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Abstract 

Background  One of the most common sleep disorders is sleep apnea syndrome. To diagnose sleep apnea syn-
drome, polysomnography is typically used, but it has limitations in terms of labor, cost, and time. Therefore, studies 
have been conducted to develop automated detection algorithms using limited biological signals that can be more 
easily diagnosed. However, the lack of information from limited signals can result in uncertainty from artificial intel-
ligence judgments. Therefore, we performed selective prediction by using estimated respiratory signals from electro-
cardiogram and oxygen saturation signals based on confidence scores to classify only those sleep apnea occurrence 
samples with high confidence. In addition, for samples with high uncertainty, this algorithm rejected them, providing 
a second opinion to the clinician.

Method  Our developed model utilized polysomnography data from 994 subjects obtained from Massachusetts 
General Hospital. We performed feature extraction from the latent vector using the autoencoder. Then, one dimen-
sional convolutional neural network—long short-term memory (1D CNN-LSTM) was designed and trained to measure 
confidence scores for input, with an additional selection function. We set a confidence score threshold called the tar-
get coverage and performed optimization only on samples with confidence scores higher than the target coverage. 
As a result, we demonstrated that the empirical coverage trained in the model converged to the target coverage.

Result  To confirm whether the model has been optimized according to the objectives, the coverage violation 
was used to measure the difference between the target coverage and the empirical coverage. As a result, the value 
of coverage violation was found to be an average of 0.067. Based on the model, we evaluated the classification 
performance of sleep apnea and confirmed that it achieved 90.26% accuracy, 91.29% sensitivity, and 89.21% specific-
ity. This represents an improvement of approximately 7.03% in all metrics compared to the performance achieved 
without using a selective prediction.

Conclusion  This algorithm based on selective prediction utilizes confidence measurement method to minimize 
the problem caused by limited biological information. Based on this approach, this algorithm is applicable to wear-
able devices despite low signal quality and can be used as a simple detection method that determine the need 
for polysomnography or complement it.
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Background
Sleep apnea is a type of sleep breathing disorder in which 
abnormal breathing patterns occur during sleep [1]. The 
prevalence of sleep apnea syndrome is up to 15–30% for 
men and 10–15% for women in North America, indicat-
ing that it affects many people [2]. Not only does sleep 
apnea cause poor sleep quality, but it can also lead to 
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high blood pressure, headaches, depression, and other 
problems if the symptoms persist [3]. It can also cause 
cardiovascular problems and even sudden death [4]. The 
standard method for diagnosing sleep apnea syndrome 
is polysomnography [5]. Polysomnography is a test that 
measures a variety of biological signals during a night’s 
sleep in a sleep center. Sleep apnea diagnosis relies on a 
variety of bio-measurements, such as EEG, nasal pressure 
cannula, and pulse oximetry, which are measured during 
polysomnography [6, 7]. Also, using these bio-signals, 
polysomnography is used to estimate the apnea hypopnea 
index (AHI) to quantify sleep apnea syndrome. However, 
while this test can diagnose sleep apnea syndrome, there 
are some limitations. Polysomnography is a labor-inten-
sive test that requires a dedicated facility [8]. Also, sleep 
quality may be adversely affected by measurements tak-
ings during test [9]. In addition, polysomnography is a 
short-term test (1–3  days), while sleep apnea syndrome 
requires constant monitoring with long-term observation 
[10]. To tackle these problems, simpler methods should 
be developed that can detect sleep apnea and be used 
for constant monitoring. Using advanced artificial intel-
ligence (AI), automated sleep apnea detection algorithms 
were developed that can easily and accurately diagnose 
sleep apnea syndrome from limited biological signals.

Sleep apnea causes significant changes in biological 
signals [11–13]. Based on these changes, there have been 
many studies of automated sleep apnea detection algo-
rithms based on biological signals from limited meas-
urements that could potentially determine the need for 
polysomnography or complement it. For example, sleep 
apnea causes changes in oxygen saturation, so there are 
studies that detect sleep apnea based on these changes. 
This led to a study that used a one-dimensional convo-
lutional neural network (CNN) to detect sleep apnea 
based on a decrease in oxygen saturation [14]. Also, sleep 
apnea can be detected by using respiration signals [15] 
and derived respiration signals extracted from an elec-
trocardiogram (ECG) [16, 17] and photoplethysmogra-
phy (PPG) [18]. These studies have shown the potential 
to detect sleep apnea using a wearable device based on 
a wrist-type or Holter monitor. Deep learning methods 
have made huge contributions to these studies. Deep 
learning networks, such as CNN for images or spectro-
grams and long short-term memory (LSTM) for time 
series data can be used to analyze data from medical and 
healthcare sensors [19]. Accordingly, recent studies have 
used various signals to detect sleep apnea based on deep 
learning networks such as the CNN-Bidirectional LSTM 
and CNN-ResNet [20–22].

