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Abstract 

Background Clinical practice guidelines (CPGs) are designed to assist doctors in clinical decision making. High-
quality research articles are important for the development of good CPGs. Commonly used manual screening pro-
cesses are time-consuming and labor-intensive. Artificial intelligence (AI)-based techniques have been widely used 
to analyze unstructured data, including texts and images. Currently, there are no effective/efficient AI-based systems 
for screening literature. Therefore, developing an effective method for automatic literature screening can provide 
significant advantages.

Methods Using advanced AI techniques, we propose the Paper title, Abstract, and Journal (PAJO) model, which treats 
article screening as a classification problem. For training, articles appearing in the current CPGs are treated as positive 
samples. The others are treated as negative samples. Then, the features of the texts (e.g., titles and abstracts) and jour-
nal characteristics are fully utilized by the PAJO model using the pretrained bidirectional-encoder-representations-
from-transformers (BERT) model. The resulting text and journal encoders, along with the attention mechanism, are 
integrated in the PAJO model to complete the task.

Results We collected 89,940 articles from PubMed to construct a dataset related to neck pain. Extensive experi-
ments show that the PAJO model surpasses the state-of-the-art baseline by 1.91% (F1 score) and 2.25% (area 
under the receiver operating characteristic curve). Its prediction performance was also evaluated with respect 
to subject-matter experts, proving that PAJO can successfully screen high-quality articles.

Conclusions The PAJO model provides an effective solution for automatic literature screening. It can screen high-
quality articles on neck pain and significantly improve the efficiency of CPG development. The methodology of PAJO 
can also be easily extended to other diseases for literature screening.
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Background
Clinical practice guidelines (CPGs) are curated collec-
tions of the best practices used to guide, optimize, and 
establish norms for clinical practice and are thus essen-
tial to clinicians, administrators, the public, and program 
managers [1]. CPGs are built using materials with qual-
ity evidence [2], which implies that clear, explicit, and 
unbiased information is selected. Hence, CPGs require 
frequent systematic reviews to ensure their curation and 
reduce the risk of medical malpractice.

Scholarly published articles are the key source of criti-
cal evidence that feeds CPGs, leading to a regular need 
for screening the most recent evidence based on research 
topics. However, the number of articles is witnessing an 
exponentially growth, it is reported that over 120  mil-
lion papers have been published so far [3]. This large 
volume of papers brings enormous challenges for cura-
tion. Besides, curator selection is restricted to top field 
experts, making curation scheduling a tough, time-con-
suming task. Undesirable selective bias and human mis-
takes occur. In this regard, an automated curating tool 
for overall reviewing and assessing the quality of domain-
related publications could be of use to CPG creators.

We first assume that there are clearly identifiable fea-
tures that delineate high-quality articles from the rest. 
Neural networks have made vast improvements in the 
identification and assessment of text features. Several 
have already been adapted for medical text analyses. 
Advanced natural language processing (NLP) methods 
are now being used in many fields for literature screening.

Presently, traditional classifiers such as, random for-
est and support vector machine (SVM) models are effec-
tively applied to simple medical text-processing tasks. For 
example, a term frequency–inverse document frequency 
(TF-IDF) feature extraction technique was developed 
with a naïve Bayes classifier that automatically screens 
for medical guidelines [4]. The SVM classifier was used 
to screen medical articles [5]. Compared with the tra-
ditional TF-IDF feature engineering strategy, the deep 
learning method was also applied and performed more 
effective than the TF-IDF method [6]. An ensembled 
method based on classical machine learning and deep 
learning approaches was further adopted, which improv-
ing the performance of the single best model on small 
datasets [7]. These traditional models facilitate compre-
hensive information mining by ranking features of the 
texts, leading to interpretable results.

