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Abstract 

Backgrounds  Predicting medications is a crucial task in intelligent healthcare systems, aiding doctors in making 
informed decisions based on electronic medical records (EMR). However, medication prediction faces challenges due 
to complex relations within heterogeneous medical data. Existing studies primarily focus on the supervised mining 
of hierarchical relations between homogeneous codes in medical ontology graphs, such as diagnosis codes. Few 
studies consider the valuable relations, including synergistic relations between medications, concurrent relations 
between diseases, and therapeutic relations between medications and diseases from historical EMR. This limitation 
restricts prediction performance and application scenarios.

Methods  To address these limitations, we propose KAMPNet, a multi-sourced medical knowledge augmented 
medication prediction network. KAMPNet captures diverse relations between medical codes using a multi-level 
graph contrastive learning framework. Firstly, unsupervised graph contrastive learning with a graph attention net-
work encoder captures implicit relations within homogeneous medical codes from the medical ontology graph, 
generating knowledge augmented medical code embedding vectors. Then, unsupervised graph contrastive learn-
ing with a weighted graph convolutional network encoder captures correlative relations between homogeneous 
or heterogeneous medical codes from the constructed medical codes relation graph, producing relation augmented 
medical code embedding vectors. Finally, the augmented medical code embedding vectors, along with supervised 
medical code embedding vectors, are fed into a sequential learning network to capture temporal relations of medical 
codes and predict medications for patients.

Results  Experimental results on the public MIMIC-III dataset demonstrate the superior performance of our KAMPNet 
model over several baseline models, as measured by Jaccard, F1 score, and PR-AUC for medication prediction.

Conclusions  Our KAMPNet model can effectively capture the valuable relations between medical codes inherent 
in multi-sourced medical knowledge using the proposed multi-level graph contrastive learning framework. Moreover, 
The multi-channel sequence learning network facilitates capturing temporal relations between medical codes, ena-
bling comprehensive patient representations for downstream tasks such as medication prediction.
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Background
The availability of immense accumulation of electronic 
medical records (EMR) data, coupled with advancements 
in deep computational methods, has provided a solid 
foundation for intelligent healthcare applications, includ-
ing disease risk prediction [1–3] and medication predic-
tion task [4–6]. Among these applications, the prediction 
of medications for patients plays a crucial role in assist-
ing doctors in making efficient clinical decisions, thereby 
enabling more time for doctor-patient communication 
and improving the quality of medical services. Thus, it 
will be conducive to improving the medical service qual-
ity. Consequently, there has been a growing demand for 
deep learning-based medication prediction models.

However, the majority of existing methods are not 
specifically tailored to address scenarios where multi-
ple medical experts collaborate in joint consultations 
for patients. In such situations, various types of medical 
knowledge, including common-sense medical ontology 
and empirical medical knowledge derived from histori-
cal EMR data, are taken into consideration during the 
medication decision-making process. As a result, con-
ventional methods often yield suboptimal performance 
in these complex decision-making scenarios. Therefore, 
effectively capturing the intricate and diverse relation-
ships between medical codes from multi-source medical 

knowledge to enhance medication prediction becomes a 
highly challenging yet significant task.

As depicted in Fig. 1, the hierarchical structures inher-
ent in the diagnosis ontology graph and medication 
ontology graph (representing common sense medical 
domain knowledge) imply relationships between homo-
geneous medical codes, which will contribute to the rep-
resentation learning. The existing studies, such as GRAM 
[7] and KAME [8] utilize the diagnosis ontology graph to 
enhance the representations of diagnosis codes by incor-
porating information from relational medical codes using 
supervised methods. Meanwhile, Shang et al. [5] propose 
G-BIRT, combining a graph neural network and bidirec-
tional encoder representation from transformers (BERT), 
to enhance medical code representations through a pre-
training approach. These models consider the inher-
ent relations between homogeneous medical codes in 
medical domain ontology graphs in a supervised or self-
supervised manner to augment the medical code repre-
sentations. Furthermore, MK-GNN [9] and COGNet [10] 
predominantly emphasize the incorporation of medical 
code relations, particularly between drug codes, using 
EHR graph or DDI graph. However, they tend to overlook 
concurrent relationships between diseases and the heter-
ogeneous therapeutic relations between medications and 
diseases, as present in historical EMR data.

Fig. 1  Illustration of Medical ontology graph: ICD-9 ontology for diagnosis and ATC ontology for medications. For each diagnosis or medication, 
we can obtain a unique parent path containing hierarchical ontology concepts from the root to the leaf levels. The ontology graph will be utilized 
to cultivate the inherent relations of homogeneous codes
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However, a limitation arises when attempting to trans-
fer such forms of learned representations from one pre-
dictive task to another, such as from diagnosis prediction 
to medication prediction, despite using the same dataset. 
This necessitates repetitive model training to obtain med-
ical code representations for each different downstream 
task. Moreover, purely supervised methods are ineffec-
tive in acquiring medical code representations when 
the downstream task is unknown. Therefore, there is an 
urgent need to develop a novel unsupervised method for 
learning the embeddings of medical codes based on the 
medical ontology graph. This approach would facilitate 
downstream tasks in diverse clinical scenarios, alleviat-
ing the limitations associated with the transferability and 
applicability of learned medical code representations.

Furthermore, the aforementioned models primar-
ily focus on capturing the inherent relationships among 
homogeneous medical codes within the hierarchical 
structures of medical ontology graphs. However, they 
tend to overlook the valuable correlative relationships 
between both homogeneous and heterogeneous medical 
codes that are implicitly present in historical EMR data. 
This historical EMR data is typically regarded as a valu-
able source of empirical medical knowledge. For instance, 
clinicians commonly administer multiple medications 
simultaneously to patients to enhance the therapeutic 
effect, indicating the presence of synergistic relation-
ships between medications. Additionally, major diseases 
frequently co-occur with inevitable concurrent diseases 
or symptoms, highlighting the concurrent relationships 

between diseases. Moreover, in prescriptions, medica-
tions are prescribed for specific diseases or symptoms, 
reflecting therapeutic causal relationships between medi-
cations and diseases. Unfortunately, only a limited num-
ber of studies have explicitly represented and captured 
these meaningful relationships hidden within EMR data 
for medication prediction.

To address the aforementioned limitations and 
enhance the performance of medication prediction, we 
present a novel multi-sourced medical knowledge aug-
mented network, named KAMPNet. The network lever-
ages multi-level graph contrastive learning to capture the 
diverse relations between homogeneous or heterogene-
ous medical codes and improve their representations. 
The main workflow of medication prediction using the 
proposed model is depicted in Fig.  2: Firstly, similar to 
the existing method G-BIRT [5], we consider the inher-
ent common-sense medical ontology graph (medical 
domain knowledge, shown in Fig. 1) to capture the local 
relations between medical codes. Additionally, we con-
struct a medical codes relation graph, shown in Fig.  4, 
based on the co-occurrence of diagnosis codes and 
medication codes in a single visit from historical EMR 
data. This graph allows us to capture the global relations 
between medical codes. Secondly, to address the prob-
lems of label dependency and repetitive model training in 
existing ontology graph representation learning methods, 
we incorporate an improved graph contrastive learning 
framework based on DGI [11], which can provide better 
representations for downstream tasks without supervised 

Fig. 2  Main workflow of medication prediction using proposed model. It consists of three main steps: medical knowledge-related graph 
construction, unsupervised contrastive learning for medical code embeddings, and supervised sequential learning for medication prediction task
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labels and can facilitate to improve the model robustness 
[12]. This unsupervised learning approach enables us to 
obtain representations of medical codes from the multi-
source knowledge graph. By infusing the information 
from relational medical codes, the augmented medical 
code representations are mutually enhanced, capturing 
both the local relations from the ontology graph and the 
global relations from the medical codes relation graph. 
Finally, the retrieved augmented medical code repre-
sentations are fed into a supervised sequential learning 
model to capture the temporal relations between medical 
codes. This enables us to obtain a comprehensive patient 
representation, which can be utilized for medication pre-
diction and assist in clinical decision-making.