However, until now, sleep apnea detection algo-
rithms have rarely considered uncertainty in classifica-
tion. Without polysomnography, detecting sleep apnea 

based on a few biological signals can produce misclas-
sifications due to insufficient information. From this 
point of view, a sample with insufficient information 
can be an ambiguous sample. A typical ambiguous sam-
ple is respiratory effort-related arousal (RERA). RERA 
is an event that does not meet the criteria for apnea or 
hypopnea, but that presents similar symptoms, caus-
ing arousal and decreased oxygen saturation due to 
upper airway resistance during sleep [23]. Biological 
mechanisms and symptoms of RERA can be misdiag-
nosed as apnea or hypopnea by traditional algorithms. 
Therefore, techniques for assessing the reliability and 
uncertainty of AI predictions for diagnosis should be 
considered for medical and healthcare applications 
[24]. When the measured confidence scores of predic-
tion results are not high, developed AI, with the ability 
to reject predictions, can be very helpful in diagnosis. 
So, in this study, we developed an AI model capable of 
selective prediction by measuring uncertainty using a 
confidence score. There were two objectives in previ-
ous studies on selective prediction models: extracting 
predictive confidence scores and applying the extracted 
predictive confidence scores to deep learning mod-
els. Studies that extracted predictive confidence scores 
typically use Softmax value and Monte Carlo dropout 
methods [25]. Subsequently, for applying extracted con-
fidence scores, some studies focused on how to apply 
confidence scores to models to increase predictive and 
selection capabilities simultaneously. SelectiveNet [26, 
27], a state-of-art deep learning-based selective predic-
tion model, was trained using the confidence score cal-
culated with the selection function in the model. These 
studies suggested ways to reduce diagnostic errors in 
healthcare by rejecting predictions for low-confidence 
score samples and passing them on to clinicians as a 
second opinion or using an additional decision system 
for those samples only.

This study aimed to develop an algorithm that can 
detect sleep apnea using oxygen saturation and ECG-
derived respiration (EDR) to determine the need for 
polysomnography or complement it. Since these signals 
provide insufficient information compared to polysom-
nography, the algorithm used selective prediction based 
on confidence score prediction to avoid misdiagnosis. 
This model captures the uncertainty of ambiguous sam-
ples and ensures classification performance with a reject 
option. The confidence score and rejection results were 
validated for ambiguous samples, such as RERA samples 
that are biologically similar to apnea and hypopnea. In 
summary, the objective of this study was to develop an 
automatic sleep apnea detection model that used limited 
biological signals to enable selective prediction based on 
measuring the confidence score.
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Methods & materials
Feature extraction
The signals used in this study were EDR and oxygen 
saturation (SaO2), and each signal had a sampling rate 
of 200 Hz, which is too high to be applied to AI as raw 
data. Previous studies have applied the down-sampling 
method [28, 29]. However, if the measured signal is a 
high-resolution signal, the quality of the signal may be 
reduced by down-sampling, which may result in the 
removal of necessary information [30]. We used the 
autoencoder method as a solution. An autoencoder is 
a non-linear deep learning-based structure consist-
ing of an encoder that compresses data into latent vec-
tors and a decoder that closely reproduces the latent 
vectors back to the original data [31]. Our goal was to 
employ an encoder to extract a compressed vector and 
then reconstruct this vector back to the original input 
as closely as possible using the decoder. this process 
allowed us to perform dimension reduction and extract 
essential features while excluding unnecessary informa-
tion from the SaO2 and EDR signals in all segments. By 
using the extracted feature, the (150,8) shaped latent 
vector, we successfully obtained a feature that contained 
information capable of accurately reconstructing the 
original signal.

When implementing an autoencoder in this study, we 
designed the structure based on the temporal convolu-
tional network (TCN) structure. A TCN is a CNN-based 
structure used for processing time series data by applying 
dilated and causal convolution [32, 33]. We used dilated 
convolutional layers incorporating 5 different kernel sizes, 
to capture patterns from local to global regions. Moreover, 
the utilization of causal convolutional layers enables us to 
retain causality by considering only past time steps, distin-
guishing our approach from basic CNN-based networks 

that compress one-dimensional signals without handling 
time series data. Using TCN and a 1D convolution layer, 
we effectively extracted features while keeping the casual 
characteristics of biological signals, a type of time series 
data. The overall structure of the autoencoder is shown in 
Fig. 1. An encoder consisted of the TCN and a 1D convo-
lution layer to extract latent vector. The decoder was then 
structured with 1D up-sampling and a TCN structure to 
reproduce the original signal using a latent vector that can 
represent the input signal. For the TCN, we set the coef-
ficients of dilatational convolution ( q ) to 1, 2, 4, 8, and 16 
and the number of filters ( n_filters ) to 10. For the 1D con-
volution, we empirically used 8 filters and set the kernel 
size ( k ) to 1. We calculated the loss using the mean square 
error (MSE) for the input and output and optimized it 
using Adam optimization. A trained autoencoder was used 
to extract the latent vectors of all the data and used as the 
input for classification.