With the development of deep-learning techniques, 
more complex and advanced methods are now avail-
able improving the performance of text mining [8]. An 
attention-based convolutional neural network (CNN) 
was adopted for medical code prediction [9]; this first 
aggregated information from a document using a CNN, 

and it then applied an attention mechanism to select the 
most relevant segments, making accurate selections from 
thousands of possible lines of code. The CNN and long 
short-term memory (LSTM) models was further com-
bined, where the CNN was used to extract word-level 
semantic features, and the LSTM was used to extract tim-
ing characteristics [10]. A composite index test algorithm 
for literature screening was proposed in [11]. Various 
bidirectional-encoder-representations-from-transform-
ers (BERT) methods have been adapted for text process-
ing problems, including “A Lite” BERT [12], “scientific” 
BERT [13], and “biomedical” BERT [14]. For example, 
Moen et al. [15] combined the prediction results of eight 
models, including a BERT and a bidirectional LSTM 
(BiLSTM), to determine an article’s relevancy. A Knowl-
edge Language Model (K-LM) model was developed for 
knowledge injection based on Generative Pre-trained 
Transformer 2 (GPT-2) and BERT, which improved the 
performance relative to classical machine learning meth-
ods [16]. As demonstrated by numerous experiments, 
BERT models do an excellent job of “understanding” text 
following sufficient model training. Additionally, they can 
be flexibly combined with ancillary network structures, 
depending on the task at hand. Compared with tradi-
tional deep-learning NLP models, the BERT models are 
the best.

This study seeks to provide the capability to quickly 
locate and classify high-quality medical studies. As a 
starting point, we focus the scope on the diagnosis and 
treatment of neck pain. To this end, we construct a data-
set of candidate articles from PubMed. Those cited by 
the extant CPG, as well as systemic scholarly reviews, 
are regarded as positive samples for model training; all 
others are treated as negative. Using this, we provide a 
binary text classification problem for a BERT NLP model. 
Various attributes from the textual information found in 
the articles, alongside selected journal characteristics, 
are used for feature extraction and analysis. The resulting 
novel Paper title, Abstract, and JOurnal (PAJO) model, 
which is based on the pretrained PubMedBERT model, 
was applied to neck-pain medical article screening for 
generating CPG. Compared with the best baseline, the 
Text-based Recurrent Convolutional Neural Network 
(TextRCNN), the PAJO model achieves 1.91% improve-
ment in the F1-score and 2.25% in the area under the 
receiver operating characteristic curve. This research 
article presents the following contributions of our study:

• We developed a novel PubMedBERT-based PAJO 
deep-learning neural network, which mines the tex-
tual information of articles and the journal charac-
teristics for their feature information to CPG article 
screening.
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• We designed a general framework for automatic 
medical literature screening that includes data collec-
tion, feature extraction, model-building, and perfor-
mance evaluation.

• Taking neck-pain as a case study, we demonstrated 
that the proposed PAJO model can accurately screen 
a greater number of high-quality neck-pain articles 
for curating the related CPGs, when compared to 
several state-of-the-art methods.

The remainder of this paper is organized as follows. 
Methods section explains the PAJO methodology. Results 
section presents our experimental results compared with 
several state-of-the-art methods, and Discussion section 
presents our ablation study. Finally, Conclusions section 
concludes this paper.

Methods
Dataset construction
Dataset construction is the first step in deep-learning 
model training. To empower our model to automatically 
screen high-quality, scientifically rigorous articles related 
to neck pain, we queried the PubMed1 database in Dec. 
2021, which stores more than 20  M biomedical arti-
cles. PubMed’s MeSH tool is a powerful query method 
that allows researchers to search for various combina-
tions of keywords and phrases expressed as Boolean 

relationships. Our “neck pain” query resulted in 41 entry 
terms, as shown in Fig. 1.

These 41 terms were regarded as our initial set of key-
words and phrases related to “neck pain.” To reduce the 
size of this set, we conducted a literature survey on neck 
pain and found the most used keywords. We verified our 
selection with experts from the field. We then narrowed 
the keyword and phrase combinations to “back pain,” 
“pain back,” “neck pain,” “pain neck,” and “cervical pain.” 
Using these five entries, we undertook our secondary 
search.

We used MeSH to perform a fuzzy search on the entire 
PubMed database, with our five keywords and phrases 
targeting the fields title, abstract, and publisher. We 
then matched the five key phrases with the collection of 
titles and abstracts using a fuzzy retrieval strategy. For 
example, in any given article, if the two words compris-
ing a key phrase are separated by no more than three 
additional words, this meets our matching rule; the title 
“Consensus practice guidelines on interventions for cer-
vical spine joint pain from a multispecialty international 
working group” contains the words “cervical” and “pain,” 
separated two other words, “spine joint.” This meets the 
“cervical pain” keyword and phrase criteria. Hence, this 
title is included in the final dataset.