In summary, the technical contributions of this paper 
are as follows: (1) We propose KAMPNet, a multi-source 
medical knowledge augmented medication prediction 
network, which incorporates a multi-level graph con-
trastive learning framework. To the best of our knowl-
edge, our model is the first to capture valuable relations 
between medical codes and augment their representa-
tions using a cascaded unsupervised approach on both 
ontology graphs and constructed medical codes relation 
graph. (2) We integrate different graph encoders, such as 
the graph attention network and weighted graph convo-
lutional network, into the multi-level graph contrastive 
learning framework to consider the meaningful relation 
weights between heterogeneous or homogeneous medi-
cal codes. (3) We present a sequential learning network 
that combines the multi-source embedding vectors of 
medical codes into the patient representation, enabling 
the capture of temporal relations between medical codes 
for medication prediction.

Related works
Deep learning in medication prediction
Medication prediction is a significant application of deep 
learning in intelligent healthcare systems, garnering con-
siderable attention from researchers due to its practical 
importance. Researchers [4] have categorized medication 
prediction algorithms into instance-based and longitudi-
nal sequential prediction methods.

Instance-based methods primarily focus on captur-
ing the nonlinear relations between diagnosed disease 
status and the prescribed medications. For example, 
Zhang et  al. [13] formulate the medication problem 
as a sequential decision-making problem and employ 
recurrent neural networks to encode the label depend-
ency. Wang et  al. [14] propose three linear models that 
combine multi-source patient information, including 
demographic data, laboratory indicators, and diagnosis 
outcomes, for personalized medication prediction. Wang 
et al. [15] transform the medication prediction task into 

an unordered Markov decision process, predicting pre-
scription medications step by step. However, these meth-
ods overlook the critical temporal information present 
in historical EMR data, leading to suboptimal prediction 
performance.

Nowadays, longitudinal sequential prediction models 
that consider the temporal relations between historical 
medical records have become prevalent in medication 
prediction tasks. Jin et  al. [16] present three different 
heterogeneous LSTM models to capture the interac-
tion between heterogeneous temporal sequence data 
and incorporate two heterogeneous sequence informa-
tion into the patient representation to predict the next 
stage of treatment medications. Shang et  al. [4] incor-
porate sequential information, including diagnosis and 
procedure information, through multi-channel sequence 
learning networks to learn comprehensive patient rep-
resentations for medication prediction. DMNC [17] and 
AMANet [6] integrate attention networks to capture the 
interactions between procedure and diagnosis sequences 
and model sequential dependencies. MeSIN [18] models 
both temporal dependencies between sequential medical 
records and the relations between hierarchical sequences 
for medication prediction. However, these models pri-
marily focus on mining inherent relations between multi-
ple medical sequences in EMR data and often neglect the 
empirical knowledge implicit in EMR data and external 
common-sense medical knowledge.

Graph neural networks in healthcare applications
Graph neural networks (GNNs) [19] have emerged as 
effective frameworks for graph representation learning. 
GNNs leverage a neighbourhood aggregation mecha-
nism to recursively aggregate and transform the repre-
sentation vectors of adjacent nodes, effectively utilizing 
the topological relationships between graph nodes and 
enhancing the representation ability of nodes [20, 21]. 
As a result, GNNs have been widely used in biological 
and health informatics to model valuable relationships 
between multiple entities [4, 22–26]. The learned medi-
cal code embedding vectors in health informatics can be 
augmented to facilitate downstream predictive tasks. For 
example, GRAM [7] and KAME [8] leverage the diag-
nosis ontology graph to enhance the representations 
of diagnosis codes by incorporating information from 
relational diagnosis codes in the ontology graph using 
attention mechanisms. Zhang et al. [27] and Ye et al. [24] 
incorporate medical knowledge into sequential networks 
to enhance representation learning and obtain interpret-
able disease risk prediction results. Lu et al. [26] employ 
a patient-disease bipartite graph to create a weighted 
patient network (WPN) for learning robust patient repre-
sentations in chronic disease prediction. Shang et al. [5] 
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and Wang et al. [28] combine graph neural networks with 
bidirectional encoder representation from transformers 
(BERT) to capture inherent relationships between homo-
geneous medical codes in medical ontology graphs. Liu 
et al. [29] use temporal medical event graphs to represent 
complex relationships among different types of medical 
information for next-period prescription prediction. Mao 
et al. [30] construct medical graphs using historical EMR 
data to incorporate information from correlative entities 
into code representation for medication prediction and 
lab test imputation. Su et al. [31] construct dynamic co-
occurrence graphs for each patient admission record and 
employ a graph-attention augmented sequential network 
to model inherent structural and temporal information 
for medication prediction. However, these models do not 
fully leverage the significant relations between medical 
codes due to a lack of global graph representation learn-
ing and the extraction of only local sub-graphs from the 
global guidance relation graph.

Although GNN-based models have achieved good 
performance in various tasks, they still face certain chal-
lenges. For instance, obtaining supervised labels can be 
complex and laborious, and models may require retrain-
ing for new tasks or feature changes. To address these 
issues, researchers have explored novel training methods 
for GNNs, such as graph self-supervised learning. Graph 
self-supervised learning is an unsupervised graph rep-
resentation learning approach that relies solely on the 
topology and node information of the graph itself, with-
out depending on explicit labels. For instance, Petar [11] 
incorporates Deep InfoMax [32] into the graph learning 
domain and models a general self-supervised learning 
framework based on the mutual information maximiza-
tion. Similarly, Kaveh et al. [33] train the graph by maxi-
mizing the representation graph encoding of different 
graph structure perspectives. In the biomedical domain, 
Sun et  al. [34] propose a novel molecular graph con-
trastive learning framework that incorporates local and 
global domain knowledge to enhance graph representa-
tion learning. Therefore, inspired by the advantages of 
contrastive learning methods, we incorporate a graph 
contrastive learning framework with two different graph 
encoders to learn the embeddings of medical codes from 
the medical ontology graph and medical codes relation 
graph in an unsupervised manner.

Materials and methods
Dataset and dataset preprocessing
To validate the effectiveness of the proposed KAMP-
Net, in this paper, we conduct the experiments on a 
publicly available dataset MIMIC-III [35] which is a 
large, freely-available database comprising deidentified 
health-related information associated with over 40,000 

patients who were admitted to critical care units of the 
Beth Israel Deaconess Medical Center over the 12-year 
period between 2001 and 2012 and had relatively com-
plete multi-sourced EMR. In particular, the dataset con-
tains various kinds of heterogeneous information, such as 
diagnosed diseases, treatment medications and patient 
demographics etc., which satisfy the data requirement 
of our model. And we mainly extract useful information 
from tables PRESCRIPTIONS and DIAGNOSES_ICD.

The critical selection process of the experimen-
tal cohort is shown in Fig.  3. Firstly, the patients in the 
experimental cohort should have at least one complete 
visit record consisting of diagnosed diseases and treat-
ment medications. Specifically, the patients with only one 
hospitalized visit record are mainly utilized to construct 
the medical knowledge graphs, including the ontology 
and relation graphs. While the patients with multiple 
hospitalized visit records are divided into training and 
testing sets and are harnessed for the sequence learn-
ing of KAMPNet. It is worth noting that the patients in 
the training set are also used to assist in constructing the 
multi-sourced medical knowledge graph.