Classification & selective prediction
We used selective prediction [26] to determine the uncer-
tainty of classification results by measuring confidence 
scores for the samples. Further, we provided a second 
option to reject prediction based on the confidence score. 
The prediction function f  performs the supervised learn-
ing for the input. The selection function g is a confidence 
score measurement function for the input, defined as a 
range as follows: g : X → Y {Y |0 ≤ Y ≤ 1} ( X is the input 
and Y  is the output.) When τ is the threshold for the confi-
dence score, the selective prediction can be expressed as a 
combination of f  and g as follows:

(1)f , g (x) �
f (x), if g(x) ≥ τ .

don′t know rejection , otherwise.

Fig. 1  The TCN-based autoencoder structure for feature extraction
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This applies the prediction function f  for samples above 
the confidence score threshold, τ, and rejects prediction 
otherwise.

The selective prediction is controlled by variables called 
coverage ( φ(g) ) and risk value ( R(f , g) ). When Ep is the 
expected value and ℓ is the loss function used to converge 
this model, the two variables can be defined as follows:

In the above expression, the coverage ( φ(g) ) is the 
expected value of the confidence score of the sample as 
measured by the selection function g . R(f , g) is the selec-
tive risk, which is the error rate for classifying the selected 
samples from selective prediction. Our prediction model 
was trained based on these two variables. We can define 
the empirical coverage and empirical selective risk being 
trained on the entire sample ( Sm = {(xi, yi)}

m
i=1 ) as follows:
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(
g
)
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The overall structure of the implemented selective pre-
diction is shown in Fig. 2.

This structure is divided into two parts: the selective 
prediction part ( (f , g)(x) ), which trains both prediction 
function f  and selection function g as described earlier, 
and an auxiliary prediction part ( f (x) ), which assists in 
classification. We used a 1D CNN-LSTM [34] as a clas-
sifier f  . The selective prediction part extracted results 
based on the output of the classifier, prediction func-
tion f  , and the confidence score measured by the selec-
tion function g . The auxiliary prediction part contains 
the prediction results of the classifier. The results of the 
auxiliary prediction part were used to complement the 
results of the selective prediction part to improve the 
classification performance of the overall model. Both 
selective prediction part and auxiliary prediction part are 
optimized simultaneously by each of the loss functions. 
This will be explained in the Optimization section.

For the selection function g , we designed a fully con-
nected layer, batch normalization, and a sigmoid acti-
vation layer for the output of the classifier [26]. For the 
prediction function f  , our model consists of the results 
of a classifier and one fully connected layer.

Optimization
Our optimization objective was to reduce the selective 
risk based on the confidence score for the input samples 
and reject prediction appropriately for samples below the 

Fig. 2  A diagram of the overall structure, including selective and auxiliary prediction
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confidence scores. In other words, rather than develop-
ing a model that simply memorizes the outliers of each 
class, we wanted to develop a model that can learn dis-
tinct attributes for each class and provide a confidence 
score for the classification results. For this purpose, we 
optimized our model by backpropagation learning only 
on samples that were not rejected. As a criterion for opti-
mization, we defined a threshold for the confidence score 
as target coverage (c). The target coverage (c) ranges from 
0 to 1. Consequently, our objective model parameters are 
as follows:

We aimed to identify the model parameters that would 
minimize the selective risk for training samples with 
empirical coverage ( φ(gθ ) ) above the target coverage ( c ). 
We optimized the empirical coverage ( φ(gθ ) ) estimated 
by the prediction function fθ and selection function gθ to 
converge as closely as possible to the target coverage ( c ). 
For optimization, we used the interior point method [35] 
to define the loss function of the selective prediction as 
follows:

where c is the target coverage and λ is a parameter that 
controls the constraints of the target coverage.

The loss function has two terms. The first function ( ̂rℓ ) 
is selective risk (Eq. 3) which is calculated for the samples 
selected by the section function g over the input Sm . The 
second function consists of a function that is the maxi-
mum of the difference between the target coverage and 
the empirical coverage computed by the selection func-
tion g . The � function allows the empirical coverage to 
converge to the target coverage during training. We also 
added auxiliary loss to improve the performance of the 
selective prediction. The auxiliary loss was defined as the 
binary cross-entropy ( Lh).

We trained selective prediction loss L(f ,g) and auxil-
iary prediction loss Lh at the same time. Both losses were 
optimized simultaneously based on a convex combina-
tion. Based on this, the final loss function is defined as 
follows:

where α is a user-controlled parameter that determines 
the weights of the two losses.