Using this method, 89,940 articles were retained. Data 
preprocessing was then performed as follows. First, the 
duplicate articles were removed. Second, noting that the 
publishing journal identification provides valuable infor-
mation about the article’s quality, articles lacking the 

Fig. 1 Mesh search terms related to “neck pain.” The left panel displays the retrieval interface and search term of “neck pain,” and the right panel lists 
the entries found, which can be selected for further screening

1 https:// pubmed. ncbi. nlm. nih. gov/.

https://pubmed.ncbi.nlm.nih.gov/
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associated journal information were discarded. A total of 
27,406 articles remained to comprise Set A (the complete 
collection). From this set, 1,005 articles were cited in the 
existing CGPs and systemic reviews for neck pain; thus, 
they were deemed the most important for our task. These 
articles comprised Set B (positive samples). The remain-
der (26,401) was regarded as Set C (negative samples). 
Obviously, A = B ∪ C . Hence, in this study, we used Sets 
B and C for positive and negative model training, respec-
tively. The specific dataset construction process is illus-
trated in Fig. 2.

Handling category imbalances
Given that our ratio of positive to negative samples 
was 1 : 28.3 ≈ 0.035 , we faced an extremely imbal-
anced case that would not result in good model training. 
Hence, we applied a focal loss function to dichotomize 
the unbalanced data [17]. For each sample i, Yi = 1 if it 
is positive; otherwise, Yi = 0(negative). Furthermore, 
pi = P(Yi = 1) , which reflects the probability that a clas-
sification model predicts a positive sample. Let pi = pi if 
Yi = 1 , and p̃i = 1− pi if Yi = 0 . For sample i, the focal 
loss is defined as follows:

Here, two hyperparameters were used in the focal loss. 
Hyperparameter γ is the exponent of the modulating fac-
tor, which is usually a positive integer. This reduces the 
contributions of easily separable samples and  increases 
the hard-separable proportion for balancing. Hyperpa-
rameter α̃ = α if Yi = 1 , and α̃ = 1− α if Yi = 0 , giving 
us a weighting factor in [0, 1], which is used to adjust 
the ratio between positive and negative sample losses. 
To find the appropriate values of γ and α , we first set a 

(1)FL(i) = −α̃(1− p̃i)
γ log

(
p̃i
)
.

varying range for each hyperparameter based on our pre-
liminary analysis. Then we used grid search to find the 
optimal values. We found the best hyperparameter values 
were γ = 2 and α = 0.8 . We also applied a downsampling 
technique to Set C (negative) to supplementarily bal-
ance the data for subsequent model training, validation, 
and testing. Downsampling is a widely applied technique 
to balance the sample sizes in datasets. In this work, Set 
C has a much larger sample size than Set B. To balance 
these two datasets, we need to select a subset from Set 
C. To this end, we first assign each negative sample in Set 
C with an equal sampling probability. Then we randomly 
selected 2,345 samples from Sec C using the technique of 
sampling without replacement. The final ratio of positive 
to negative samples was 3:7.

Feature extraction
When contemplating feature extraction, we were bur-
dened with creating a deep-learning model from scratch, 
including selecting and testing its subcomponents. For-
tunately, because our research field is closely related to 
biomedicine, we noted that a pretrained PubMedBERT 
NLP already exists in that field [18]. Different from other 
BERT-type models, which are trained on millions of arti-
cles related to a wide range of topics, PubMedBERT is 
pre-trained from scratch on biomedical research litera-
ture. By training PubMedBERT with our information col-
lected from PubMed, we could directly obtain relevant 
predictions based on “neck pain.”

