSA
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Performance of machine learning models
We designed six classification models and evaluated their 
ability to predict severe OSA. Each model was trained by 
10-fold cross-validation on the training group. The GBM 
model had the highest average accuracy with an AUC 
of 0.861 (Fig. 2). The results of the validation group also 
showed that the AUC values of the six ML models ranged 
from 0.765 to 0.857, while the GBM model showed the 
best performance (Fig. 3). The proposed GBM model had 
an accuracy, sensitivity, and specificity of 0.766, 0.798, 
and 0.734, respectively (Table 4). Therefore, we chose the 
GBM model as the best prediction model for conducting 
further analyses.

Relative importance of variables in the GBM model
To further analyze the relative importance of risk fac-
tors, we drew a SHAP summary plot. The importance of 
the 10 features that have the largest effect on the model 
output was explained. Waist circumference, neck circum-
ference, ESS, age, and BQ were found to be the top five 
critical variables contributing to the diagnosis of severe 
OSA (Fig. 4).

Interpretation of the GBM Model at the individual level
The SHAP force plot was used to illustrate individual risk 
profiles. Two typical cases were analyzed to interpret the 
contribution of each variable to the predicted outcome in 
a single patient (Fig.  5). In Fig.  5A, the predicted prob-
ability for severe OSA was relatively high (0.87) due to 
many conditions, including high BMI (32.05 kg/m2) and 
waist circumference (114  cm), age (31 years), smoking, 
breathing cessations during sleep, and high SBQ and BQ. 
In contrast, in Fig. 5B, the probability of severe OSA was 
low (0.48) due to many conditions, including low waist 

circumference (95 cm) and neck circumference (38 cm), 
the absence of hypertension, and low ESS.

Online calculator
An online calculator (https://hypertension-in--patients-
with-osa-pmgz9gtjaaqzp4bi7iewp3.streamlit.app/) was 
developed based on the GBM model (Fig. 6). The risk of 
severe OSA is calculated by entering simple information. 
This can help clinicians treat patients with suspected 
severe OSA.

Discussion
In the present study, we propose an interpretable ML 
model for predicting the risk of severe OSA. We used 
clinical features and sleep questionnaires from 1656 indi-
viduals for modeling, and then compared the prediction 
performance of six advanced ML models (LR, GBM, 
MLP, Bagging, AdaBoost, and XGBoost). Moreover, we 
analyzed the relative importance of risk factors by SHAP 
plots and interpreted the best model at the individual 
level through two typical cases. This demonstrated the 
application of a realistic database and interpretable ML 
method to develop a physician-understandable risk pre-
diction model for severe OSA. This ML-based model 
facilitates early risk stratification and intervention for 
suspected OSA patients, making individualized medicine 
possible.

Previous studies on OSA prediction had two main 
characteristics: predicting the risk of OSA in the general 
population and selecting multiple types of input vari-
ables. Holfinger et al. utilized ML algorithms to make 
OSA prediction tools in clinical and community-based 
samples, and the ML models performed better than tra-
ditional logistic regression. It proved the feasibility of ML 
methods for OSA prediction [12]. Huo et al. made a ML 

Variables Total (n = 1656) Non severe OSA (n = 638) Severe OSA (n = 1018) P value
 Inattention [n (%)] 0.773
  0 770 (46) 300 (47) 470 (46)
  1 886 (54) 338 (53) 548 (54)
Sleep questionnaires
 ESS [n (%)] < 0.001
  None 571 (34) 300 (47) 271 (27)
  Slight 530 (32) 211 (33) 319 (31)
  Moderate 325 (20) 91 (14) 234 (23)
  High 230 (14) 36 (6) 194 (19)
 BQ [n (%)] < 0.001
  Low risk 143 (9) 120 (19) 23 (2)
  High risk 1513 (91) 518 (81) 995 (98)
 SBQ [n (%)] < 0.001
  Low risk 225 (14) 183 (29) 42 (4)
  High risk 1431 (86) 455 (71) 976 (96)
OSA, obstructive sleep apnea; BMI, body mass index; ESS, Epworth Sleepiness Scale; BQ, Berlin questionnaire; and SBQ, STOP-BANG questionnaire

Table 2 (continued) 

https://hypertension-in--patients-with-osa-pmgz9gtjaaqzp4bi7iewp3.streamlit.app/
https://hypertension-in--patients-with-osa-pmgz9gtjaaqzp4bi7iewp3.streamlit.app/
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Variables Univariate analysis Multivariate analysis
OR (95% CI) P value OR (95% CI) P value