For the specific parameter settings, the training was 
performed with a minibatch of 64 and a learning rate of 
0.001. If the loss did not decrease, we halved the learning 

(6)θ∗ = argmin
(
R
(
fθ , gθ

))
s.t.φ(gθ ) ≥ c

(7)L(f ,g) � r̂ℓ
(
f , g |Sm

)
+ ��(c − φ̂(g |Sm))

(8)�(a) � max(0, a)2

(9)L = αL(f ,g) + (1− α)Lh

rate. Epochs were performed 300 times. Empirically, we 
set λ for the selective prediction loss to 200, and the opti-
mal value of α for the convex combination was set to 0.3.

Performance evaluation
In this study, we provided metrics proposed in the previ-
ous studies [36–38] and validated the selective ability of 
the algorithm by providing the false positive rate (type 1 
errors) and the false negative rate (type 2 errors).

where true positive (TP) is the number of apnea sam-
ples classified as apnea, true negative (TN) is the num-
ber of normal samples classified as normal, false positive 
(FP) is the number of normal samples detected as apnea, 
and false negative (FN) is the number of apnea samples 
detected as normal.

To compare the performance of selective prediction, 
we used the 1D CNN-LSTM model without the selection 
function g as a baseline. We evaluated the classification 
performance by comparing it with the previous studies 
that used a large database and similar signals to our study. 
Furthermore, since this study was based on the multi-
modality of SaO2 and EDR, we removed each signal and 
performed an ablation test to compare the results.

Dataset
The dataset used in this study was polysomnography 
data from Massachusetts General Hospital, MGH [39]. 
This polysomnography data consisted of 1,983 patients 
with suspected sleep apnea syndrome and was composed 
of seven types of biological signals such as six-channel 
EEG, EOG, ECG, EMG (chin), SaO2, respiratory rate, 
and airflow with a sampling rate of 200  Hz. We used 
data for 994 subjects in the dataset that were annotated. 
The annotations for sleep apnea syndrome consisted of 
hypopnea (number of samples: 56,936), central apnea 
(22,763), mixed apnea (2,641), and obstructive apnea 
(32,547). In addition, this dataset was annotated at 1  s 
intervals for RERA (43,822), which is difficult to find in 

(10)
Accuracy = (TP+ TN)/(TP+ TN + FP+ FN)

(11)Sensitivity = TP/(TP+ FN)

(12)Specificity = TN/(TN + FP)

(13)False negative rates = FN/(FN + TP)

(14)False positive rates = FP/(FP+ TN)

(15)F1 score =
2TP

2TP + FP + FN
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other polysomnography datasets. In this study, RERA, 
which is likely to be misclassified as apnea, was used as 
a reference for ambiguous samples, and the performance 
of the confidence score-based algorithm was validated. In 
other words, we used this dataset to see if an ambiguous 
sample such as RERA could avoid misdiagnosis or per-
form a reject option. We divided them as follows: 70% 
(subjects: 700) for train, 5% (50) for validation, and 25% 
(244) for test. Hypopnea, mixed apnea, central apnea, 
and obstructive apnea were grouped into one class, 
apnea, while other segments, excluding RERA and apnea, 
were grouped into another class, normal. We constructed 
a balanced training and test dataset, using a randomly 
selected dataset from normal samples for selective pre-
diction training. This ensured that the number of samples 
in each class was evenly distributed during training and 
test.

Pre‑processing
The preprocessing of the biological signals used in this 
study, ECG and SaO2, is illustrated in Fig. 3.

Robust R-peak detection was performed on the ECG 
to capture the QRS complex [40]. To remove the noise 
of ECG and enhance the QRS complex, a band pass fil-
ter was applied 5-20 Hz, and R-peak detection was per-
formed using first order Gaussian differentiator after a 
nonlinear transformation. Based on the calculated RR-
interval, the EDR was estimated using interpolation after 
calculating heart rate variability (HRV) [41]. For SaO2, 
outliers were removed and then compensated for by 
interpolation.

After pre-processing, both EDR and SaO2 were nor-
malized to the 0–1 range for training. we performed 
a 30-s segmentation [21] with a 5-s overlap based on 
sleep apnea being longer than 10 s. After pre-processing, 

701,108 samples were used for training and the remain-
ing 220,828 samples were used for test.

Result
Feature extraction performance
We encoded the biological signals of SaO2 and EDR 
using the autoencoder method. The signals from SaO2 
and EDR have a total of 12,000 samples, each containing 
6,000 data points per 30 s segments. We used the autoen-
coder to reduce a total of 12,000 data points to 1,200. We 
evaluated the performance of an autoencoder that recon-
structs the original signal. This algorithm was validated 
with a test set of 244 subjects (220,828 samples) We per-
formed correlation analysis to determine the similarity 
between the reconstructed and original signals. The aver-
age correlation was 0.89. We also visualized the distribu-
tion between two classes for the latent vector extracted 
from the autoencoder by applying t-distributed stochas-
tic neighbor embedding (t-SNE) [42]. Compared to the 
input of the autoencoder, encoded feature distributions 
for two classes were clustered. This visualization is shown 
in Fig. 4.

