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Abstract 

This research aims to develop a diagnostic tool that can quickly and accurately detect prostate cancer using electronic 
nose technology and a neural network trained on a dataset of urine samples from patients diagnosed with both pros‑
tate cancer and benign prostatic hyperplasia, which incorporates a unique data redundancy method. By analyzing 
signals from these samples, we were able to significantly reduce the number of unnecessary biopsies and improve 
the classification method, resulting in a recall rate of 91% for detecting prostate cancer. The goal is to make this tech‑
nology widely available for use in primary care centers, to allow for rapid and non‑invasive diagnoses.
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Introduction
Prostate cancer is one of the most common types of 
cancer in men, and early detection is critical for effec-
tive treatment. However, current methods for detecting 
prostate cancer, such as biopsies and digital rectal exami-
nation, are invasive and can lead to a high number of 
unnecessary procedures. The most commonly used bio-
logical marker for prostate cancer detection is PSA, or 
Prostate-Specific Antigen, but it is not specific to cancer 
and can lead to false positives in some situations such as 
benign prostatic hyperplasia, normal ejaculation, urinary 
retention [1], infection, or some gland inflammation [2]. 
Therefore, there is a need for a non-invasive method for 
detecting prostate cancer [3], as ilustrated in Fig. 1.

Over the last thirty years metal oxide semiconductor 
technology (MOS) applied to the detection of substances 
has been effective for many fields of science and industry: 
spirits [4] and [5], toxic gases [6], tobacco [7] or smoke 
[8], and medical applications [9]. The electronic nose 
(e-Nose), like the human being, has two major branches, 
acquisition, and processing. Chemical sensors react to 
certain substances and these reactions are processed 
through artificial intelligence software [10].

However, what sets our work apart is the pioneering 
approach we introduce. By harnessing a dataset of urine 
samples from patients diagnosed with both prostate can-
cer and benign prostatic hyperplasia, we have achieved 
a groundbreaking 91% recall rate for prostate cancer 
detection. This remarkable breakthrough, coupled with 
our novel neural network design and data redundancy 
method, not only reduces unnecessary biopsies but also 
positions the electronic nose as a transformative tool 
for primary point-of-care applications in the near future 
[11].

In recent decades, early and accurate cancer detection 
has become a crucial objective for improving survival 
rates and the quality of life for patients. The combina-
tion of cutting-edge technology, artificial intelligence, 
and data analysis has revolutionized the field of oncology, 
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opening new avenues for early detection and characteri-
zation of different types of cancer. In this context, our 
research is situated at the intersection of these disciplines 
with the goal of developing an innovative diagnostic tool 
that harnesses electronic nose technology and artificial 
intelligence for non-invasive prostate cancer detection.

To fully appreciate the relevance of our work, it is 
essential to recognize the significant contributions of 
prior research that have propelled the field of cancer 
detection and phenotyping. Among the most influential 
studies are the following:

D’Orazio et al [12] this pioneering study addressed the 
understanding of cancer cell behavior through motility 
and shape characteristics. It introduced techniques such 
as peer prediction and dynamic selection, which have 
been instrumental in enhancing cancer diagnosis and 
treatment.

D’Orazio et  al [13] this study marked a significant 
advancement by applying machine learning techniques 
and time-lapse microscopy to monitor gene expres-
sion and drug responses in colorectal adenocarcinoma 
cells. Its focus on phenomics has influenced the study of 
genetic and phenotypic variability in cancer.

Mencattini et  al [14] this work has demonstrated the 
importance of optimal feature selection in real-time cell 
imaging analysis. The "Deep-Manager" tool developed in 
this study has provided a solid foundation for optimizing 
feature extraction in cellular imaging analysis, which is 
relevant to cancer phenotyping.

In summary, while these previous investigations may 
not be directly related to our work, they have established 
a robust framework for it and illustrate the ongoing evo-
lution in cancer detection and characterization. Our 
research contributes to this body of knowledge by devel-
oping an innovative diagnostic tool that leverages elec-
tronic nose technology and artificial intelligence, with the 
potential to revolutionize early prostate cancer detection 
and reduce the need for invasive procedures.

Methods and procedures
In order to conduct a thorough machine learning study, a 
dataset must be created. The size of this dataset is crucial 
for the research, and in this case, it was compiled from 
patients with various stages of prostate cancer (CaP) 
and benign prostatic hyperplasia (HBP). As a result, the 
dataset includes two distinct patient groups: those with 
CaP and those with HBP. The study was approved by 
the Ethical Committee on Clinical Research of the Hos-
pital Universitari i Politècnic La Fe de Valencia (Spain) 
in compliance with the Declaration of Helsinki. Regis-
tration number ethics of CEIC: 2022-191-1 with date 
30/03/2017.