Gender
 Female Ref Ref Ref Ref
 Male 3.104 (2.396–4.020) < 0.001 1.509 (1.014–2.245) 0.042
Age 1.016 (1.008–1.025) < 0.001 1.017 (1.005–1.029) 0.004
BMI 1.266 (1.223–1.310) < 0.001 1.073 (1.005–1.146) 0.034
Waist circumference 1.099 (1.085–1.113) < 0.001 1.045 (1.020–1.072) < 0.001
Neck circumference 1.252 (1.212–1.295) < 0.001 0.998 (0.940–1.060) 0.952
Smoking
 0 Ref Ref Ref Ref
 1 2.875 (2.320–3.561) < 0.001 1.539 (1.172–2.020) 0.002
Drinking
 0 Ref Ref Ref Ref
 1 2.226 (1.794–2.762) < 0.001 1.149 (0.874–1.511) 0.319
Lack of exercise
 0 Ref Ref Ref Ref
 1 1.438 (1.175–1.759) < 0.001 1.037 (0.805–1.336) 0.779
Poor sleep
 0 Ref Ref Ref Ref
 1 1.008 (0.827–1.230) 0.935 / /
Emotional instability
 0 Ref Ref Ref Ref
 1 0.917 (0.737–1.141) 0.438 / /
Stress
 0 Ref Ref Ref Ref
 1 0.980(0.784–1.225) 0.859 / /
Hypertension
 0 Ref Ref Ref Ref
 1 2.270 (1.776–2.902) < 0.001 1.207 (0.887–1.643) 0.231
Family history of hypertension
 0 Ref Ref Ref Ref
 1 1.092 (0.879–1.356) 0.425 / /
Heart disease
 0 Ref Ref Ref Ref
 1 0.915 (0.627–1.334) 0.644 / /
Diabetes
 0 Ref Ref Ref Ref
 1 1.294 (0.778–2.153) 0.320 / /
Hypothyroidism
 0 Ref Ref Ref Ref
 1 0.686 (0.366–1.287) 0.240 / /
Snoring
 0 Ref Ref Ref Ref
 1 20.233 (6.209–65.927) < 0.001 5.849 (1.597–21.418) 0.008
Breathing cessations during sleep
 0 Ref Ref Ref Ref
 1 3.333 (2.581–4.303) < 0.001 1.656 (1.206–2.273) 0.002
Hypomnesia
 0 Ref Ref Ref Ref
 1 1.279 (1.044–1.567) 0.018 0.917 (0.713–1.179) 0.497
Inattention
 0 Ref Ref Ref Ref
 1 1.035 (0.849–1.262) 0.735 / /

Table 3 Univariate and multivariate logistic regression analyses
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derived questionnaire for screening OSA based on clini-
cal information in two public datasets, and the model 
achieved AUC 0.78and 0.76, respectively [10]. Li et al. 
extracted features from multiple types of input signals, 
including oxygen saturation, electrocardiograms, airflow, 
thoracic, and abdominal signals. They used a multi-error-
reduction classification system and gained the accuracy 
of 94.66% [41]. In the present study, we also consid-
ered these two aspects. When selecting the population 
and the target of prediction, we focused on people with 
suspected OSA symptoms who have a higher risk and 
severity of OSA. Due to the diverse symptoms of OSA, 
most patients are not diagnosed in time, leading to the 

detection of the disease in a severe stage [2]. Moreover, 
OSA can cause damage to multiple organ systems in 
several ways [4]. Common complications include hyper-
tension, arrhythmia, cognitive disorders, and diabetes. 
Considering the importance and urgency, we selected 
the population with suspected OSA symptoms to predict 
severe OSA, a group with higher prevalence, complica-
tions and mortality. When selecting the input variables, 
the primary considerations were scientific rationality and 
easy accessibility. Therefore, we selected many questions 
that could be answered by the participants themselves. 
The questions were determined by experts based on the 
literature and their knowledge.

Fig. 2 Ten-fold cross-validation of six ML models on the training group
AUC, area under the receiver operating characteristic curve; AdaBoost, adaptive boosting; LR, logistic regression; Bagging, bootstrapped aggregating; 
MLP, multilayer perceptron; GBM, gradient boosting machine; and XGBoost, extreme gradient boost

 

Variables Univariate analysis Multivariate analysis
OR (95% CI) P value OR (95% CI) P value

ESS
 None Ref Ref Ref Ref
 Slight 1.674 (1.318–2.126) < 0.001 1.237 (0.937–1.634) 0.133
 Moderate 2.847 (2.124–3.814) < 0.001 1.956 (1.389–2.754) < 0.001
 High 5.966 (4.032–8.827) < 0.001 2.692 (1.738–4.170) < 0.001
BQ
 Low risk Ref Ref Ref Ref
 High risk 10.022 (6.335–15.853) < 0.001 3.782 (2.217–6.452) < 0.001
SBQ
 Low risk Ref Ref Ref Ref
 High risk 9.346 (6.564–13.307) < 0.001 2.108 (1.379–3.223) 0.001
BMI, body mass index; ESS, Epworth Sleepiness Scale; BQ, Berlin questionnaire; and SBQ, STOP-BANG questionnaire