Besides, similar to [4], the medications prescribed by 
doctors for each patient within the first 24 h are selected 
as the medication set since it belongs to a crucial period 
for each patient to get rapid and accurate treatment [36]. 
In addition, the medicine codes from NDC are trans-
formed to ATC Level 3 for integration with MIMIC-III, 
and predicting category information not only guarantees 
the sufficient granularity of all the diagnoses but also 
improves the training speed, and predictive performance 
[7, 37]. Table  1 provides more information about the 
patient cohort from the dataset.

Proposed model: KAMPNet
The proposed model KAMPNet mainly consists of three 
main substructures: medical knowledge-related graph con-
struction, unsupervised contrastive learning for obtaining 
the enhanced medical code embeddings, and a supervised 
sequence learning network for medication prediction task.

Medical graph construction

Medical ontology graph construction  The hierarchical 
structures of the diagnosis classification system ICD-9 
and medication classification system ATC imply the 
meaningful relations between medical codes, which have 
been constructed as the medical domain knowledge in 
previous studies [5, 7]. Similarly, the leaf nodes of the tree 
structure based graph comprise the medical codes of his-
tory EMR, and the non-leaf nodes mainly come from the 
medical codes classification system ICD-9 or ATC. By 
the above existing approach, the ICD-9 ontology graph 
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Gd = {Vd , Ed} consisting of diagnosed disease codes 
and the hierarchical relations, the ATC ontology graph 
Gm = {Vm, Em} consisting of treatment medication codes 
and the hierarchical relations are constructed respec-
tively. And the unified indication of the above different 
medical ontology graphs is represented as G∗ = {V∗, E∗} , 
where V∗ is the set of graph nodes (medical codes), and 
E∗ is the set of edges (the relations of medical codes). 
Among them, the set of medical codes C∗ constitutes the 

leaf nodes of medical ontology graphs, and the set of all 
the graph nodes of G∗ satisfies V∗ = C∗ ∪ C′ , where C′ 
denotes the set of non-leaf nodes.

Medical codes relation graph construction  In the 
actual clinical application scenario, patients will gener-
ally be diagnosed with a variety of diseases and given a 
variety of treatment medications during a single medi-
cal treatment, which also indirectly illustrates that there 
exist specific relations between diseases, medications, 
and between diseases and medications in the electronic 
medical records data. Therefore, based on the historical 
EMRs data generated by patients during each visit, and 
inspired by the dynamic weighted graph built on the his-
tory purchase records [38], we will construct the medical 
codes relation graph based on the co-occurrent medical 
codes including diagnosis codes and medication codes.

Figure 4 shows the detailed process of the medical codes 
relation graph construction based on the history EMR of 
patients. Since the patient with a single hospitalized visit 
has only one visit record, and the patient with multiple 
hospitalized visits has multiple visit records, in this paper, 
the construction of the medical codes relation graph does 
not consider the temporal sequence information but only 
considers the implicit relation between medical codes 

Fig. 3  The flow chart of patients selection

Table 1  Statistics of the MIMIC-III datasets

MIMIC III Quantity

# of patients (Single visit) 30745

avg # of diagnosis 39

avg # of medication 52

# of unique diagnosis 1997

# of unique medication 323

# of patients (Multi visit) 6350

avg # of diagnosis 10.16

avg # of medication 7.33

avg # of visits 2.36

# of unique diagnosis 1958

# of unique medication 145
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of history EMR data. Therefore, the visit-based medical 
record extracted from the patient’s history EMR is repre-
sented as Ri , and every hospitalized visit could produce a 
diagnosis code and medication code. As shown in Fig. 4, 
there are three historical records: R1,R2,R3 , and each 
record Ri includes diagnosis code m∗ and medication 
code d∗ . Based on the visit records shown in Fig.  4 (1), 
the corresponding medical code pairs in each visit record 
can be generated such as (d1, d2) , (d1,m1) , (m1,m2) , . . . . 

After mathematical statistics, the generated medical code 
pairs and the number of co-occurrence are shown in 
Fig.  4 (2). There are three implicit relations: the concur-
rent relation between diseases d − d , the synergistic rela-
tion between medications m−m , and the therapeutic 
relation between diseases and medication d −m . Then, 
considering that the relations between medical codes are 
not only related to the number of co-occurrence but also 
related to the frequency of medical codes, the pointwise 

Fig. 4  Construction process of medical codes relation graph
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mutual information (PMI) [39] commonly used in natural 
language processing to measure the relevance of words is 
introduced to calculate the relation weights between med-
ical codes:

where |R| denotes the total number of visit records of 
all patients in the training dataset, P(ci, cj) and p(ci, cj) 
respectively denotes the probability and number of 
co-occurrence of medical codes ci and cj in single visit 
record, P(ci) and p(ci) indicates the probability and num-
ber of occurrence of medical code ci in visit records, P(cj) 
and p(cj) indicates the probability and number of occur-
rence of medical code cj in visit records. The mutual 
information between the above medical code pairs is 
for all the code pairs, including d − d,m−m and d −m 
forms, without distinguishing whether they are homo-
geneous medical codes or heterogeneous medical codes. 
The main reason is that the relation degree between the 
medical code pairs is obtained by calculating statisti-
cal mutual information, which belongs to the scope of 
quantitative analysis without involving any medical back-
ground. Therefore, the qualitative relation is ignored in 
the quantitative calculation, even though the heterogene-
ity between medical codes does exist in reality.

Then, as shown in Fig.  4 (3), the medical codes rela-
tion graph Gr = {Vr , Er ,Wr} can be built through the 
triplets obtained by the previous step, where Vr repre-
sents the graph nodes set, also called the medical codes 
set C = [Cd , Cm] , Er is the graph edges set, Wr represents 
the relation weight. Moreover, the heterogeneity between 
diagnosis code and medication code would be neglected 
for the reason that the relation strength between medi-
cal codes is the critical consideration factor in this paper. 
The medical code pairs obtained in Fig. 4 (2) determine 
the edges between nodes in the relation graph. Thus, the 
edge weights in adjacency matrix A of the medical codes 
relation graph Gr can be further calculated as follows:

Different from the calculation method in [31], here, 
we incorporate a graph sparsity factor 0 < ζ < PMImax 
in Eq. (2), which aims to mitigate the effects of noise 
that might be introduced by relying solely on statistical 

(1)

PMI(ci, cj) = log
P(ci, cj)

P(ci)P(cj)

= log

p(ci ,cj)

|R|
p(ci)
|R|

p(cj)

|R|

= log
p(ci, cj)

p(ci)p(cj)
|R|,

(2)A(ci, cj) = PMI(ci, cj) if PMI(ci, cj) > ζ ,
0 else.

quantitative computation method and ignoring medi-
cal expertise. Moreover, the relation graph belongs to 
a symmetric matrix, i.e., A(cj , ci) = A(ci, cj) . In this way, 
the ultimately complete medical codes relation graph 
is obtained as shown in Fig.  4 (4) In the end, another 
initial representation method of medical codes relation 
graph Gr can be obtained, i.e., Gr = (C,A).

Unsupervised contrastive learning on medical ontology 
graphs
To avoid the dependency on the labels and make the 
learned medical codes representations directly applied in 
the downstream tasks such as medication prediction, the 
unsupervised graph contrastive learning method based on 
DGI [11] are incorporated to learn the medical codes repre-
sentations by maximizing the mutual information of graph 
representation in the following two cascaded sections.

As illustrated in Fig.  5, (1) and (2) respectively describe 
the introduced unsupervised contrastive learning processes 
on the medication code ontology graph and diagnosis code 
ontology graph. Such a learning process consists of four crit-
ical substructures: graph data augmentation, GNN-based 
encoder, graph pooling layer, and contrastive loss function.