Coverage violation & selective risk
We had two goals in training selective prediction. The 
first was to converge empirical coverage to the target 
coverage, and the second was to optimize the model 
to minimize the selective risk. Therefore, we validated 
the average empirical coverage, coverage violation, and 
selective risk on our test set to ensure that model was 
optimized. We defined coverage violation as the abso-
lute mean of the difference between target coverage and 
empirical coverage in the entire dataset. The selective risk 
was the error rate of the samples selected by the model. 
We set the target coverage to a value that is sufficiently 
reliable based on previous studies [26, 27]. We validated 

Fig. 3  The diagrams of ECG and SaO2 pre-processing to apply to training
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these metrics for three different target coverage values: 
0.90, 0.95, and 0.98 using 220,828 test samples. This is 
shown in Table 1.

False‑positive and False‑negative rate
To evaluate the performance of selective prediction, we 
calculated the false positive and false negative rates for 
the samples with high confidence scores in the test set. 
We also calculated the values without selective predic-
tion. Table 2 summarizes the results for target coverage 
between 0.90 and 0.98 and without selective prediction.

Classification performance
The selective prediction was designed using a 1D CNN-
LSTM for classification. We compared the classification 
performance with and without the selective prediction. 
When used with the selective prediction, the target cov-
erage of 0.98 showed the best classification performance. 
Using the test set, the performance of our model was 
83.22% for accuracy, 83.11% for sensitivity, 83.33% for 
specificity, and an F1-score of 0.832 without the selective 
prediction. Using the selective prediction, the accuracy 
was 90.26%, the sensitivity was 91.29%, the specificity 
was 89.21%, and the F1-score was 0.905. In summary, we 
could see that the selective prediction model contributed 

to an overall increase in performance. The performance 
of sleep apnea detection in previous studies and the 
results before and after selective prediction are shown in 
Table 3.

Ablation test
Since we developed the multi-modality classification 
model using two signals (EDR and SaO2), we validated 
the significance of each signal for the classification. 
trained with either SaO2 or EDR and tested modality 
ablation with the target coverage of 0.98. We compared 
the results with and without selective prediction of each 
signal. The results are shown in Table 4. The classification 
using both SaO2 and EDR had higher classification per-
formance than using only a single modality.

Discussion
Overview
We developed a confidence score-based selective predic-
tion using EDR and SaO2 for detecting sleep apnea. To 
develop selective prediction, we used a reject option to 
reduce the misdiagnosis rate for ambiguous samples with 
a low confidence score. We evaluated the performance 

Fig. 4  A visualization of the t-SNE results for each class input and output of autoencoder

Table 1  Empirical coverage, coverage violation, and selective 
risk based on target coverages

Target 
coverage

Average empirical 
coverage

Coverage 
violation

Selective risk

0.90 0.897 0.114 0.111

0.95 0.945 0.060 0.109

0.98 0.978 0.028 0.097

Table 2  False-positive rate and False-negative rate based on 
target coverages

Target coverage False-positive 
rate (%)

False-negative 
rate (%)

Without selective prediction 16.89 16.67

0.90 12.31 9.62

0.95 12.84 9.08

0.98 8.71 10.79
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of the developed model. First, we checked the empirical 
coverage and selective risk per target coverage to ensure 
that the trained model was optimized to be able to select 
samples. Based on Table  1, we have validated that the 
developed model has been optimized according to our 
desired direction. We then checked the false positive 
rate (type 1 error) and false negative rate (type 2 error), 
which are important for diagnosis in the medical field, 
to see the benefits of selective prediction in medical data 
classification. Both type 1 and type 2 error decreased 
after using the selective prediction. These results showed 
that the developed model has the potential to reduce the 
type 1 and the type 2 errors in sleep apnea detection. In 
our classification performance, we found that 0.98 is the 
best target coverage for classification. Based on Table 3, 
we found that our model showed improved performance 
compared to similar previous studies, and we confirmed 
that our model’s performance was further improved 
through selective prediction.

Rejection
We analyzed the rejected predictions for the interpreta-
tion of the classification results. We used the output of 
the last dense layer of the selective prediction to visual-
ize the apnea (subtype: obstructive apnea, central apnea, 
mixed apnea, hypopnea), normal, and the rejected sam-
ples. We performed a test at a 0.98 confidence score and 
rejected it based on the results. The result is shown in 
Fig. 5.

As a result, we could observe that the attributes corre-
sponding to the apnea and normal classes form distinct 
clusters with each other. Also, the selective prediction 
rejected the samples in the area where two classes over-
lap because it determined those samples to be unreliable.