Table 3 (continued) 
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A total of 23 variables were collected in this study. 
After univariate analysis, 15 variables were selected for 
further model construction. The multivariate LR analy-
sis showed that 10 variables were independent predic-
tors of severe OSA. These variables could be classified 
into general characteristics (gender and age), body size 
parameters (BMI and waist circumference), lifestyle 

habits (smoking), sleep symptoms (snoring and breathing 
cessations during sleep), and sleep questionnaires sug-
gesting a high risk of OSA (ESS and SBQ). This was gen-
erally consistent with previous studies. OSA was more 
common in men with high BMI and with increasing age 
[24]. The association could be explained through mul-
tiple mechanisms, including increased upper airway col-
lapsibility and impaired neuromuscular control of upper 
airway patency due to local fat deposition. Waist circum-
ference was also an important risk factor and predictor 
of OSA, along with BMI, and was significantly correlated 
with OSA severity [25]. Adverse lifestyles could also have 
a role in the rising prevalence of OSA. Smoking-related 
airway inflammation and disease may increase suscep-
tibility to OSA [42]. Snoring, one of the most typical 
clinical symptoms of OSA, is very important in OSA 
diagnosis [43]. Breathing cessations during sleep indicate 
the severity of OSA. ESS and SBQ are used to evaluate 

Table 4 Performance of six ML models
Model AUC Accuracy Sensitivity Specificity
AdaBoost 0.825 0.723 0.751 0.695
LR 0.765 0.713 0.794 0.633
Bagging 0.814 0.747 0.715 0.727
MLP 0.773 0.717 0.802 0.633
GBM 0.857 0.766 0.798 0.734
XGBoost 0.840 0.752 0.771 0.713
AUC, area under the receiver operating characteristic curve; AdaBoost, 
adaptive boosting; LR, logistic regression; Bagging, bootstrapped aggregating; 
MLP, multilayer perceptron; GBM, gradient boosting machine; and XGBoost, 
extreme gradient boost

Fig. 3 ROC curves of six ML models on the validation group
ROC, receiver operating characteristic; AUC, area under the receiver operating characteristic curve; AdaBoost, adaptive boosting; LR, logistic regression; 
Bagging, bootstrapped aggregating; MLP, multilayer perceptron; GBM, gradient boosting machine; and XGBoost, extreme gradient boost
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the degree of daytime sleepiness and the risk of OSA, 
respectively; they are widely used for OSA screening [44].

We established six advanced ML models to pre-
dict the risk of severe OSA. The performance of mod-
els was ranked based on the AUC as follows: GBM 
(0.857) > XGBoost (0.840) > AdaBoost (0.825) > Bagging 
(0.814) > MLP (0.773) > LR (0.765). The GBM classifica-
tion model showed the best performance with an accu-
racy of 0.766, a sensitivity of 0.798, and a specificity of 

0.734. These ML models showed satisfactory perfor-
mance, confirming the efficacy and applicability of ML in 
assessing the risk of severe OSA. In addition, most of the 
models tended to have higher sensitivity than specific-
ity. In clinical practice, it is more desirable for predictive 
models to have better sensitivity to detect the disease in 
time. Moreover, the GBM model we proposed has advan-
tages over similar models in previous studies in terms 
of number of participants and prediction performance. 

Fig. 4 SHAP summary plot to illustrate the model predicting severe OSA at the feature level
The features were ranked according to the sum of the SHAP values for all patients, and the SHAP values are used to show the distribution of the effect of 
each feature on the GBM model outputs. Each dot represents a case in the dataset. The color of a dot indicates the value of the feature, with blue indi-
cating low values and red indicating high values. Only the top 10 important predictors are shown in the plot. SHAP, SHapley Additive exPlanations; ESS, 
Epworth Sleepiness Scale; BQ, Berlin questionnaire; BMI, body mass index; and SBQ, STOP-BANG questionnaire
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Huang et al. proposed a predictive model for severe 
OSA based on a support vector machine, which showed 
AUC, sensitivity, and specificity values of 0.780, 0.702, 
and 0.703, respectively [11]. He et al. established an LR 
model to determine the presence and severity of OSA. 
This model had a satisfactory performance in predicting 
the presence of OSA with an accuracy of 0.812. However, 
the accuracy was only 0.416 in predicting the severity of 
OSA [45]. Liu et al. established a support vector machine 
model to predict severe OSA; in males and females, the 
AUC was 0.765 and 0.830, respectively [46]. Laharnar 
et al. developed a scoring system for predicting severe 
OSA with an AUC of 0.900 and an accuracy, sensitivity, 
and specificity of 0.820. This system showed excellent 
performance but suffered from a small sample size and 
a low number of variables [47]. Zhang et al. developed a 
ML model to screen moderate to severe OSA based on 
the Chinese population faciocervical and anthropomet-
ric measurements. This model gained an AUC of 0.824, 
and was especially suitable for people without signifi-
cant daytime sleepiness [48]. Kuan et al. proposed OSA 
predictions using age, sex and BMI incorporating ML 
algorithms. The validation AUCs of the two models in 