Similar to previous knowledge-enhanced methods pre-
sented in G-BIRT [5], the medical codes ci of ontology 
graph G∗ can be randomly assigned an initialized embed-
ding vector vi which could be optimized and updated 
through a learned embedding matrix W e ∈ R

C∗×d , where 
d indicates the dimension of the medical code embed-
ding vector. Then the constructed medical ontology 
graph G∗ = {V∗, E∗} can be indicated as (X∗,A∗) , where 
X∗ represents the set of initialized medical codes repre-
sentations of the ontology graph G∗ and A∗ represents the 
corresponding adjacency matrix.

Graph data augmentation  Then as shown in Fig. 5 (1) 
and (2), the initialized constructed medical ontology 
graph (X∗,A∗) undergoes graph data augmentation to 
obtain the negative sample via corruption function such 
as the graph nodes permutation. In detail, the C is used to 
randomly perturb the nodes without changing the topol-
ogy structure of the ontology graph; namely, the adja-
cency matrix A∗ , which aims to obtain the augmented 
ontology graph: (X̂∗, Â∗) = C(X∗,A∗).

GNN‑based encoder  In fact, there should be no restric-
tions on the choice of graph encoders. Here, to fully uti-
lize the inherent topological hierarchical structure of the 
medical ontology graph for further capturing the implicit 
relations between medical codes, we directly incorporate 
the graph attention network (GAT) [40] used in previ-
ous study G-BIRT [5] as the graph encoder F  to obtain 
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the medical codes embedding representations of medical 
ontology graphs.

Given the medical ontology graph G∗ is a hierarchical 
structural graph with a parent-child substructure, the 
relation between medical codes can be captured from 
two different paths. That is, on the one hand, the medical 
codes corresponding to the parent nodes should infuse 
the information corresponding to the medical code of 
the child node; on the other hand, the embedding rep-
resentation information corresponding to the medical 
code of the parent node also should be transmitted to the 
leaf node. For each non-leaf node in the medical domain 
knowledge graph c′ ∈ C′ and the leaf node c∗ ∈ C∗ , the 
corresponding augmented embedding representations 
vc∗ ∈ R

d and ho∗ ∈ R
d can be computed as follows:

where f (·, ·, ·) indicates the graph information aggrega-
tion function, ch(c′) is a function to extract all direct child 
nodes of non-leaf medical code c′ , while pa(c∗) repre-
sents a function which can extract all parent nodes of the 
leaf medical code c∗ . The above method realizes the two-
way information transmission (from top to bottom and 
from bottom to top) through the hierarchical structure. 

(3)
vc′ = f (c′, ch(c′),W e),

oc∗ = f (c∗, pa(c∗),V e),

In this way, the implicit relations between the medical 
codes can be fully captured; that is, the medical codes 
representations are augmented, which can further alle-
viate the sudden decline of prediction accuracy caused 
by the insufficient learning problems of the tail codes in 
electronic medical records.

Due to the graph information aggregation in above 
two-way information transmission process requires con-
sidering the relation difference between medical codes, 
in this paper, we incorporate the graph attention network 
(GAT) [40] as the aggregation function f (·, ·, ·) , and it is 
also the shared graph encoder of the graph contrastive 
learning framework for calculating the graph nodes rep-
resentations. Specifically, the representation vectors of 
each medical code ci is computed using the graph atten-
tion network aggregation function f (·, ·, ·) as follows:

where Ni = {ci} ∪ pa(ci) denotes the first order neigh-
borhood nodes set of medical code ci in the medical 
ontology graph, ‖ is the concatenation operation of the 
embedding representations computed by multi-head 
attention, K is the number of attention heads, σ is the 
nonlinear activation function Sigmoid, W k ∈ R

m×d is 
the transformation matrix to be learned, where m = d/k . 

(4)f (ci, p(ci),H e) = �Kk=1σ



�

j∈Ni

αk
i,jW

kvj


,

Fig. 5  Multi-level unsupervised contrastive learning framework. It consists of three different contrastive learning processes: (1) Contrastive learning 
on medication code ontology graph; (2) Contrastive learning on diagnosis code ontology graph; (3) Contrastive learning on medical codes relation 
graph
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While, αk
i,j indicates the k-th standardized relevance 

score, which can be calculated as follows:

where a ∈ R2m is the learned weight parameter. And we 
propose to use LeakyReLU [41] as the nonlinear activa-
tion function. The reason is Leaky ReLU maintains a 
small slope (typically a small positive value, such as 0.01) 
for negative inputs, unlike traditional ReLU which has a 
gradient of zero for negative inputs and the occurrence 
of "dead" or "dying" neurons. This non-zero gradient 
property is beneficial as it provides a continuous and dif-
ferentiable activation function, allowing gradient-based 
optimization methods to be applied effectively dur-
ing backpropagation. The continuous gradient enables 
smoother and more stable learning, aiding convergence 
and improving the overall training process.

Therefore, we can utilize the above graph encoder F  to 
respectively compute the embedding representations of 
the medical codes from medical ontology graph G∗ and 
augmented medical ontology graph Ĝ∗ as follows:

where Oc∗ and Ôc∗ respectively denotes the embedding 
representations sets of medical codes from G∗ and Ĝ∗.

Graph pooling layer  The graph pooling layer is mainly 
leveraged to compute the global feature vector z∗ through 
readout function R:

where O indicates the unified symbol of embedding rep-
resentation of medical codes of the medical ontology 
graph (diagnosis and medication).

Contrastive loss function  In order to train the graph 
encoder end-to-end and learn to obtain the informative 
medical codes embedding vectors and the medical ontol-
ogy graph embedding representation, we still utilize the 
maximization of mutual information [32] between medical 
code embedding vector oci∗ and the medical ontology graph 
embedding representation z∗ as the objective loss function. 
First, the negative and positive sample pairs (oci∗ , z∗) and 
(ôci∗

, z∗) can be obtained through graph encoder and graph 
pooling layer. Then, the discriminator D is introduced to 
score the positive and negative sample pairs:

(5)αk
i,j =

e

(
LeakyReLU

(
aT

[
W kvi�W kvj

]))

∑
k∈Ni

e

(
LeakyReLU

(
a⊤

[
W kvi�W kvk

]))

(6)
Oc∗ = F(V∗, E∗) = {oc1∗ , oc2∗ , ..., oc|C|∗

},

Ôc∗ = F(V̂∗, Ê∗) = {ôc1∗ , ôc2∗ , ..., ôc|C|∗
},

(7)z∗ = R(Oc∗) =
1

|C∗|

|C∗|∑

i=1

oci∗ ,

Finally, the overall objective function is to maximize 
the mutual information in the form of JS divergence as 
follows:

Through the above detailed graph contrastive learning 
on medical ontology graphs, we can obtain the knowl-
edge augmented medical codes embedding vectors 
Oc including knowledge augmented medication codes 
embedding vectors Ocm and knowledge augmented diag-
nosis codes embedding vectors Ocd (as shown in Fig. 5).

Unsupervised contrastive learning on medical relation graph
Factually, the obtained medical codes embedding vectors 
have infused the relational information from correlative 
medical codes, which can provide the initial embedding 
vectors for the nodes of the medical codes relation graph 
in this section. However, the medical ontology graphs 
do not explicitly provide the practically meaningful rela-
tions between medical codes and the implicit relations 
between homogeneous medical codes in the hierarchical 
topology structure (belonging to a local relation). There-
fore, in this section, the medical codes relation graph 
constructed on the basis of history EMR can directly 
models the explicit relations (belonging to a global rela-
tion) between homogeneous and heterogeneous medical 
codes through quantitative statistics and then uses the 
graph contrastive learning framework shown in Fig. 5 (3) 
to learn the relation augmented embedding vectors of the 
medical codes of the medical codes relation graph. The 
learning process will fully leverage the global relation 
between medical codes to model the interrelations of the 
medical codes embedding vectors.