In addition, we tested the RERA sample. As mentioned 
above, RERA is a symptom that is likely to be misclas-
sified as apnea. Since we used selective prediction to 
reduce the error rate for ambiguous samples, we tried a 
test based on RERA, which biologically can be defined 

Table 3  Performance comparison

Acc Accuracy, AUROC Area under the curve of the receiver operating characteristic, SHHS Sleep heart health study database, AbdoRes Abdomen respiration signal, 
ThorRes Thorax respiration signal, N/A Not applicable, MGH Massachusetts general hospital database, EDR ECG-Derived Respiration

Study Dataset Method Signal Acc (%) AUROC F1-score

Sharma et al.,2022 [43] SHHS-1 (5,793) Feature extraction + Decision tree SpO2 79.81 N/A 0.792

ECG 72.31 N/A 0.710

SpO2 + ECG + AbdoRes + ThorRes 81.63 N/A 0.812

Pragya et al.,2022 [44] SHHS-1
(5,793)

1D CNN SpO2 + Pulse rate 84.3 0.862 N/A

SHH-2
(2,651)

82.2 0.904 N/A

Shanmugham et al.,2021 [21] MGH Feature extraction + ResNet ECG + Respiration signal 77.00 0.840 N/A

Mahsa et al., 2021 [45] Apnea-ECG
(70)

LeNet + LSTM ECG 80.67 N/A 0.747

Oliver et al., 2021 [46] Apnea-ECG
(70)

LSTM-CNN
Hold out test

ECG
(R-R interval)

81.30 85.32 N/A

Tom et al.,2018 [47] SHHS-1
(5,793)

LSTM ECG
(EDR)

60.10 0.588 N/A

AbdoRes 77.20 0.775 N/A

This study (Without selective 
prediction)

MGH
(994)

1D CNN-LSTM ECG(EDR) + SaO2 83.22 0.908 0.832

This study (With selective predic-
tion)

MGH
(994)

1D CNN-LSTM + Selective predic-
tion

ECG(EDR) + SaO2 90.26 0.939 0.905

Table 4  Comparison of classification performance for each biological signal (with and without selective prediction)

Acc Accuracy, Sen Sensitivity, Spec Specificity

Signal Without selective prediction With selective prediction

Acc (%) Sen (%) Spec (%) Acc (%) Sen (%) Spec (%)

SaO2 78.49 75.83 81.15 81.17 80.32 82.12

EDR 74.76 74.33 75.21 81.36 83.96 78.58

Multi-modal 83.22 83.11 83.33 90.26 91.29 89.21
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as a sample whose class attributes are ambiguous com-
pared to the normal and apnea classes. As with the previ-
ous experiment, we tested at a 0.98 confidence score. As 
a result of the classification, 48.86% of the RERA samples 
were rejected, 42.81% were diagnosed as normal class 
samples, and only 8.33% were diagnosed as apnea class 
samples. In contrast, a dataset with only apnea and nor-
mal samples had 18.77% reject rate. The distribution of 
the RERA class compared to the distribution of apnea 
and normal class is shown in Fig.  6. This figure repre-
sented the distribution of apnea and normal samples, 
which were shown in red and blue colors, respectively. 
Next, we evaluated the confidence score for RERA, and if 
this score was less than 0.98, we classified it as a low con-
fidence score (reject); otherwise, we classified it as a high 
confidence score. As shown in Fig.  6, we could observe 
that the classification was rejected in the purple area 
due to the low confidence score. These results showed 
that the developed model rejected a significant number 
of RERA class samples since these samples had less clear 
class attributes compared to normal and apnea samples.

Using the t-SNE visualization, our model was also able 
to provide interpretations for classification results by 
providing confidence score. In summary, based on Fig. 6 
and the classification results, it could be observed that 
there is ambiguity in distinguishing RERA class samples 
from normal and apnea class samples. Due to this char-
acteristic, using uncertainty-based classification methods 
such as selective prediction could be one of the ways to 
enhance practical applicability.

Strengths and limitations of the study
In this study, we developed an automatic sleep apnea 
detection algorithm that enables selective prediction 
based on a confidence score using EDR and SaO2. The 

model used the reject option to ensure classification per-
formance by rejecting ambiguous samples with low clas-
sification confidence. By applying the reject option, we 
were able to reject the classification results for samples 
with ambiguous class attributes. The rejected samples are 
then given the opportunity to be further diagnosed with 
a second opinion by a clinician or decision system. This 
can be an effective method of reducing false negatives 
and false positives, which can be significant in the health-
care field.

However, there are still challenges ahead to apply wear-
able device. We used balanced data to focus on selective 
prediction. So, when applying the algorithm in practice, 
this problem should be solved by adjusting the thresh-
old of the receiver operating characteristic (ROC) curve 
[44, 48] through calculating the largest geometric mean, 
G-mean (G-mean =

√
sensitivity× spectificity ) [49].

