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Abstract
Objective Healthcare is increasingly digitized, yet remote and automated machine learning (ML) triage prediction 
systems for virtual urgent care use remain limited. The Canadian Triage and Acuity Scale (CTAS) is the gold standard 
triage tool for in-person care in Canada. The current work describes the development of a ML-based acuity score 
modelled after the CTAS system.

Methods The ML-based acuity score model was developed using 2,460,109 de-identified patient-level encounter 
records from three large healthcare organizations (Ontario, Canada). Data included presenting complaint, clinical 
modifiers, age, sex, and self-reported pain. 2,041,987 records were high acuity (CTAS 1–3) and 416,870 records 
were low acuity (CTAS 4–5). Five models were trained: decision tree, k-nearest neighbors, random forest, gradient 
boosting regressor, and neural net. The outcome variable of interest was the acuity score predicted by the ML system 
compared to the CTAS score assigned by the triage nurse.

Results Gradient boosting regressor demonstrated the greatest prediction accuracy. This final model was tuned 
toward up triaging to minimize patient risk if adopted into the clinical context. The algorithm predicted the same 
score in 47.4% of cases, and the same or more acute score in 95.0% of cases.

Conclusions The ML algorithm shows reasonable predictive accuracy and high predictive safety and was developed 
using the largest dataset of its kind to date. Future work will involve conducting a pilot study to validate and 
prospectively assess reliability of the ML algorithm to assign acuity scores remotely.
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Introduction
Healthcare is becoming increasingly digitized, with 
mobile health and digital healthcare solutions becoming 
common. In Canada, 76% of Canadians believe that digi-
tal health has made healthcare more accessible and con-
venient, while more than 80% of Canadians are willing to 
use digital health services to view their medical records 
and access healthcare services [1]. The SARS-CoV-2 pan-
demic has accelerated patients’ willingness to access care 
through digital and virtual means [2]. While virtual care 
utilization has increased across the healthcare system, 
it remains underutilized in the emergency department 
(ED) [3, 4].

There are myriad potential contributors to the unde-
rutilization of virtual care in the ED such as acuity of 
patient presentations and absence of a triage system, 
debate on whether virtual care has a place in ED medi-
cine, access to sufficient staffing support, and lack of 
referral pathways for patient investigations [5]. Simul-
taneously, as EDs experience increased patient volumes 
and overcrowding becomes the norm, patient safety and 
quality of care may be compromised [6]. Specifically, ED 
overcrowding may contribute to poor patient outcomes, 
worse patient experience, and increased lengths of stay 
[7–10]. Several solutions aimed at increasing ED effi-
ciency including resource allocation and optimization 
technology, clinician activity and movement monitoring 
technology, and static wait time prediction systems, have 
been previously trialed with limited success [11–13].

Digital technologies that enhance the patient and pro-
vider experience by guiding patients to an appropri-
ate care location based on their acuity has potential to 
increase virtual care utilization in the urgent care set-
ting while simultaneously addressing some of the access 
and overcrowding challenges described above. Currently, 
there is a lack of remote and automated triage predic-
tion systems and most virtual urgent care programs cur-
rently operate without a triage system [14, 15], despite 
triage being the first step of in-person emergency health-
care [16]. A digital, automated remote triage system may 
result in several improvements for both patients and care 
providers, namely improved patient comfort, care and 
satisfaction, and decreased provider workload [17].

In Canada, the Canadian Triage and Acuity Scale 
(CTAS) is a clinically validated tool [18, 19] used to 
assign triage acuity scores for patients presenting to EDs. 
The assigned score indicates the severity of the patient’s 
condition and a recommended timeframe for physician 
first assessment [20]. This system was digitized in 2015 
to create eCTAS, an algorithmic real time electronic 
triage decision support tool for the physical ED envi-
ronment [21]. Despite digitization, the system remains 
incompatible with virtual care in its current form. Spe-
cifically, eCTAS uses a nursing assessment designed to 

complement clinical care using stored protocols that 
improve the speed of triage. Furthermore, it requires the 
input of vital signs for each clinical encounter, which are 
generally unavailable in the virtual care setting. More-
over, the stored protocols do not account for any clinical 
risk caused by potentially dangerous complaint combina-
tions, rather relying on the clinician to make these con-
nections. As such, clinical risk assessments remain the 
standard of care, and the final score assignment is left 
to the discretion of the triage clinician [22]. Thus, there 
remains a need for a remote triage system that assesses 
clinical risk by heuristically analyzing key patient pre-
dictors such as presenting complaints, age, sex, and 
self-reported severity, and synthesizes this data into an 
accurate triage score.