As shown in Fig.  5 (3), the unsupervised contrastive 
learning on medical codes relation graph also includes 
four critical steps. First, the initialization vector of the 
corresponding node of medical codes from the medical 
codes relation graph can be retrieved directly from the 
obtained knowledge augmented medical code embed-
ding vectors set Oc , and denoted as X ⊂ Oc . Then, 
the medical codes relation graph can be indicated as 
Gr = (C,A) : (X ,A) . Subsequently, we can obtain the 
negative graph sample through graph nodes perturba-
tion, namely augmented medical codes relation graph 

(8)
D(oci∗

, z∗) = σ(z∗
TWDoci∗

),

D(ôci∗
, z∗) = σ(z∗

TWDôci∗
).

(9)

L = 1

|C∗|

|C∗|∑

i=1

E(V ,E)

[
logD

(
oci∗ , z∗

)]

+ 1

|C∗|

|C∗|∑

j=1

E(Ṽ ,Ẽ)

[
log

(
1−D

(
ôci∗

, z∗
))]
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(X̃ , Ã) ∽ (X ,A) . After that, the incorporated shared 
graph encoder is incorporated to encode the above 
two relation graphs. Different from the selected graph 
encoder GAT, the specially weighted graph convolu-
tional network (GCN) [20] is incorporated as the graph 
encoder in the graph contrastive learning framework 
in this section to infuse the relation weights between 
medical codes. Taking the medical codes relation graph 
(X ,A) as an example, we calculate the corresponding 
embedding vectors as follows:

where Â = A+ I,I is the identity matrix that aims to 
avoid the information loss caused by the small number of 
neighborhood nodes. The diagonal matrix D̂ii =

∑
j=0 Aij 

is used to normalize the weights of the connected edges 
of each node from the relation graph according to the 
edge weights from the adjacency matrix Â . � ∈ R

dx×dh 
is the learned network parameter. Considering the edge 
weights, the weighted graph encoder realizes the mutual 
infusion of correlative medical codes information in 
the medical codes embedding vectors learning process 
according to the relevance degree. Similarly, with the help 
of the above graph encoder weighted GCN, we can fur-
ther encode the negative graph sample, i.e., augmented 
medical codes relation graph (X̃ , Ã) , and obtain the cor-
responding medical codes embedding matrix (H̃ , Ã) 
(shown in Fig.  5 (3)). Afterwards, the readout function 
R̂ is used to compute the global embedding vector z of 
medical codes relation graph H = h1, h2, . . . , h|C|:

Finally, the constructed objective function based on 
the discriminant equation is introduced to optimize 
the graph contrastive learning process for the medical 
codes relation graph. Similar to the contrastive learning 
framework for medical ontology graph, we still utilize 
the maximization of mutual information [32] between 
the embedding representation vector hi of medical code 
on the medical codes relation graph and the global rela-
tion graph embedding vector z . Firstly, the negative and 
positive sample pairs (hi, z) and (ĥi, z) can be obtained 
through graph encoder and graph pooling layer. Then, 
the discriminator D is introduced to score the positive 
and negative sample pairs:

(10)H = D̂
−1/2

ÂD̂
−1/2

X�

(11)z = R̂(Oc∗) =
1

|C|

|C|∑

i=1

hi

(12)
D(hi, z) = σ(zTWDhi)

D(ĥi, z) = σ(zTWDĥi).

Then, the overall objective function is to maximize the 
mutual information in the form of JS divergence as follows:

After continuous optimization and iterative calcula-
tion, the final relation augmented medical codes embed-
ding representation vectors as shown in Fig.  5 (3) can 
be obtained, which, in the end, not only integrates the 
information from globally correlative heterogeneous and 
homogeneous medical codes embedding vectors in the 
medical codes relation graph but also infuses the infor-
mation from locally correlative homogeneous medical 
codes embedding vectors implied in the medical domain 
knowledge graphs (the medical ontology graphs).

Sequential learning network for medication prediction
As illustrated in Fig. 6, the sequential medication predic-
tion framework comprise three critical substructures, 
i.e., multi-sourced medical codes are embedding vectors 
fusion, sequence learning network, and the comprehen-
sive medication prediction.

Multi‑sourced medical codes embedding vectors 
fusion  The knowledge augmented medical codes embed-
ding vectors Oc = {Ocm ,Ocd } and the relation augmented 
medical codes embedding vectors H are respectively 
obtained through corresponding graph contrastive learn-
ing network. While for each specific prediction task, it has 
different task-specific requirements for the medical codes 
embedding vectors. Therefore, in the medication predic-
tion task, the learned medical codes embedding represen-
tation vector ei ∈ R

d that can be supervised and fine-tuned 
in the specific prediction task is also incorporated:

where W e ∈ R
|C|×d is the medical codes embedding 

matrix to be learned, C = [Cd , Cm] is the union set of 
medical codes, and Cd and Cm respectively denote the sets 
of diagnosis codes and medication codes. In this way, we 
can get the dense embedding vector matrix of medical 
codes that can be learned, i.e. E = [e1, . . . , e|C|] ∈ R

|C|×d.

Each hospitalized visit will generate different medical 
codes corresponding to different diagnoses and medica-
tions. The corresponding medical codes embedding vec-
tors could be retrieved from the obtained medical codes 

(13)

L = 1

|C|

|C|∑

i=1

E(X ,A)[logD(hi, z)]

+ 1

|C|

|C|∑

j=1

E
(X̃ ,Ã)

[
log

(
1−D

(
ĥi, z

))]
.

(14)ei = W eci,
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embedding vectors sets, including knowledge augmented 
medical codes embedding vectors set Oc , relation aug-
mented medical codes embedding vectors set H , and the 
supervised learning medical codes embedding vectors set 
E . For instance, we can first retrieve the corresponding 
embedding representations of medical codes produced in 
i-th visit record from the medical codes embedding vec-
tors sets, i.e. the medical diagnosis codes embedding rep-
resentations including Oi

d ⊂ Oc , H i
d ⊂ H and Ei

d ⊂ E , 
the medical medication codes embedding representations 
including Oi

m ⊂ Oc , H i
m ⊂ H and Ei

m ⊂ E . Then the cor-
responding mean values of medical codes representation 
vectors sets are calculated to obtain the visit-level diag-
nosis codes embedding vectors containing oid , hid and eid , 
and medication codes embedding vectors containing oim , 
him and eim ; Finally, the calculated embedding vectors are 
respectively concatenated together to obtain the input of 
diagnosis codes sequence learning network and medica-
tion sequence learning network, i.e. xid = [oid ,h

i
d , e

i
d] and 

xim = [oim,him, eim].

Sequence learning network  When patient possesses 
multiple hospitalized visit records and needs to pre-
dict the treatment medications at current timestamp t, 
firstly, we require integrating described multi-sourced 
medical codes embedding vectors together at his-
tory timestamps, including the history diagnosis codes 
embedding representation sequence {x1d , x2d , . . . , xtd} and 
the history medication codes embedding representation 

sequence {x1m, x2m, . . . , x(t − 1)m} ; afterwards, the tem-
poral sequential learning network such as the recurrent 
neural networks (RNNs) are respectively utilized to cap-
ture the temporal dependencies of sequential medical 
codes as follows:

Medication prediction  The hidden state vectors htm and 
htd that incorporates the history information are obtained 
through the sequence learning network (Eq. (15)). How-
ever, considering the importance of current diagnosis 
information for the medication prediction at the current 
timestamp, the current diagnosis code embedding vec-
tor xtd is also integrated into the patient representation. 
Therefore, the comprehensive patient representation vec-
tor OP can be calculated as follows:

where xtd ∈ R
d+do+dh , htm,h

t
d ∈ R

2d , and 
W P ∈ R

(5d+do+dh)×de is the parameter to be learned. Accord-
ing to the comprehensive patient representation vector 
OP , the current treatment medication ŷmt  can be pre-
dicted as follows:

(15)
htm = RNNm(x

1
m, x

2
m, . . . , x

t−1
m ),

htd = RNN d(x
1
d , x

2
d , . . . , x

t
d).