In addition, when applying a continuous data, chal-
lenges may arise in determining the appropriate win-
dow size and handling side parts of each segment. To 
address these issues, we propose the utilization of slid-
ing window and soft voting decisions, as demonstrated 
in a previous study [17]. By employing these techniques, 
we should optimize parameters such as window length 
and sliding window criteria to adapt the algorithm for 
real-world applications. In future study, it is essential to 
explore optimization methods to ensure practical feasi-
bility. Therefore, our future plans involve collecting poly-
somnography data (DB) from sleep apnea patients using 
wearable devices and assessing their suitability for real-
world applications. Through this study, we are optimis-
tic that our proposed approach will significantly reduce 
the misdiagnosis rate when diagnosing sleep apnea, rely-
ing solely on the limited information acquired from the 
wearable device worn on the wrist.

Fig. 5  The distribution by class which were classified by selective prediction based on confidence scores
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Conclusion
Selective prediction, as used in this study, proves to be 
a highly effective approach in mitigating false diagnoses 
when AI encounters significant uncertainty. To the best 
of our knowledge, this is the first study of automatic sleep 
apnea detection algorithm based on confidence scores 
that uses an uncertainty measure. Our study shows the 
potential for practical applications in wearable devices 
that measure biological signals, such as respiratory sig-
nals derived from ECG (EDR), photo-plethysmography 
and oxygen saturation. Also, we expect that the confi-
dence score-based reject option used in this study will 
be a more reliable technique when applied to wearable 
devices that acquire low quality signal. In conclusion, our 
approach is expected to serve as an alert system for sleep 
disorders, providing a complement to polysomnography. 
The study will enable wearable devices to provide real-
time sleep monitoring and personalized sleep quality, 
thus enhancing sleep management support.

Abbreviations
AI	� Artificial intelligence
AUROC	� Area under receiver operating characteristic curve
CNN	� Convolutional neural network
ECG	� Electrocardiogram
EDR	� ECG-derived respiration

LSTM	� Long short-term memory
PPG	� Photoplethysmography
RERA	� Respiratory effort-related arousal
TCN	� Temporal convolutional network
t-SNE	� T-distributed stochastic neighbor embedding

Acknowledgements
This work was supported by (1) ’Smart HealthCare Program’ funded by the 
Korean National Police Agency (KNPA, Korea). [Project Name: Development of 
wearable system for acquiring lifelog data and customized healthcare service 
for police officers/ Project Number: 220222M04] (2) the Bio & Medical Technol-
ogy Development Program of the NRF funded by the Korean government, 
MSIT (2021M3E5D2A01022397).

Authors’ contributions
Beomjun Bark (BJ): Implementation of the proposed algorithm and writing manu-
scripts. Borum Nam (BR): Technical proposal, data analysis and writing manuscripts. 
BJ and BR contributed equally. In Young Kim: Medical review, review and editing of 
manuscripts. All authors read and approved the final manuscript.

Funding
This work was supported by (1) ’Smart HealthCare Program’ funded by the 
Korean National Police Agency (KNPA, Korea). [Project Name: Development of 
wearable system for acquiring lifelog data and customized healthcare service 
for police officers/ Project Number: 220222M04] (2) the Bio & Medical Technol-
ogy Development Program of the NRF funded by the Korean government, 
MSIT (2021M3E5D2A01022397).

Availability of data and materials
The datasets generated and analyzed as part of the current study are available 
at the physionet.org [39] repository (https://​physi​onet.​org/​conte​nt/​chall​
enge-​2018/1.​0.0/). Our source codes used for this study are available from the 
GitHub repository (https://​github.​com/​hbumjj/​SelAN​et).

Fig. 6  The distribution for RERA

https://physionet.org/content/challenge-2018/1.0.0/
https://physionet.org/content/challenge-2018/1.0.0/
https://github.com/hbumjj/SelANet


Page 11 of 12Bark et al. BMC Medical Informatics and Decision Making          (2023) 23:190 	

Declarations

Ethics approval and consent to participate
The “You Snooze You Win” dataset [39] used in this study was a public data-
base, and this study was reviewed and approved by the Hanyang University 
Institutional Review Board (#HYUIRB-202211–007), and the requirement for 
informed consent was waived by the institution. All methods were carried out 
in accordance with relevant guidelines and regulations.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 8 May 2023   Accepted: 8 September 2023

References
	1.	 Krieger J, McNicholas WT, Levy P, De Backer W, Douglas N, Marrone O, 

et al. Public health and medicolegal implications of sleep apnoea. Eur 
Respir J. 2002;20(6):1594–609.

	2.	 Kline LR, Collop N, Finlay G. Clinical presentation and diagnosis of 
obstructive sleep apnea in adults. Uptodate com. 2017.