Triage is a critical element of providing safe care in 
the virtual setting [23]. Patient-facing technologies that 
enhance the ability of patients to make informed deci-
sions as to the most appropriate care location increase 
the safety of delivering virtual care compared to no tri-
aging. Technology-based systems have demonstrated 
remote decision-making ability to triage patients to the 
appropriate level of care [24]. Machine learning (ML) 
models such as Deep Learning, Random Forest, and 
Naive Bayes are effective at predicting clinical outcomes 
through classification of triage urgency and discrimina-
tion between high and low case severity according to its 
clinical outcome [25]. Beyond Canada, ML has been used 
to assign triage scores in a clinical setting without clini-
cian intervention with increased accuracy [26]. A multi-
site, retrospective, cross-sectional study used triage data 
to create a random forest model that predicted the need 
for critical care, an emergency procedure, and inpatient 
hospitalization while translating risk to triage level des-
ignations [26]. This study used the United States Emer-
gency Severity Index (ESI) guidelines to train the ML 
model, demonstrating the potential use of machine learn-
ing in triage.

Virtual triage solutions have additionally been identi-
fied as a gap within the current virtual urgent care land-
scape in Canada and beyond [27, 28]. The objective of the 
current study is to describe the development of a ML-
based acuity score prediction model that can be piloted 
in the Canadian context.

Methods
Study design and setting
This prediction model development study used retro-
spective patient-level encounter data for ED visits from 
three healthcare organizations in the Greater Toronto 
and Hamilton Area (GTHA) of Ontario, Canada: St. 
Joseph’s Healthcare Hamilton (SJHH; 70,000 annual 
visits), Sunnybrook Health Sciences Centre (SHSC; 
64,000 annual visits), and William Osler Health System 
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(WOHS; 200,000 annual visits). Standardized, de-iden-
tified, patient-level encounter data included presenting 
complaint(s), clinical modifiers, age, sex, self-reported 
pain, and nursing assigned CTAS triage scores. Vital sign 
metrics were not included as they are rarely available 
in the virtual setting. All data elements were extracted 
directly, after ethics approval and appropriate data shar-
ing agreements, from the electronic health record track-
ing systems used at each site. The total number of patient 
encounters included was 2,460,109 (199,988 from January 
2017 to December 2020 from SJHH, 125,543 from Janu-
ary 2018 to December 2020 from SHSC, and 2,134,578 
from January 2011 to December 2020 from WOHS). 
1252 visits were excluded due to a missing CTAS score 
(2,458,857 remaining records). 2,041,987 records were 
high acuity (CTAS 1–3) and 416,870 records were low 
acuity (CTAS 4–5). Demographics for the dataset are 
presented in Table  1. 75% of the dataset was used to 
derive the algorithm while 25% was reserved for accu-
racy testing. No personal health information (PHI) was 
extracted as part of the data collection. The study was 
approved and consent waiver granted by the Hamil-
ton Integrated Research Ethics Board, the Sunnybrook 
Health Sciences Centre Research Ethics Board, and the 
William Osler Health System Research Ethics Board.

Model derivation
The pattern-directed ML remote triage model was devel-
oped and trained using the retrospective, de-identified, 
patient-level encounter dataset. Since a CTAS score is 
assigned for each visit a patient makes to the ED, inde-
pendent of any previous visits, each encounter record 
reflects a single cross-sectional point in time. CEDIS 
(Canadian Emergency Department Information System) 

[29] presenting complaints, relevant clinical modifiers, 
age, sex, and self-reported pain were used to predict acu-
ity scores. The outcome variable of interest was the acu-
ity score predicted by the ML system compared to the 
CTAS score assigned by the triage nurse. Five models 
were trained: decision tree, k-nearest neighbors, random 
forest, gradient boosting regressor, and neural net (using 
DataRobot’s AutoML feature in which a neural network is 
generated automatically and then optimized based on the 
specific dataset). Feature imputation was used during the 
training process to substitute missing self-reported pain 
score with average values by CEDIS complaint across the 
dataset (although this technique was not used as part of 
the final model).