large populations were 0.806 and 0.807, respectively [49]. 
To better use the model, we further built an online cal-
culator estimating the probability of severe OSA. Using 
online and self-reported data to screen for disease risk 
can improve clinical efficiency by providing an auto-
mated screening strategy.

Interpretability is an integral part of medical ML mod-
els. The goal of interpretable models is to make decisions 
similar to human behavior by providing explanations 
[50]. The currently proposed measures for explanation 
mainly analyze the model after training, i.e., post hoc 
interpretability [51]. We further used SHAP values to 
interpret the model. As shown in the SHAP summary 
plot, waist circumference, neck circumference, ESS, age, 
and BQ were among the most important prediction fac-
tors. At the individual level, high waist circumference, 
neck circumference, and BMI, smoking, breathing cessa-
tions during sleep, and a high-risk level of SBQ and BQ 
were risk factors of severe OSA; in contrast, low waist 
circumference, low neck circumference, and low ESS 
were protective factors. These results were in line with 
the multivariate LR analysis and previous findings. These 
results suggest that in addition to symptoms, we need 

Fig. 5 SHAP force plot to illustrate the model predicting severe OSA at the individual level
Red and blue bars, respectively, represent the positive and negative effects of each predictor contributing to the occurrence of the outcome. The extent 
of the impact is represented by the size of the bar. ESS, Epworth Sleepiness Scale; BQ, Berlin questionnaire; BMI, body mass index; and SBQ, STOP-BANG 
questionnaire
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to pay attention to the body size of patients in clinical 
work. In the case of insufficient diagnostic conditions, 
the scales have an important auxiliary judgment value. 
Weight loss may also be important for OSA patients.

Compared with previous studies, the present study is 
significant in terms of the research process and results. 
Unlike previous cases based only on public databases, 
we recruited subjects from northwestern China and col-
lected their clinical information. Therefore, this study 
reflects the real situation of severe OSA patients, improv-
ing its applicability. Moreover, the included variables 
were all self-reported by subjects, facilitating generaliza-
tion. In addition, previous studies only predicted OSA 
using one model, whereas we applied and compared vari-
ous advanced ML methods and conducted an interpret-
ability analysis of the most appropriate ML methods. Our 
proposed simplified model provides a screening platform 
for severe OSA, facilitates individualized risk stratifica-
tion and formulates diagnostic decisions. It will help to 
identify patients with severe OSA as early as possible 
and provide timely treatment, especially in economically 
underdeveloped areas. Meanwhile, this model explains 
the importance of variables, which helps improve insights 
into severe OSA risk factors for clinicians.

There were several limitations in this study. First, the 
model we established was developed to detect severe 
OSA, and thus subjects with suspected OSA in whom the 
prevalence of OSA was high were enrolled. Therefore, the 
results may not apply to the general population, where 
the prevalence of OSA is much lower. Second, the preva-
lence of OSA varies greatly among regions and ethnicities 
[52]. This study was a single-center study, and all sub-
jects were Chinese, so this model needs to be validated 
in populations of multiple ethnicities. Third, this was a 
retrospective study without follow-up data. Further pro-
spective validation studies should include larger samples 
to obtain more reliable results. Fourth, the accuracy and 
stability of the model need to be evaluated and improved. 
In summary, the model must be improved before being 
generalized by increasing the sample size, adding more 
relevant variables, and optimizing the algorithm.

Conclusions
In the present study, we developed six types of ML mod-
els to predict the risk of severe OSA, namely LR, MLP, 
Bagging, GBM, AdaBoost, and XGBoost. All six models 
showed high prediction performance. The GBM model 
performed best. Furthermore, we interpreted the model 
at the domain, feature, and individual levels. The findings 

Fig. 6 Online calculator predicting severe OSA in adults
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of this study demonstrate the potential of a personalized 
screening model for individuals with a high risk of severe 
OSA using self-reported information. This will help to 
identify patients with severe OSA as early as possible 
and provide timely treatment, especially in economi-
cally underdeveloped areas. In the future, ML models 
are expected to make greater contributions to disease 
screening.
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