(16)OP = W P · [htm,htd , xtd],

(17)ŷmt = softmax(WO ·OP + bo),

Fig. 6  Medication prediction framework
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where ŷmt  denotes the predicted multi-label medications 
set. WO ∈ R

|Cm|×de and bo ∈ R
|Cm| are the parameters to 

be learned, where Cm denotes the medication codes set, 
and |Cm| is the size of set.

Due to the medication prediction task belonging to the 
domain of sequential multilabel prediction, we utilize 
the binary cross-entropy loss L as the objective function. 
According to the prediction result ŷmt  at each timestamp 
t and the real label ymt  , the predictive function binary 
cross-entropy loss is formulated as follows:

Experiments
Experimental details
The experiment details include three parts: evaluation 
metrics, benchmark models and experimental setting.

Evaluation metrics
To evaluate the performance of the proposed KAMPNet, 
the Jaccard similarity score (Jaccard), precision-recall 
AUC (PR-AUC), and average F1 (F1) are adopted as the 
evaluation metrics. In practice, KAMPNet cannot wholly 
replace doctors and only screen possible medications as 
much as possible to assist physicians in prescribing medi-
cations for patients. Therefore, Jaccard should be one 
of the appropriate evaluation metrics. And it is defined 
as the size of the intersection divided by the size of the 
union of the predicted set Ŷ m

t  and ground truth set ymt  as 
follows:

where Ti is the number of visits for the ith patient, and N 
denotes the number of patients in the test set. And recall 
can be utilized to measure the predicted medications’ 
completeness:

Furthermore, for the medication prediction task, due to 
the number of positive and negative labels being imbal-
anced, the precision-recall curve utilized to calculate 
the PR-AUC has proved to be an appropriate evaluation 
metric.

In addition, the predicted medications’ correctness 
should also be evaluated. Thus, the evaluation metric 

(18)

L = − 1

T − 1

T∑

t=2

ymt log σ
(
ŷmt

)
+

(
1− ymt

)
log

(
1− σ

(
ŷmt

))
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t

∣∣∣
∣∣∣Y i

t ∪ Ŷ i
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(20)Recall = 1
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i

∑Ti
t 1
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t

∣∣∣
∣∣Y i

t

∣∣

F1 is incorporated to evaluate the multilabel classifica-
tion task comprehensively. Firstly, precision is generally 
adopted to measure the prediction correctness and can 
be calculated as follows:

Then, the metric F1 can be computed as follows:

Benchmark models
To verify the superiority of the proposed model KAMP-
Net on medication prediction tasks, we compare it with 
the following baseline methods used for medication 
prediction, which include one machine learning-based 
method and six deep learning-based algorithms:

•	 LR [42]. It is a logistic regression with L1/L2 regu-
larization. We sum the multi-hot vector of each visit 
together and apply the binary relevance technique 
[42] to handle the multilabel output.

•	 Retain [43]. RETAIN is an interpretable model with 
a two-level reverse time attention mechanism to pre-
dict diagnoses, which can detect significant past vis-
its and associated clinical variables. It can be used for 
similar sequential prediction tasks, such as predicting 
treatment medicines.

•	 LEAP [13]. Leap formulates the medicine prediction 
problem as a multi-instance multilabel learning prob-
lem, mainly using a recurrent neural network (RNN) 
to recommend medicines.

•	 GRAM [7]. It utilizes the diagnosis ontology graph to 
enhance the diagnosis code representation by infus-
ing the information from relational medical codes in 
a supervised method.

•	 GAMENet [4]. It employs a dynamic memory net-
work to save encoded historical medication infor-
mation, and further utilizes a query representation 
formed by encoding sequential diagnosis and proce-
dure codes to retrieve medications from the memory 
bank.

•	 G-BIRT [5]. G-BIRT combines the graph neural net-
work and bidirectional encoder representation from 
transformers (BERT) to enhance medical code repre-
sentations through a pre-training method.

•	 GATE [31]. GATE constructs the dynamic co-
occurrence graph at each admission record for every 

(21)Precision = 1
∑N

i

∑Ti
t 1

N∑

i

Ti∑
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.
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patient. It then introduces a graph-attention aug-
mented sequential network to model the inherent 
structural and temporal information for medication 
prediction.

Experimental settings
To ensure the rationality of experimental verification, 
the pretreated clinical patients’ EMR data are still ran-
domly divided into training, validation, and test sets 
with 2/3 : 1/6 : 1/6 ratios and the experimental results 
are the average values across five runs of random group-
ing and training. Moreover, the dimension of hidden 
layers and hyper-parameters in KAMPNet is set as fol-
lows: in the unsupervised graph contrastive learning 
framework for medical ontology graph, the dimension 
of hidden layers are set to 128, the node embedding size 
of graph encoder GAT is set to 32, the attention head is 
set to 4; in the unsupervised graph contrastive learning 
framework for medical codes relation graph, the dimen-
sion of hidden layers and the node embedding size of 
encoder GCN are all set to 64; the dimension of hidden 
layers in temporal sequential learning network is set to 
256. In addition, the training is performed using Adam 
[44] at a learning rate of 5e-4, and we report the model 
performance in the test set within 40 epochs. All meth-
ods are trained on a Windows with 11GB memory and 
an Nvidia 2080Ti GPU using the deep learning compu-
tation platform Pytorch 1.6.

Discussion
Discussion of prediction results
As demonstrated in Table  2, the treatment medication 
prediction results show that the performance of our 
proposed method KAMPNet is better than the exist-
ing state-of-the-art predictive models in health infor-
matics in most cases. In detail, compared with baseline 
model LEAP, KAMPNet achieves about 10.52%, 9.46%, 

13.4% higher performance concerning Jaccard, F1, and 
PR-AUC, respectively. We think the prominent reason 
might be that LEAP models the medication prediction 
problem as an instance-based medication prediction pro-
cess which directly neglects the temporal dependency 
and does not consider the importance of implicit domain 
knowledge. The medication prediction performance 
of Retain is relatively better than LEAP, which could be 
attributed to its two-level attention-based model, which 
can capture the temporal relations and the relation 
between input features and output labels. Such a two-
level attention-based sequential prediction model makes 
Retain’s performance even better than the GRAM model, 
which firstly introduces the hierarchical knowledge into 
the healthcare predictive model through the attention 
mechanism.

Secondly, the similarity between GAMENet and 
KAMPNet is that the obtained diagnoses sequence and 
treatment medications sequence all utilize a sequence 
learning model to capture the temporal dependencies 
between medical codes. The difference is that GAMENet 
does not construct the relations between medical codes 
directly but constructs the medication-visit graph for 
capturing the indirect relations between medications 
for later retrieval using the attention mechanism. In 
other words, GAMENet considers modelling the co-
occurrence relations between medications, while our 
KAMPNet takes the multiple relations between hetero-
geneous or homogeneous medical codes into considera-
tion. Therefore, on the medication prediction task, our 
KAMPNet outperforms GAMENet by 4.18%, 3.28%, 
3.41% on Jaccard, F1, PR-AUC, respectively. Unlike 
GAMENet, G-BIRT does not directly construct the rela-
tion between medical codes. Instead, it enhances the 
relation between medical codes using a pre-training 
method on the medical ontology graphs, including diag-
nosis code ontology graph and medication code ontology 
graph, which can make full use of the EMR data of sin-
gle hospitalized patients. However, medical code embed-
ding representation learning in G-BIRT mainly relies on 
the medication or diagnosis labels provided in history 
EMR and ignores the inherent relations between medical 
codes implied in EMR data. Although GATE also consid-
ers the relations between medical codes by building the 
co-occurrence graphs for each patient from the global 
guidance relation graph, it still neglects the infusion of 
valuable information of correlative medical codes from 
the medical codes relation graph and relies on the super-
vised label of the medication prediction task. Therefore, 
KAMPNet performs better than the latest knowledge-
enhanced algorithm G-BIRT and GATE, and its Jaccard, 
F1 and PR-AUC improve at least by 2.31% on Jaccard, by 
1.39% on F1 and by 1.08% on PR-AUC, respectively.