Model testing
Confusion matrices, precision, recall, and F-1 scores 
were used to assess the accuracy of predictions at each 
stage of testing using the reserved dataset. The two ML 
models with the greatest predictive accuracy were fur-
ther refined by adjusting hyperparameters (n_estimators, 
learning_rate, max_depth, min_samples_split, n_iter_
no_change). Grid search was used to determine the best 
hyperparameter for each model. After these refinements, 
the models were initialized and trained from scratch and 
then re-tested using the reserved dataset. The single ML 
model demonstrating the greatest predictive accuracy 
was selected.

A confusion matrix is used to describe the perfor-
mance of a classification model based on a set of test data 
for which the true values are known. The table layout 
allows for the visualization of performance of the model, 
with each row representing a known value in the testing 
dataset, and each column representing a predicted value. 
Each of the plots were reviewed continuously to deter-
mine the best learning parameters for the model and to 
avoid possible overfitting during development. Precision 
(or positive predictive value) is the proportion of pre-
dicted CTAS scores that are correct and is calculated by 
taking the proportion of true positive values (i.e., true 
CTAS 3) to the sum of the true positive and false posi-
tive values (i.e., true CTAS 3 and falsely predicted CTAS 
3). Recall (or sensitivity) is the total proportion of cor-
rect predictions and is calculated as the proportion of 
true positive values (i.e., true CTAS 3) to the sum of true 
positive and false negative values (i.e., true CTAS 3 and 
incorrectly predicted other CTAS). Recall is an impor-
tant parameter as false negative triage scores have the 
possibility of significant downstream patient harm. The 
F1 score is a weighted average of precision and recall and 
considers both false positives and false negatives (ranges 
from 0 to 1 with a higher score being better). To decrease 
potential safety risk of missing a high acuity presentation, 
the distribution of CTAS presenting complaints within 

Table 1 Study Site Demographics and Canadian Triage and 
Acuity Scale (CTAS) Distributions
Demographics SJHH SHSC WOHS Total
Total Records, n 199,988 125,543 2,134,578 2,460,109
Men, n (%) 92,303 (46.2%) 56,234 

(44.8%)
1,020,579 
(47.8%)

1,169,116 
(47.5%)

Women, n (%) 107,685 
(53.8%)

69,309 
(55.2%)

1,113,999 
(52.2%)

1,290,993 
(52.5%)

CTAS 1, n (%) 1514 (0.8%) 1084 
(0.9%)

6209 
(0.3%)

8807 
(0.4%)

CTAS 2, n (%) 60,343 (30.2%) 30,347 
(24.2%)

575,056 
(26.9%)

665,746 
(27.1%)

CTAS 3, n (%) 111,084 
(55.5%)

72,704 
(57.9%)

1,183,646 
(55.5%)

1,367,434 
(55.6%)

CTAS 4, n (%) 17,957 (9.0%) 19,923 
(15.9%)

310,407 
(14.5%)

348,287 
(14.2%)

CTAS 5, n (%) 7846 (3.9%) 1485 
(1.2%)

59,252 
(2.8%)

68,583 
(2.8%)

Missing CTAS, 
n (%)

1244 (0.6%) 0 (0%) 8 (0%) 1252 
(0%)

Note: Due to rounding, totals may not sum to 100%
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the dataset was reviewed manually and all complaints 
with a 1% or higher distribution of CTAS 1 scores were 
up triaged such that the final model predicts a CTAS 1 
score for all these complaints. A workflow diagram show-
ing model development is displayed in Fig. 1.

Results
The five initial ML models (decision tree, k-nearest 
neighbors, random forest, gradient boosting regressor, 
and neural net) were tested with the random forest and 
gradient boosting regressor demonstrating the greatest 
predictive accuracy. After adjusting hyperparameters, the 
gradient boosting regressor was shown to be the model 
that provided the most accurate predictions. The final 
ML model includes the following data elements: CEDIS 
complaint, CEDIS category (umbrella grouping of CEDIS 
complaints such as cardiovascular or neurologic), pain 
level, and age (Fig. 2). Figure 3 displays the distribution of 
actual CTAS scores as compared to the predicted acuity 
scores using the 1% up triaging cut-off for CTAS 1 scores 
for the test set. Figure  4 shows the confusion matrix 
illustrating the final model was best at predicting CTAS 
scores of 3 and worst at predicting CTAS scores of 1 and 
5.

Table 2 displays the precision, recall, and F1 scores for 
the final model. The overall average represents the calcu-
lated average with equal weighting to each acuity score 
category whereas the weighted average is the calculated 
average based on the proportion of each acuity score 
category within the dataset. Based on the F1-score, the 
model performs best for patients with a CTAS score of 3, 
and worst for those with CTAS scores of 1 or 5.