To identify journal features, we leveraged the following 
pre-existing attributes:

•  Journal Impact Factor (IF) [19]. This feature reflects 
the “influence” of academic journals in terms of their 

Fig. 2 Dataset construction process. We first applied our keyword and phrase retrieval matching rule to all PubMed articles. We then performed 
deduplication and removed records for which the associated journal information was unavailable. Finally, we classified Set A as the complete 
collection of 27,406 samples. Set B was classified with 1,005 articles that were cited in the CGPs and systematic reviews (positive samples). Finally, 
Set C contained the 26,401 negative samples



Page 5 of 12Lin et al. BMC Medical Informatics and Decision Making          (2023) 23:247  

average annual citations in new articles. To account 
for IF value fluctuations over time, we considered 
them annually from 2015 to 2021.

•  CiteScore (CS) [20]. This feature reflects an Elsevier 
metric launched in 2016 that conveys the annual cita-
tions per article per journal compiled from the Sco-
pus database over the previous four years.

•  Scientific Journal Ranking (SJR) [21]. This feature 
reflects both the number and quality of citations and 
weighs those of prestigious journals.

•  Source-Normalized Impact per Paper (SNIP) [22]. 
This feature reflects another Elsevier measurement 
issued in 2012 that uses the Scopus database. It is 
the reference weight based on the total number of 
citations in a subject area. Therefore, a citation is 
assigned a higher value if it is cited in disciplines out-
side its domain. SNIP also corrects for differences in 
journal citation behaviors in different subject areas.

•  The Science Citation Index or Journal Citation 
Reports Divisions of the Chemical Abstracting Ser-
vice. This feature reflects 14 major disciplines, and in 
each, journals are ranked according to their impact 
factors: Zone 1 (top 5%), Zone 2 (top 5–20%), Zone 3 
(top 20–50%), and Zone 4 (the remainder).

•  The H-Index [23]. This feature reflects the produc-
tivity and impact of a researcher or journal and is cal-
culated based on the number of articles published by 

a journal and the number of times an article is cited. 
A journal with n articles cited at least n times each 
has an H-index of n.

The PAJO classification model
Our PAJO model has three modules: an in-sample text 
feature encoder that converts title and abstract strings to 
embedding vectors, an attention encoder that converts 
inter-sample text feature vectors from single samples into 
weighted representations between samples, and a journal 
feature encoder that extracts the journal features listed in 
Feature extraction section. PAJO’s network architecture 
is illustrated in Fig. 3.

The text encoder module focuses on in-sample text 
feature representations. For each sample, i, we use the 
PubMedBERT tokenizer to tokenize the title’s text as 
sequence Ti . Similarly, the abstract is tokenized as Si . 
Subsequently, both Ti and Si are fed to PubMedBERT 
for encoding, where an attention mechanism allows the 
embedding vector corresponding to each word to incor-
porate the information of all words in the text. In the last 
hidden layer, the embedding associated with the reserved 
[CLS] token is used for downstream classification tasks 
[24]. We define ri as the in-sample vector representation 
of Ti and ni as the inter-sample vector representation of 
Si , which is represented as follows:

Fig. 3 PAJO network architecture. Each article’s raw title and abstract are fed into the PubMedBERT text encoder for conversion to embedding 
vectors. The vectors are passed to an attention encoder for weight sample representation. The original journal features are normalized and passed 
to a feed-forward layer with a rectified linear unit (ReLU) activation function. The obtained text and journal features are concatenated to obtain 
the overall feature representation of an article. Finally, the feature representation is passed to a feed-forward layer with a SoftMax function to predict 
the article’s label
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We define d as the embedding size, where ri, ni ∈ Rd . 
The word embedding and encoding layers in PubMed-
BERT are fine-tuned by our dataset in the model train-
ing process. Note that riand ni are associated with [CLS] 
tokens and contain information about the entire text.

The second PAJO module is an attention encoder that 
focuses on inter-sample text feature representations. The 
title vector from each article is recoded as a weighted title 
vector between articles using the attention mechanism, 
which forces the model to learn from the subtle gaps in 
title and abstract representations across multiple articles. 
Define the batch size to be s, which is the number of sam-
ples analyzed in each epoch. Then r = [r1, r2, . . . , rs]

T 
denotes the in-sample title vector representation used 
for the entire batch. We denote Q,K, V ∈ Rd

× Rd as 
the corresponding trained query, key, and value matri-
ces, respectively. We then multiply r by training matri-
ces WQ , WK , and WV to obtain Q, K, and V, respectively. 
Hence, Q = rWQ , K = rWK , and V = rWV . We define αi 
as the computed weight vector of Sample i, which is rep-
resented by other in-sample text vectors from the same 
batch. The title text feature, Ri , is formulated as follows:

Ideally, when applying the attention mechanism to 
calculate the weights of vectors between samples, every 
sample in the dataset should be considered. However, 
owing to limited computing resources, we created sample 
sets from each batch. Thus, all text vectors are weighted 
in the same batch to obtain the inter-sample representa-
tion of each vector.