Getting dataset
In this study, we employed the MOOSY-32 electronic nose 
[15] to acquire voltage response curves from metal oxide 
semiconductor sensors when exposed to urine gas from 
patients. The device is equipped with four different types 

Fig. 1 Invasive rectal tract rendering
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of Figaro sensors, arranged in thirty-two sockets. Tables 1, 
2, 3 and 4 present the reference and sensitivity of the sen-
sors to various substances. The choice of these sensors was 

based on their compatibility with the MOOSY-32 and the 
availability of Figaro datasheets displaying their sensitiv-
ity characteristics. Equation  1 illustrates the correlation 
between gas concentration in parts per million (C) and the 
resistivity obtained (Rs).

By utilizing graphical representation and the regression 
analysis tool in spread- sheets, we were able to determine 
the values of A and α for each sensor. The results are pre-
sented in Tables 1, 2, 3 and 4.

With the ability to accurately approximate the parts per 
million (ppm) value using the gas sensor, we incorporated 
an additional seven parameters into our dataset for further 
analysis.

To increase the size of our dataset, we employed a 
strategy of redundancy. Using five milliliters of urine per 
container and collecting four containers per patient, we 
obtained samples from forty patients. By utilizing the 
MOOSY-32 electronic nose, we acquired five sets of data 
from each container, resulting in a total of 800 files, each 
containing 32 curves.

The foundation of our data is the curve, which is essen-
tially an array of voltage values with a size of 15000 points. 
After implementing filters and addressing the offset, the 
curve appears as depicted in Fig. 2. By extracting data from 
specific points on the curve, such as V A (t = 40s), V D (t = 
60s), V B = Vmax, V E (t = 100s), and V C (t = 120s), we are 
able to calculate other parameters, as outlined in Eqs. 2-12.

(1)Rs = A[C]
a

(2)slopeAB =

VB− VA

tB− tA

(3)slopeBC =

VC − VB

tC − tB

(4)slopeAD =

VD − VA

tD − tA

(5)slopeDE =

VE − VD

tE − tD

(6)slopeEC =

VC − VE

tC − tE

(7)slopeBE =

VE − VB

tE − tB

(8)slopeDB =

VB− VD

tB− tD

Table 1 Data A and α from Figaro Sensor TGS‑2611E00 [16]

Gas A α

Methane 29.37996766 ‑0.3948275158

Isobutane 8.715280172 ‑0.009612300255

Hydrogen 26.35859083 ‑0.3145073661

Propane ‑ ‑

Ethanol 8.592741295 0.0

Air 8.584894051 0.0

CO ‑ ‑

Table 2 Data A and α from Figaro Sensor TGS‑2611C00 [17]

Gas A α

Methane 38.98893094 ‑0.4294309742

Isobutane 48.40386618 ‑0.3910578991

Hydrogen 41.48221372 ‑0.3609195915

Propane ‑ ‑

Etalon 55.17922683 ‑0.3750828308

Air 8.584894051 0.0

CO ‑ ‑

Table 3 Data A and α from Figaro Sensor TGS‑2610C00 [18]

Gas A α

Methane 62.22614045 ‑0.5290784226

Isobutane 76.61767488 ‑0.58687488

Hydrogen 83.58818144 ‑0.5147845058

Propane 79.41376581 ‑0.52781418

Ethanol 127.3119505 ‑0.5258350324

Air 10.54330923 ‑0.001766784452

CO ‑ ‑

Table 4 Data A and α from Figaro Sensor TGS‑2620 [19]

Gas A α

Methane 79.49594193 ‑0.4602952512

Isobutane 26.88377546 ‑0.5979539273

Hydrogen 17.6124846 ‑0.5785034943

Propane ‑ ‑

Ethanol 35.89744669 ‑0.7083796675

Air 17.58233645 0.0

CO 47.99739024 ‑0.6086910204
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To achieve 32 parameters in our dataset, we incorpo-
rated eight statistical data points: 75th percentile, stand-
ard deviation, mode, mean, median, interquartile range, 
coefficient of variation, asymmetry coefficient, and a 
unique identifier created using the sensor and socket 
name. This resulted in a total of 640 instances for each 
patient, each with 32 parameters.

Neural network
To construct the neural network, we utilized the Python 
libraries Tensorflow and Keras [20]. The network archi-
tecture is illustrated in Fig. 3. The first layer consists of 
an input layer with 32 neurons, corresponding to the 
number of input parameters. The second layer is a nor-
malization layer. The third layer includes a hidden layer 
with 64 neurons and a ReLU [21] activation function. 
Two additional hidden layers were also incorporated, 
with a reduction in the number of neurons from 64 to 
16. The final layer has two neurons and utilizes a Soft-
Max activation function, which produces the probabil-
ity of the sample belonging to each class. To compile 
the network, we set the bias initializer to ’zeros’ and the 
kernel to ’glorot uniform’ . The optimizer used is the 
SGD optimizer with a learning rate of ’0.001’, decay of 

(9)difBA = VB− VA

(10)difBC = VB− VC

(11)difBD = VB− VD

(12)difBE = VB− VE

’1e-7’, momentum of ’0.9’, loss function of ’categorical 
crossentropy’, and metrics of ’accuracy’.

Training
To train the neural network, we divided the dataset into 
two groups: a training set and a test set, each contain-
ing instances from 20 patients. The training set includes 
instances from 10 patients with CaP and 10 patients 
with HBP, resulting in a total of 12,800 instances for 
training. The test set includes the same number of 
instances, but from different patients. Before com-
mencing the training process, we set the batch size to 
32 and the number of epochs to 1,280.