The final model shows an overall accuracy for one-to-
one predictions of 47.4%. One-to-one accuracy refers to 
the testing dataset containing the exact triage score pre-
dicted for the specific test case. Due to the subjectivity 
of triage scores, inconsistencies were identified within 
the retrospective dataset. Therefore, the model was tuned 
to predict more acute triage scores in ambiguous situa-
tions, excluding CTAS 1 as this is the most acute triage 
score possible, leading to an overall accuracy of equal to 
or more acute triage scores of 95.0%. Tables  3, 4 and 5 
display summaries of the final model prediction statistics 
(overall, by CTAS score, and by CEDIS presenting com-
plaint (top 10 most common presenting complaints)). 
Table  6 displays the CEDIS presenting complaints that 
were up triaged to CTAS 1 in the final ML model. Appen-
dix 1 shows the final model prediction statistics for all 
CEDIS presenting complaints.

Discussion
This study advances our knowledge around the poten-
tial use of remote and virtual triage for Canadian emer-
gency departments in three important ways. First, our 

ML model system can predict one-to-one triage scores 
with a moderate degree of accuracy based on set patient 
predictors. Recently published findings about emergency 
department-led virtual urgent care from Ontario Can-
ada has demonstrated that most (> 92%) patients using 
these services are CTAS 3–5 or moderate to lower acu-
ity patients [15]. Thus, based on the typical patients that 
use these virtual care services, the safety profile of the 
current algorithm is high as it is most accurate for mod-
erate acuity scores, and it over predicts acuity in most 
patients where the prediction is not equal to the actual 
acuity score. This builds on previous work which has 
demonstrated the ability of ML algorithms to accurately 
discriminate between high and low presentation severity 
and expected clinical outcomes [25, 26, 30, 31]. Of partic-
ular importance is that the current work is the first study 
to use Canadian data including CTAS and is also the larg-
est study of its kind to date (each of the above studies 
developed ML models with fewer than 200,000 patient 
records whereas the ML model from the current work is 
based on more than 2.4 million patient records).

Second, the subjective nature of triage score assign-
ment was observed in the retrospective dataset where 
patients with identical predictors were assigned different 
triage scores both within the same site and between dif-
ferent sites. This phenomenon has been well-described 
in the published literature with several studies demon-
strating triage score variability through individual and 
departmental audit and feedback, variations in intensity 
and duration of training programs, and simulated case 
scenarios with missing modifiers, inappropriate manual 
down/up triage override rates, and variable clinical tri-
age experience contributing to the observed variability 
[20, 21, 32–38]. A CTAS triage meta-analysis showed a 
42.82% mis-triage rate across studies (25.52% up triage 
and 17.30% down triage) with most up triages being clini-
cally plausible and down triages posing a greater risk to 
patient safety [20]. Additionally, Kovacs and Campbell 
[39] showed a 3% increased probability that a triage nurse 
assigned higher triage acuity scores compared to triage 
paramedics in non-crowded ED conditions and a 10% 
higher probability of assigning a more acute triage score 
in crowded ED conditions. Moreover, recent work has 
shown that eCTAS systemically reclassifies patients from 
higher to lower acuity scores [40].

To address this limitation, the current algorithm builds 
predictions with greater accuracy through model tun-
ing and requiring the model to assign more acute tri-
age scores in ambiguous cases. This was further refined 
by using a gradient boosting algorithm that predicts 
incremental triage scores. These refinements serve to 
minimize the potential patient safety risk of under-tri-
aging (47.6% up triage rate and only a 5.0% down triage 
rate). Thus, the current ML algorithm has the potential 
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Fig. 1 Workflow diagram showing machine learning algorithm development and testing process
Where: KPI = key performance indicators, ML = machine learning
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to overcome some of this triage score variability and 
may contribute to decreased provider workload and 
improved patient safety, particularly during periods of 
ED overcrowding.