The third PAJO module is the journal feature encoder, 
with which the categorical features based on the journal 
characteristics are transformed into dummy variables. 
Continuous features are normalized, and all categori-
cal and continuous features are concatenated to obtain 
the full journal feature vector, ji for sample i. This is then 
submitted to a feed-forward layer for the linear combina-
tion of different journal features. Finally, the output fea-
tures are fed into the ReLU activation function, which is 
commonly used in deep neural networks.

For sample i, we then obtain its intersample title text 
featureRi , intersample abstract text featureNi , and 
enhanced journal featureJi . By concatenating these, 
we obtain the overall feature, Xi , for final classification, 

(2)ri = PubMedBERT(Ti),

(3)ni = PubMedBERT(Si).

(4)αi = Softmax
(
qiK

T
)
,

(5)Ri = αiV.

where Xi = contact(Ri,Ni, Ji) . For a batch with s samples, 
X = [X1, X2, . . . , Xs] , and its predicted labels are Ŷ  . 
Thus, in the fully connected layer, we have

where W ∈ R
∼

d×R
∼

d , and 
∼

d is twice the embedding size 
plus the journal feature size. Finally, we summarize the 
implementation of PAJO in Algorithm 1.

Algorithm 1: Label prediction process of PAJO classification model

Results
Models and Metrics
We conducted a series of experiments to investigate 
the classification performance of our proposed PAJO 
model. The corresponding data and codes are available at 
https:// github. com/ xh621/ PAJO- Deep- Learn ing- Model. 
For comparison purposes, we considered several com-
petitors, including CNNs, recurrent neural networks 
(RNNs), other attention mechanisms, and pretrained 
language models. The text and journal feature inputs are 
similar for all models.

•  Random Forest [25]. With this model, the title, 
abstract, and journal features are concatenated and 
fed to a classifier with 800 decision trees.

•  Logistic Regression with L1 Penalty (L1LR) [26]. 
This regression-based method performs both vari-
able selection and classification. We used the same 
inputs as those given to the Random Forest model 
and conducted 10-fold cross-validation to determine 
the hyperparameters.

•  BiLSTM [27]. This is an RNN that performs well 
with text classification tasks and is used for senti-
ment analysis and question classification. The text 
encoder is a two-layer BiLSTM, whose output hidden 
states are concatenated with the journal feature rep-
resentations, which use simple fully connected lay-
ers. The word embedding dimensions and BiLSTM 

(6)Ŷ = Softmax(WX + b),

https://github.com/xh621/PAJO-Deep-Learning-Model
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hidden states were 128 and 256, respectively, and we 
applied a fully connected layer and a SoftMax func-
tion to make the final prediction.

•  BiLSTM + Attention [28]. This is the same BiLSTM 
with an additional attention layer at the text encoder 
output.

•  TextCNN [29]. This CNN is used for sentence clas-
sification tasks and has a kernel size of 32, which is 
used to extract sentence-level features. For jour-
nal feature representations, we applied the BiLSTM 
method and fed the concatenated representations 
into the classifier.

•  TextRCNN [30]. This combination CNN + RNN 
uses the BiLSTM architecture for the RNN. The BiL-
STM’s output is concatenated with the text embed-
dings, and a global max pooling layer is applied to 
obtain the final text representation. The text and 
journal representations are concatenated and used 
for the final prediction.

•  PubMedBERT. In this method, PubMedBERT is 
used as text encoder and then fine-tuned during the 
training process. Then, the title, abstract, and journal 
features represented by feature encoders are directly 
concatenated for final classification.