Results
The confusion matrix, generated by evaluating the test 
set using the neural network, is illustrated in Fig. 4. The 
training set and test set were labeled as 0 for HBP and 
1 for CaP, resulting in the normal representation of the 
confusion matrix where the false negative is in the first 
quadrant and the false positive in the third.

The number of instances from patients with cancer 
that were classified as HBP is high and surpasses that 
of a single patient. Despite this, as shown in Fig. 5, the 
accuracy is 87%. However, for clinical sense, it is neces-
sary to improve the recall for HBP.

In order to enhance the recall, the class weight was 
set to 0:1.0, 1:32.0 with 0 representing HBP and 1 rep-
resenting CaP, and the neural network was retrained. 
The results are illustrated in Figs. 6 and 7.

Fig. 2 Setting points at curves
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Discussion
Our research has culminated in the development of an 
effective neural network for prostate cancer detection, 
utilizing MOOSY-32 electronic nose technology and 
artificial intelligence techniques. In this section, we will 
discuss the results and their significance, along with the 
implications and limitations of our study.

Interpretation of results
The findings of our study indicate that the neural net-
work we developed is highly accurate in classifying cases 
of prostate cancer. The high level of precision, with a 
recall rate of 91%, suggests that our methodology has 
the potential to significantly reduce the need for invasive 
biopsies and enhance early detection of this disease.

Clinical implications
These results hold significant clinical implications. 
Reducing unnecessary biopsies would not only decrease 
patient discomfort and risks but also have a positive eco-
nomic impact on the healthcare system. Furthermore, 
detecting prostate cancer in its early stages can increase 
survival rates and improve the quality of life for patients.

Limitations and challenges
Despite promising results, our study is not without lim-
itations and significant challenges. One key challenge 
was the need to reduce data dimensionality to make our 
model applicable to a variety of electronic noses rather 
than being restricted to MOOSY-32. We addressed 

Fig. 3 Neural network model from Netron App representation

Fig. 4 Confusion matrix from test‑set
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this challenge by creating a model based on robust 
curve data obtained from urine samples. However, it 
is important to note that generalizing our approach to 
other electronic noses may require additional adjust-
ments and validation in each specific case. Addition-
ally, to bring our methodology into clinical practice, 
comprehensive physical validation by healthcare pro-
fessionals is needed, involving a rigorous process that 
faces regulatory and ethical challenges that must be 
carefully and diligently addressed.

Comparison with other prostate cancer detection methods
Our neural network stands out when compared to other 
prostate cancer detection methods due to its high preci-
sion and non-invasive approach. It is crucial to emphasize 
that our approach is based on using urine samples differ-
ent from those of the patient being tested. In this context, 
our primary goal lies in capturing and analyzing sensor 
responses to specific olfactory patterns. In this regard, 
we have achieved a significant breakthrough by employ-
ing redundancy techniques that substantially enhance 
the capability of our neural network to detect prostate 
cancer. Furthermore, parameter reduction has allowed 
us to work with a 32-dimensional input in the network, 
contributing to its improved performance. While our 
model has been specifically developed for data generated 
by MOOSY-32, we believe that the underlying method-
ology has the potential to be successfully adapted and 
applied to other datasets from various electronic noses 
equipped with metal oxide semiconductor sensors. This 
advancement paves the way for the implementation of an 
embedded, low-cost diagnostic system that could be used 
in outpatient surgery centers and similar clinical settings.

Future applications
Looking ahead, we consider that our methodology 
could be adapted to a wide variety of devices, including 
those equipped with a single sensor or a limited num-
ber of sensors. The ability to capture and analyze sensor 
response curves, precisely extracting 32 key param-
eters, lays the foundation for the creation of intelli-
gent embedded devices in various fields of medicine 

Fig. 5 Classify statistics results

Fig. 6 Confusion matrix from test‑set
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and beyond. This technology could drive innovation in 
the early detection of several diseases, enabling more 
accessible and effective diagnostic solutions across a 
broad spectrum of clinical and medical applications.

In Summary, our research represents a significant 
advancement in non-invasive prostate cancer detection. 
While we face challenges and limitations, we believe 
that this methodology has the potential to transform 
medical practice and improve the lives of prostate can-
cer patients.

Conclusion
The neural network that we developed was able to effec-
tively classify instances of prostate cancer with high accu-
racy. This technique has the potential to decrease the 
number of biopsies required and make the diagnostic 
process less invasive. Addition- ally, the training dataset 
used in this study contained samples from patients across 
a range of pathological states, making the neural network 
suitable for classifying prostate cancer in all stages. It is 
important to note that the neural network is specific to 
the data obtained from the MOOSY-32 electronic nose, 
but the methodology used in this study can be applied 
to datasets from other electronic noses with metal oxide 
semicon- ductor sensors. This opens up the possibility of 
implementing a low-cost, embedded diagnostic system 
for use in outpatient surgery centers.
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