Third, by using artificial intelligence to analyze the cur-
rent study’s large retrospective dataset, the current work 
distinguishes which features of a patient profile most 
influence triage score assignment and incorporates these 

Fig. 3 Distribution of actual CTAS (blue) and predicted acuity scores with the up triaging of CTAS 1 complaints using the 1% cutoff (orange) from the 
test set

 

Fig. 2 Permutation importance plot showing features with highest importance in the final ML model
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features into its ML prediction. While feature importance 
has not been published previously related to predicting 
triage scores, its use has been demonstrated related to 
predicting clinical outcomes such as need for hospitaliza-
tion or critical care setting for patients presenting to the 
ED [30]. By identifying which patient profile features are 
most important to determining an accurate assessment 
of triage acuity, the current work provides direction for 
the development of future patient-facing applications 
that can incorporate these elements into their design, 
thereby reducing risk associated with virtual care options 

that largely only use self-triage currently. It should be 
noted that this weighting includes only those features 
that are already used by eCTAS and not alternative ele-
ments within the patient chart, as discussed below.

There are, however, a few important limitations of the 
current work. The first is the lack of access to subjective 
data related to the triage experience and nursing exper-
tise. For example, triage scores may be influenced by 
patient features such as physical appearance, previous 
health history that is not captured within the past medi-
cal history section, recent ED visits or hospitalizations, 
regularity of patient visits, the nurse’s gestalt, among 
others [20, 34, 36]. This narrative data is not always cap-
tured within electronic health records as part of the tri-
age process beyond the acuity score assignment and was 
not available for analysis and training in this study. Inclu-
sion of this narrative data based on the nurse’s expertise 
may enhance the predictive ability of the ML system in 
the future as it has recently been shown to help predict 
patient disposition based on emergency triage notes [41]. 
Natural language processing (NLP) of the triage com-
plaint and integration within the algorithm should be 
explored in future work.

Additionally, the final model before post-processing 
performs the best for patients with CTAS scores of 3 
and worst for those with CTAS scores of 1 and 5. This 
is consistent with other literature that has shown ML 
algorithms outperforming traditional triage methods 
for patients with moderate scores [26, 42]. This may be 
partially attributed to the class imbalance in the dataset 
as most patients, 55.6%, in our evaluation dataset have a 
CTAS score of 3. This predominance of CTAS 3 is consis-
tent with previously published CTAS reviews [35, 37, 38]. 
The inability of the algorithm to accurately assign acuity 
scores to CTAS 5 patients poses minimal patient safety 
risk; however, assigning lower acuity scores for CTAS 1 
patients may present a patient safety risk. We sought to 
address this limitation by manually up triaging all CEDIS 
presenting complaints that had 1% or more CTAS 1 
scores within the derivation dataset. This resulted in 11 

Table 2 Precision and Accuracy of Final Model Using Test Set
Precision Recall F1 Score Total Patients

CTAS 1 0.00 0.00 0.00 2242
CTAS 2 0.79 0.32 0.46 167,815
CTAS 3 0.62 0.94 0.74 343,559
CTAS 4 0.46 0.14 0.21 86,933
CTAS 5 0.00 0.00 0.00 17,101
Accuracy 0.63 617,650
Overall Average 0.37 0.28 0.28 617,650
Weighted Average 0.62 0.63 0.57 617,650

Table 3 Final Post-Processing Model Overall Prediction Statistics
Parameter Total % Non-Equal Triage Subset %
Equal Triage 47.4 N/A
Non-Equal Triage 52.6 100
 Up Triaged 47.6 90.5
  One-Step 37.9 72.1
  Two-Step 8.1 15.4
  Three-Step 1.6 3.0
 Down Triaged 5.0 9.5
  One-Step 4.7 8.9
  Two-Step 0.3 0.6
Equal and/or Up Triaged 95.0  N/A

Table 4 Final Post-Processing Model Prediction Statistics by 
CTAS Score
Parameter CTAS 

1%
CTAS 
2%

CTAS 
3%

CTAS 
4%

CTAS 
5%

Equal Triage 7.9 75.8 48.5 1.1 0.6
Up Triaged N/A 8.5 50.7 98.4 99.4
 One-Step N/A 8.5 42.4 79.6 18.5
 Two-Step N/A N/A 8.4 10.4 74.8
 Three-Step N/A N/A N/A 8.4 5.9
Down Triaged 92.1 15.7 0.7 0.5 N/A
 One-Step 88.0 15.7 0.5 0.5 N/A
 Two-Step 4.1 0 0.2  N/A N/A
Note: Due to rounding, totals may not sum to 100%