Our dataset was randomly split into training (80%) and 
testing (20%). After training each on the same training 
dataset, we evaluated their prediction performances on 
the testing dataset. We counted the true positives (TPs), 
which reflect number of correctly predicted positive val-
ues, true negatives (TNs), which denote the number of 
correctly predicted negative values, false positives (FPs), 
which denote number of samples incorrectly predicted 
as positive, and false negatives (FNs), which denote the 
number of samples incorrectly predicted as negative. 
Based on these, Precision = TP / (TP + FP), Recall = TP 
/ (TP + FN), Specificity = TN / (FP + TN), Accuracy = 

(TP + TN) / (TP + FP + FN + TN), F1-score = 2 × [(Pre-
cision × Recall) / (Recall + Precision)], and area under 
the receiver operating characteristic curve (AUC) = ∫ 1
0Recalld(Precision). Finally, to illustrate the computa-

tional complexity of PAJO, we compare it with other deep 
learning baselines using FLOPs(T), i.e., the floating point 
operations per second (Unit is T).

Data exploration and illustration
Prior to applying PAJO, we conducted a text and journal 
feature data exploration for illustrative purposes, which 
is useful when envisioning the state space and expected 
model outcomes. To get an idea of the influence of jour-
nal features on classification performance, we compared 
the distributions of Sets B and C in terms of IF, CS, and 
SJR. The representative boxplots are shown in Fig. 4. As 
can be seen, the values of IF, CS, and SJR in the positive 
samples were significantly higher than those in the nega-
tive samples. This finding suggests that journal features 
are usually positively correlated with article quality.

Next, we focus on the text features extracted from titles 
and abstracts. To visualize these features, we calculated 
the frequency of each word from Set A and present the 
top 100 with the highest frequencies as a word cloud in 
Fig. 5. The higher the frequency, the larger the word. The 
highest-frequency words are intuitively related to neck 
pain based on the original search criteria. This demon-
strates that our dataset is suitable for screening new 
articles.

Experimental results
Table  1 lists the predicted performance values of each 
model using the same test dataset. As shown, our PAJO 
model achieved the best prediction performance. PAJO 
surpassed the strongest baseline by 0.75% in Accuracy, 
1.91% in F1-score, and 2.25% in AUC. These results dem-
onstrate the improved predictive ability of this model. 

Fig. 4 Boxplots of Journal Impact Factor (IF) from 2020 to 2021, CiteScore (CS), and Scientific Journal Ranking (SJR) reflecting positive vs. negative 
samples. Positive samples have higher journal feature values than negative samples, indicating that these features are useful in distinguishing 
high-quality articles
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However, when evaluated based on precision and speci-
ficity, L1LR achieved the best results. Notably, Precision 
and Recall are trade-off measures, meaning that they 
should be assessed together. Recall can be more impor-
tant than Precision as a higher recall value can avoid 
missing important articles [5]. Thus, although PAJO does 
not achieve the best precision, its good recall perfor-
mance indicates a higher practical applicability. As sug-
gested by Recall, the phenomenon of false negatives is 
noteworthy. To avoid false negatives, a practical screen-
ing procedure can be used. Specifically, we can first set 
a lower threshold to allow more samples to be counted 
as positive. We hope that more true positive samples can 
be covered in this manner. Then all the predicted posi-
tive samples are sorted in a decreasing order of their pre-
dicted probabilities, which are easier for researchers to 
screen. Finally, focusing on the FLOPs(T), we find our 
proposed PAJO indeed has a bigger computational com-
plexity than other deep leaning models. This is mainly 

because we include PubMedBERT and also use the atten-
tion mechanism. This architecture of PAJO contributes 
to its superior performance in classification.