Table 2  Performance comparison on medication prediction task

Methods Jaccard F1 PR-AUC​

LR 0.4075 0.5658 0.6716

LEAP 0.3921 0.5508 0.5855

Retain 0.4456 0.6064 0.6838

GRAM 0.4176 0.5788 0.6638

GAMENet
− 0.4401 0.5996 0.6672

GAMENet 0.4555 0.6126 0.6854

G-BIRT 0.4565 0.6152 0.6960

GATE 0.4742 0.6315 0.7087

KAMPNet 0.4973 0.6454 0.7195
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The critical reason that our proposed KAMPNet 
achieves the best performance compared with baseline 
models could be summarized as follows: (1) With the 
help of a multi-level unsupervised contrastive learning 
framework, it can capture the relations between medical 
codes and augments the medical codes representations 
based on the medical ontology graphs. (2) Then, the rela-
tions between medical codes implicit in the constructed 
medical code relations graph are further captured to 
learn more informative medical codes embedding rep-
resentation vectors, contributing to the downstream 
tasks such as medication prediction. (3) The incorpo-
rated sequential learning network can further combine 
the supervised medical codes representations with the 
learned knowledge and relation augmented medical 
codes representations and then captures the temporal 
relations between medical codes for downstream medi-
cation prediction task.

Ablation study on model components
To verify the effectiveness of the critical components 
of KAMPNet and analyze their influence on the per-
formance of medication prediction tasks, we conduct 
an ablation study to explore further the necessity of the 
proposed model components in our multi-level graph 
contrastive learning framework on the multi-sourced 
medical knowledge for the medication prediction task.

As illustrated in Table 3, compared with KAMPNet, the 
performance of five model variants decreased to varying 
degrees. We think the reason might be that the lack of 
model components leads to the failure of effective mining 
of the valuable relations between medical codes implicit 
in the multi-sourced medical knowledge. The details of 
the five variants are as follows:

•	 KAMPNetRG− . The variant KAMPNetRG− does not 
consider the medical codes relation graph con-
structed based on the empirical knowledge from 
the history EMR data. That is, the relation aug-
mented medical codes embedding representation 

vectors hid and him are respectively excluded from 
the input of the corresponding sequence learning 
network. the performance of variant KAMPNetRG− 
decreases by 1.48% on Jaccard, 1.01% on F1, and 
0.22% on PR-AUC. The main reason is that the vari-
ant considers the locally inherent relations between 
medical codes in the medical ontology graph and 
does not consider capturing the valuable global 
relations between homogeneous or heterogeneous 
medical codes in the medical codes relation graph.

•	 KAMPNetHG− . The variant KAMPNetHG− does 
not consider the medical domain knowledge graph, 
including the diagnosis code ontology graph and med-
ication code ontology graph. That is, the knowledge 
augmented medical codes embedding representation 
vectors oid and oim are respectively excluded from the 
input of the corresponding sequence learning network. 
The performance of the variant declines by 1.81% on 
Jaccard, 1.41% on F1, 0.51% on PR-AUC, respectively, 
which is mainly because the medical codes relation 
graph can not acquire the meaningful initialization 
vectors for its nodes from the medical ontology graph. 
Moreover, the valuable relations between medical 
codes embodied in the inherent hierarchical structures 
in medical ontology graphs would not be captured for 
augmenting the medical codes embedding vectors.

•	 KAMPNetHGRG− . The variant KAMPNetHGRG− con-
currently neglects the multi-sourced knowledge 
augmented medical codes embedding representa-
tion vectors and considers the supervised learnable 
medical codes embedding representations eid and eim 
in a sequence learning network. It achieves lower by 
1.64%, 1.29%, 0.57% than KAMPNet respectively on 
Jaccard, F1, PR-AUC, but has relatively better per-
formance than KAMPNetHG− , which demonstrates 
that there exists specific noise in the medical ontol-
ogy graphs. In the future, we will explore how to 
effectively reduce the adverse effect of noise in multi-
sourced medical knowledge.

•	 KAMPNetR− . The variant KAMPNetR− indicates that 
the medical codes relation graph would not utilize 
the learned knowledge augmented medical codes 
embedding representation vectors to initialize the 
graph nodes (medical codes). It further validates 
the importance of such implicit information in the 
multi-level graph contrastive learning framework, 
which is proposed based on the relations between the 
medical ontology graph and the medical codes rela-
tion graph. It also indirectly explains why the perfor-
mance of KAMPNet is relatively optimal when using 
the knowledge augmented medical codes embedding 
representation vectors as the initialization vector of 
the nodes of the medical codes relation graph.

Table 3  Performance comparison of the variants of KAMPNet on 
MIMIC-III dataset

Model Jaccard F1 PR-AUC​

KAMPNet
RG

− 0.4825 0.6353 0.7173

KAMPNet
HG

− 0.4792 0.6313 0.7144

KAMPNet
HGRG

− 0.4809 0.6325 0.7138

KAMPNetR− 0.4866 0.6357 0.7147

KAMPNet
RG

W− 0.4911 0.6396 0.7165

KAMPNet 0.4973 0.6454 0.7195
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•	 KAMPNetRGW− . The variant KAMPNetRGW− con-
siders whether there are relations between medical 
codes and does not consider the relation weights 
reflected in the medical codes relation graph. In this 
way, the performance of variant KAMPNetRGW− 
decreases compared with presented KAMPNet , 
which further testifies that the relation weights based 
on co-occurrence probability obtained via the statis-
tical method in the medical codes relation graph have 
a positive promoting effect on the performance of 
medication prediction.

Therefore, the proposed KAMPNet in this paper 
achieves the best performance only when the model’s 
components complement each other.

Analysis on the graph sparsity factor ζ
In the construction process of the medical codes rela-
tion graph, considering the adverse effects of the noise 
introduced by relying solely on the statistical quantitative 
computation method and ignoring medical expertise, the 
graph sparsity factor 0 < ζ < PMImax (Eq.  2) is incor-
porated in the Eq. 2. This section will explore the effect 
of graph sparsity factor 0 < ζ < PMImax on medication 
prediction performance.

Table 4 shows the prediction results of treatment medi-
cations when the medical codes relation graph is con-
structed based on different graph sparsity factors. It can 
be seen from the table that when ζ = 0.07 , the prediction 
performance of model KAMPNet is the best, and the per-
formance decreases in varying degrees with the increase 
or decrease of ζ value. When ζ < 0.07 , the redundancy 
of relations between medical codes might result in rela-
tively more noise, which leads to a decline in prediction 
performance; when ζ > 0.07 , with the increasing value 
of the graph sparsity factor, some meaningful edges with 
beneficial relation might be neglected due to the sparsity, 

which would bring about the incomplete captures of the 
relations between medical codes and would further cause 
the decline of model performance. In general, the value 
of the sparsity factor has a relatively small impact on the 
prediction results compared with the critical components 
studied in the Ablation study on model components sec-
tion. The prominent reason may be that the noise influ-
ence in the medical codes relation graph is relatively 
small, and the valuable relations between medical codes 
and the augmentation of the embedding representation 
vectors of medical codes are still dominant. In addition, 
the final representation of medical code is concatenated 
by multi-source medical codes embedding representa-
tions. The incomplete learning of one source medical 
code embedding representation can not have a notice-
able adverse impact on the prediction performance of 
the model KAMPNet. Factually, it further shows that the 
proposed KAMPNet is more robust in predicting treat-
ment medications.