Fig. 4 Final model confusion matrix with rows representing true CTAS 
scores and columns representing predicted acuity scores
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CEDIS complaints being up triaged to CTAS 1 as shown 
in Table  6. The final model was also tuned to predict 
more acute triage scores in ambiguous situations, exclud-
ing CTAS 1 as this is the most acute triage score pos-
sible, thus post-processing, the model performs best for 
patients with a CTAS score of 2 and worst with a CTAS 
score of 5 (2 -> 3 -> 1 -> 4 -> 5). Consideration will need 
to be made to determine how best to pilot this ML algo-
rithm to ensure patient safety, such as directing acuity 
scores of 1 or 2 to emergency medical services emer-
gently for medical attention. It is also important to note 
that patients who are classified as CTAS 1 are unlikely 
to seek out virtual care, or pass the screening questions 
to recommend this type of care, further decreasing the 
potential risk of this tool. Future research may place 
more emphasis on collecting data from the other, less 
commonly assigned groups, or exploring the effect of up-
sampling on model performance. Rather than predicting 
an exact acuity score to parallel the CTAS score, a model 
which provides clinical direction, such as in-person ED, 
virtual urgent care, or family doctor/walk-in clinic may 
be beneficial for patients.

Further model improvements may be possible. ML 
model accuracy is generally computed based on the num-
ber of correct and incorrect predictions. The current 
model has gone a step further by evaluating outcomes in 
a non-binary way to reflect ‘how incorrect’ a prediction 
is. Variable penalties are applied based on the degree of 
inaccuracy of the prediction, in which the more incor-
rect a prediction is, the greater the penalty. This was put 
in place due to the ambiguity and subjectivity found in 
the dataset. In practice, this means that triage scores 
predicted are not only more likely to be accurate but 
also more acute rather than less acute. This is analogous 
to how in a clinical setting, in ambiguous cases, triage 
nurses assign more acute scores rather than less acute 
triage scores to safeguard patient safety [20]. A possible 
future direction is to use a quantile regression approach 
to build confidence prediction intervals rather than a 
single acuity score. Another is to test this relative to a 
simulated dataset with 100% triage accuracy as defined 
by eCTAS.

Overall, the current ML algorithm provides reason-
able predictive accuracy and high predictive safety spe-
cific to the patient population that generally accesses 
emergency department-led virtual urgent care services. 
This affords great potential for implementation as part 
of a broader machine learning driven patient facing sys-
tem for remotely assigning triage scores in an area where 
there is no current active triage system. The ability of the 
system to remotely assign accurate acuity scores offers 
promise in helping triage patients to the best care loca-
tion and decreases potential risk associated with virtual 
urgent care programs.

Table 5 Final Post-Processing Model Prediction Statistics by CEDIS Presenting Complaint for Top 10 Most Common CEDIS Complaints
CEDIS Presenting Complaint Equal Triage % Up Triage % Down Triage % Total %

Total One Step Two Step Three Step Total One Step Two Step
Abdominal Pain 52.8 41.9 38.0 3.7 0.2 5.3 5.3 0 100
Chest Pain – Cardiac Features 52.2 42.8 38.9 3.7 0.2 5.0 5.0 0 100
Upper Extremity Injury 52.7 42.0 38.0 3.8 0.2 5.3 5.3 0 100
Lower Extremity Injury 52.8 42.1 38.3 3.7 0.1 5.1 5.1 0 100
Fever 52.7 42.1 38.0 4.0 0.1 5.1 5.1 0 99.9
Lower Extremity Pain 53.0 41.7 38.0 3.5 0.2 5.2 5.2 0 99.9
Shortness of Breath 2.4 97.2 27.4 55.7 14.1 0 0 0 99.6
Back Pain 52.6 42.0 38.4 3.5 0.1 5.4 5.4 0 100
Headache 53.1 41.8 37.8 3.8 0.2 4.9 4.8 0.1 99.8
Laceration/Puncture 51.5 41.4 37.6 3.7 0.1 6.7 5.3 1.4 99.6
Note: Due to rounding, totals may not sum to 100%

Table 6 CEDIS Presenting Complaints Up Triaged to CTAS 1 
Showing Proportion of CTAS 1 Scores within Dataset
CEDIS Presenting Complaint CTAS 1 

Propor-
tion 
(%)

Stridor 50.0%
Cardiac Arrest (non-traumatic) 36.4%
Cardiac Arrest (traumatic) 28.6%
Cool Pulseless Limb 16.7%
Altered Level of Consciousness 3.5%
Isolated Chest Trauma – Penetrating 3.2%
Multisystem Trauma – Penetrating 3.1%
Violent/Homicidal Behaviour 2.6%
Amputation 2.0%
Hypoglycemia 1.3%
Bizarre Behaviour 1.2%
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