Discussion
Ablation experiments
As discussed in Methods section, the PAJO model con-
sists of a text encoder, an attention encoder, and a jour-
nal feature encoder. To exploit textual information, both 
the title and abstract of an article are used. We conducted 
a series of ablation experiments to explore the utility of 
each part, as it contributes to the performance of the 
whole. Specifically, we considered five scenarios based on 
the intake of three types of features: title (T), abstract (A), 
and journal (J). Hence, PAJO-T intakes only title features, 
and PAJO-A intakes only article features, both into the 
text encoder. PAJO-TJ intakes titles into the text encoder 
and uses the journal feature encoder to extract journal 
information. Similarly, PAJO-TA intakes article titles and 

Fig. 5 Word cloud containing the top 100 most frequent words found in the full sample set

Table 1 Experimental results of different models when evaluated by Precision, Recall, Specificity, Accuracy, F1 Score, FLOPs, and area 
under the receiver operating characteristic curve (AUC)

Definitions — BiLSTM Bidirectional long short-term memory, L1LR Logistic regression with L1 penalty, PAJO Paper title, Abstract, and Journal model, TextCNN Text-
based convolutional neural network, TextRCNN Text-based recurrent convolutional neural network, PubMedBERT the fine-tuned PubMedBERT model

Model Precision Recall Specificity Accuracy F1-score AUC FLOPs(T)

Random Forest 59.11 79.10 76.54 77.31 67.66 85.28

L1LR 75.00 52.24 92.54 80.45 61.58 85.64

BiLSTM 64.86 59.70 86.14 78.21 62.18 82.21 0.072

BiLSTM + Attention 66.67 68.66 85.29 80.30 67.65 83.63 0.080

TextCNN 66.67 61.69 86.78 79.25 64.08 85.22 0.0001

TextRCNN 61.54 79.60 78.68 78.96 69.41 86.15 0.077

PubMedBERT 71.69 78.11 86.78 84.18 74.76 89.59 3.047

PAJO 71.55 82.59 85.92 84.93 76.67 91.84 15.236
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abstracts into the text encoder. PAJO-AJ intakes arti-
cle abstracts into the text encoder and uses the journal 
feature encoder to extract journal information. Lastly, 
PAJO-FULL refers to a fully functional model. This con-
clusion is consistent with that of a study by Zhang et al., 
who discovered that their BERT-CAM model, which also 
utilizes abstract characteristics, performed better than 
other techniques in terms of accuracy, precision, recall, 
and F1 value [31]. This shows that an important aspect 
of the effectiveness of NLP models is their utilization of 
abstract properties.

Table 2 lists the detailed results of the ablation experi-
ments. Notably, PAJO-FULL achieved the best perfor-
mance, apart from Precision. Interestingly, PAJO-A had 
the highest precision, 72.22%, whereas PAJO-FULL only 
scored 71.55%. However, as discussed, Precision and 
Recall are defined according to a given threshold, and 
they should not be interpreted as performance meas-
ures alone. A more integrated measure for Precision and 
Recall is the AUC and we found PAJO-FULL has the 
highest AUC value. Based on Table 2, we also found that 
abstract features play a significant role in overall perfor-
mance, as their removal resulted in much lower scores in 
all metrics. The largest drop was observed in precision, 
which decreased 12.68% from 71.55% (PAJO-FULL) to 
58.87% (PAJO-TJ).

PAJO prediction performance
To further evaluate the efficacy of the proposed model 
in screening important articles related to neck pain, we 
additionally collected articles published in 2022. We 
regarded these articles as a new testing set, and then 
applied PAJO to classify them with prediction probabili-
ties. The higher the probability, the more important the 
article. The prediction threshold was set to 0.5, which 
resulted in 60 positively classified studies. For compari-
son purposes, we randomly selected the same number of 

articles with prediction probabilities larger than 0.5 pub-
lished in 2021.

All articles were evaluated from two perspectives by 
a trained radiologist who was blinded to the prediction 
results. The first perspective was the degree of relation-
ship to the topic, neck pain, rated on a scale of 1–4. The 
higher the score, the stronger the relationship. The sec-
ond was article quality, again rated on a scale of 1–4. 
This scale is based on the Grading of Recommendations 
Assessment, Development, and Evaluation method used 
by the American College of Radiology Appropriateness 
Criteria 1, 2. Finally, the two scores were simply summed 
up. The summation has a scale of 2–8 for each article.