Effects of graph encoders in contrastive learning networks
The multi-level unsupervised contrastive learning 
framework described in Materials and methods section, 
including the medical domain knowledge graph-based 
contrastive learning framework and the medical codes 
relation graph-based unsupervised contrastive learning 
framework, possesses respectively different graph encod-
ers because of distinct reasons. In this section, we will 
analyze the selection of different graph encoders in the 
graph contrastive learning framework and explore their 
effects on downstream tasks such as medication predic-
tion results. In Table  5, “Encoder in HG” indicates the 
applied graph encoder in the contrastive learning frame-
work based on the medical domain knowledge graph 
(HG), while “Encoder in RG” represents the applied 
graph encoder in the contrastive learning on the medi-
cal codes relation graph (RG). 

√
 denotes using the cor-

responding graph encoder, while × denotes not using the 
corresponding graph encoder.
KAMPNetAC indicates that the graph encoders in 

HG and RG based contrastive learning frameworks are 
graph attention network (GAT) and weighted graph 
convolutional network (GCN), respectively, which 
achieves the relatively optimal prediction result. While in 
KAMPNetCC , the graph encoder in HG based contrastive 
learning framework is replaced with general GCN, which 
results in a decrease in the medication prediction perfor-
mance. We think the main reason is that GAT can aggre-
gate the information of correlative neighbourhood codes 
to the leaf codes according to the learned relevance scores 
between connected medical codes, while general GCN 
does not consider the relation weights between medical 
codes and aggregate the information of connected (or 

Table 4  The effect of graph sparsity factor ζ on model 
performance

ζ Jaccard F1 PR-AUC​

0.01 0.4917 0.6398 0.7176

0.02 0.4908 0.6392 0.7163

0.03 0.4895 0.6384 0.7187

0.04 0.4948 0.6431 0.7199

0.05 0.4916 0.6407 0.7176

0.06 0.4924 0.6407 0.7196

0.07 0.4973 0.6454 0.7195

0.08 0.4922 0.6404 0.7201
0.09 0.4933 0.6413 0.7194

0.10 0.4903 0.6382 0.7175
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correlative) medical codes equally. Compared with vari-
ant KAMPNetAC , variant KAMPNetAA directly uses GAT 
as the graph encoder, which could relearn the relevance 
score and does not consider the relation weights repre-
senting the empirical knowledge from medical codes 
relation graph. The result is a decrease in prediction 
performance. Using GAT as the graph encoder in the 
medical codes relation graph-based contrastive learning 
framework is not appropriate. We think the main reason 
is that the learned normalized relation score between 
medical codes in GAT belongs to an uncertain relevance 
score. In contrast, the empirical relation weight between 
medical codes computed based on the co-occurrence 
probability in the medical codes relation graph is a rela-
tively specific relevance score. Therefore, compared to 
the above other variants, KAMPNetCA performs worst on 
the medication prediction task.

Limitations of the medication prediction model
Though the above extensive experiments have testified 
the efficacy of KAMPNet for reasonable medication pre-
diction, there are still some limitations on the results due 
to the complexity of the healthcare system. First, the real 
clinical decision-making process is full of uncertainty 
caused by various factors such as the professional level 
of doctors, the social environment, and the economic 
conditions of patients, which might cause medication 
prediction bias. Thus, in the future, we would consider 
cultivating more advanced methods to reduce the impact 
of bias on the prediction outcomes. Second, the medica-
tion prediction model is essential for hospitals, clinics, 
and retail pharmacies. Since we only utilized the MIMIC-
III dataset to testify the efficacy of our proposed model, 
the prediction outcomes of the model are not guaranteed 
on the data from other sources. However, provided the 
data has similar composition and structure defined in the 
previous section, the model should be applicable after 
fine-tuning. In the future, we will further evaluate our 
model on the datasets from clinics or retail pharmacies.

Additionally, the use of machine learning mod-
els in healthcare presents several ethical implications, 
such as privacy and data security, transparency and 

interpretability, informed consent and autonomy, human 
oversight and decision-making, etc. And here are some 
corresponding potential approaches to address them: (1) 
Cultivate encryption techniques and secure data storage 
protocols to safeguard sensitive data; (2) Develop explain-
able and interpretable machine learning models that pro-
vide insights into the factors influencing predictions; (3) 
Educate patients about the use of machine learning mod-
els in their healthcare and provide clear explanations of 
the benefits, risks, and limitations; (4) Offer patients the 
option to opt out of using machine learning models in their 
treatment decisions if they have concerns or preferences; 
(5) Encourage interdisciplinary collaboration between 
healthcare providers and data scientists to ensure a holistic 
approach to patient care. Thus, in the future, collaboration, 
transparency, and an ongoing commitment to ethical prac-
tices are essential to ensure the responsible and beneficial 
use of machine learning models in healthcare.

For the practical applications of model KAMPNet in 
the future, clinically, it could be utilized to assist doctors 
in making informed medication decisions for patients 
according to electronic medical records (EMR). In addi-
tion, the model could also be used to assist the hospi-
tal pharmacy management department, clinic, or retail 
pharmacies to predict the medications in advance for 
stocking. However, the model needs to be retrained using 
the datasets from different application scenarios. Thus, in 
the future, a user study pertaining to the practical appli-
cation scenario should be undertaken for validating the 
model’s feasibility in practice. Additionally, owing to the 
limited size of the population cohort itself, and the exper-
imental outcomes of existing approaches, the effect of the 
size of experimental samples on the prediction outcomes 
is neglected in our manuscript. In the future, the above 
factors will be taken into account once applied in the new 
dataset or private dataset for the generalization.

Conclusion and future work
In this study, we propose a multi-sourced medical 
knowledge-augmented medication prediction network. 
Expressly, we incorporate a novel multi-level graph 
contrastive learning framework for fully capturing the 
valuable relations between medical codes implicit in 

Table 5  The effect on prediction performance of different graph encoders

Model Encoder in HG Encoder in RG Prediction Performance

GAT​ GCN GAT​ GCN Jaccard F1 PR-AUC​

KAMPNetAC ✓ ✗ ✗ ✓ 0.4973 0.6454 0.7195

KAMPNetAA ✓ ✗ ✓ ✗ 0.4878 0.6381 0.7160

KAMPNetCC ✗ ✓ ✗ ✓ 0.4869 0.6373 0.7176

KAMPNetCA ✗ ✓ ✓ ✗ 0.4853 0.6358 0.7122
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the multi-sourced medical knowledge. The framework 
firstly leverages the local graph contrastive learning on 
the medical ontology graphs to learn the knowledge 
augmented embedding vectors of diagnosis codes and 
medication codes, which factually have infused the 
information of correlative medical codes into each other 
in the learning process. Then, the medical codes rela-
tion graph is constructed and utilized to learn the rela-
tion augmented medical codes embedding vectors using 
the graph contrastive learning framework, which aims to 
capture the global relations between homogeneous and 
heterogeneous medical codes. Finally, the multi-channel 
sequence learning network is presented to capture the 
temporal relations between medical codes, by which 
we can get a comprehensive patient representation for 
downstream tasks such as medication prediction. We 
evaluate the performance of the proposed KAMPNet 
on a real-world clinical dataset, and the experimental 
results show that our model achieves the best medica-
tion prediction performance against baseline models in 
terms of Jaccard, F1 score, and PR-AUC.

With the help of the presented framework, in the 
future, we can introduce more related medical domain 
knowledge, such as the medication-related molecu-
lar graph and the bipartite graph representing adverse 
medication reactions. In addition, we will cultivate more 
advanced algorithms to better mine the insightful infor-
mation implicit in the multi-sourced medical knowledge 
and explore how to determine the importance of multi-
sourced medical knowledge automatically.
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