We examined the prediction distributions, which are 
illustrated as boxplots in Fig.  6. As shown, articles in 
groups with higher expert scores had correspondingly 
higher prediction scores. For example, the median prob-
abilities of articles falling into the score groups of seven 
and eight are all around 0.95; while the median prob-
abilities of articles falling into the other groups are all 
below 0.9. This trend indicates good consistency between 
the model predictions and the ground truth. For each 
score group, we also tested the differences in predictions 
made for articles published in 2022 and 2021. The results 
showed no significant differences between the groups, 
suggesting that articles published in different years have 
similar patterns. The PAJO model’s ability to handle 
large-scale datasets and its robustness to noise suggest 
that it could be used in a variety of real-world applica-
tions, such as information retrieval, document classifica-
tion, and recommendation systems. Future studies could 
examine these prospective uses and assess how well the 
model functions in them. Future research may further 
examine the PAJO model’s application in fields other 
than neck pain research to gauge its adaptability and 
versatility.

The PAJO model might benefit from the incorpora-
tion of more varied features, based on the findings of the 

Table 2 Results of ablation experiments when evaluated on Precision, Recall, Specificity, Accuracy, F1 score, and area under the 
response operating characteristic curve (AUC)

PAJO-FULL performed best in all metrics apart from Precision. Definitions: — PAJO Paper title, Abstract, and JOurnal model, PAJO-A Base model only intakes abstract 
features, PAJO-AJ Base model only intakes abstract and journal features, PAJO-FULL Complete model, PAJO-T Base model only intakes title features, PAJO-TJ Base model 
only intakes title and journal features, PAJO-TA Base model only intakes abstract and title features

Model Precision Recall Specificity F1-score Accuracy AUC 

PAJO-T 69.19 72.64 86.14 70.87 82.09 86.71

PAJO-A 72.22 71.14 88.27 71.68 83.13 89.72

PAJO-TJ 58.87 77.61 76.76 66.95 77.01 86.98

PAJO-TA 70.40 78.11 85.93 74.06 83.58 89.15

PAJO-AJ 71.95 79.10 86.78 75.36 84.48 89.98

PAJO-FULL 71.55 82.59 85.92 76.67 84.93 91.84
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ablation experiments. For instance, the performance of 
the PAJO model might be enhanced using pre-trained 
language models (BERT) in the BERT-CAM [31] and 
AFR-BERT by Ji et al. [32] models. Additionally, the Bidi-
rectional Long Short-Term Memory (BiLSTM) used by 
the AFR-BERT model for pre-processing data might be 
considered for incorporation into the PAJO model.

Conclusions
CPGs are important documents that provide healthcare 
best practices for clinicians, administrators, the public, 
and program managers. The screening of high-quality 
related articles plays a vital role in the development of 
CPGs. However, given the vast number of articles, man-
ual curation is too time-consuming and labor-intensive. 
To help resolve this problem, we developed the PAJO 
model to assist practitioners in screening high-quality 
articles automatically. This model includes text, atten-
tion, and journal feature encoders. In addition to titles 
and abstracts, the model comprehensively considers arti-
cle characteristics (e.g., IF and SJR). Taking “neck pain” as 
the focus area of this study, we constructed a dataset with 
highly relevant articles extracted via a query from Pub-
Med. We then conducted extensive experiments using 
PAJO to identify the most important articles. Our results 
show that PAJO model performs better than several 
state-of-the-art methods on the literature screening task. 
To further verify the model efficacy, we tested its predic-
tion performance using articles published in 2022 as the 
test set. Experts volunteered to provide ground-truth 
evaluations. The results show that there was a strong 

matching between model predictions and ground-truth 
results in terms of identifying the highest-quality articles. 
This result shows that the PAJO model can assist CPG 
curators with their jobs.

We now present some limitations of the PAJO model, 
which may set future directions. Treating all articles 
not cited by CPGs as negative samples is a crude first 
approximation. A more flexible approach using positive 
unlabeled learning may be applied to handle these nega-
tive samples. Second, the feature extraction method in 
PAJO may bias the model towards certain journals. Fur-
ther investigation in this regard is needed. Mining tex-
tual characteristics from articles is another direction for 
future work. The prediction performance of PAJO was 
evaluated by a single trained radiologist. More evalua-
tions by other radiologists must be conducted in future. 
Here, we examined the performance of PAJO on neck 
pain. In the future, the PAJO model can be extended to 
more diseases to verify its wide applicability.
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