	3.	 Harding SM. Complications and consequences of obstructive sleep 
apnea. Curr Opin Pulm Med. 2000;6(6):485–9.

	4.	 Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V. 
Obstructive sleep apnea as a risk factor for stroke and death. N Engl J 
Med. 2005;353(19):2034–41.

	5.	 Rundo JV, Downey R III. Polysomnography Handbook of clinical neurol-
ogy. 2019;160:381–92.

	6.	 McNicholas WT. Diagnosis of obstructive sleep apnea in adults. Proc Am 
Thorac Soc. 2008;5(2):154–60.

	7.	 Javaheri S, Dempsey J. Central sleep apnea. Compr Physiol. 
2013;3(1):141–63.

	8.	 Loewen AH, Korngut L, Rimmer K, Damji O, Turin TC, Hanly PJ. Limita-
tions of split-night polysomnography for the diagnosis of nocturnal 
hypoventilation and titration of non-invasive positive pressure ventilation 
in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Fronto-
temporal Degeneration. 2014;15(7–8):494–8.

	9.	 Markun LC, Sampat A. Clinician-focused overview and developments in 
polysomnography. Current sleep medicine reports. 2020;6:309–21.

	10.	 Partinen M, Jamieson A, Guilleminault C. Long-term outcome for obstruc-
tive sleep apnea syndrome patients: mortality. Chest. 1988;94(6):1200–4.

	11.	 Aljadeff G, Gozal D, Schechtman VL, Burrell B, Harper RM, Davidson Ward 
SL. Heart rate variability in children with obstructive sleep apnea. Sleep. 
1997;20(2):151–7.

	12.	 Hernandez AB, Patil SP. Pathophysiology of central sleep apneas. Sleep 
and Breathing. 2016;20:467–82.

	13.	 Alvarez D, Hornero R, Marcos JV, del Campo F. Multivariate analysis of 
blood oxygen saturation recordings in obstructive sleep apnea diagnosis. 
IEEE Trans Biomed Eng. 2010;57(12):2816–24.

	14.	 John A, Nundy KK, Cardiff B, John D, editors. SomnNET: An SpO2 based 
deep learning network for sleep apnea detection in smartwatches. 2021 
43rd Annual International Conference of the IEEE Engineering in Medi-
cine & Biology Society (EMBC); 2021: IEEE.

	15.	 Hafezi M, Montazeri N, Saha S, Zhu K, Gavrilovic B, Yadollahi A, et al. Sleep 
apnea severity estimation from tracheal movements using a deep learn-
ing model. IEEE Access. 2020;8:22641–9.

	16.	 Tripathy R. Application of intrinsic band function technique for auto-
mated detection of sleep apnea using HRV and EDR signals. Biocybernet-
ics Biomedical Engineering. 2018;38(1):136–44.

	17.	 Olsen M, Mignot E, Jennum PJ, Sorensen HBD. Robust, ECG-based detec-
tion of Sleep-disordered breathing in large population-based cohorts. 
Sleep. 2020;43(5):zsz276.

	18.	 Wei K, Zou L, Liu G, Wang C. MS-Net: Sleep apnea detection in PPG using 
multi-scale block and shadow module one-dimensional convolutional 
neural network. Comput Biol Med. 2023;155:106469.

	19.	 Ravì D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, et al. 
Deep learning for health informatics. IEEE J Biomed Health Inform. 
2016;21(1):4–21.

	20.	 Mahmud T, Khan IA, Mahmud TI, Fattah SA, Zhu W-P, Ahmad MO. Sleep 
apnea detection from variational mode decomposed EEG signal using a 
hybrid CNN-BiLSTM. IEEE Access. 2021;9:102355–67.

	21.	 Shanmugham A, Srivatsa BVA, Gopikrishnan K, Chandra VN, Kumar CS, 
editors. Sleep Apnea Detection Using ResNet. 2021 12th International 
Conference on Computing Communication and Networking Technolo-
gies (ICCCNT); 2021: IEEE.

	22.	 John A, Cardiff B, John D, editors. A 1D-CNN based deep learning tech-
nique for sleep apnea detection in iot sensors. 2021 IEEE international 
symposium on circuits and systems (ISCAS); 2021: IEEE.

	23.	 Force AAoSMT. Sleep-related breathing disorders in adults: recommenda-
tions for syndrome definition and measurement techniques in clinical 
research. The Report of an American Academy of Sleep Medicine Task 
Force. Sleep. 1999;22(5):667.

	24.	 Kompa B, Snoek J, Beam AL. Second opinion needed: communicat-
ing uncertainty in medical machine learning. NPJ Digital Medicine. 
2021;4(1):4.

	25.	 Geifman Y, El-Yaniv R. Selective classification for deep neural networks. 
Advances in neural information processing systems. 2017;30.

	26.	 Geifman Y, El-Yaniv R, editors. Selectivenet: A deep neural network with 
an integrated reject option. International conference on machine learn-
ing; 2019: PMLR.

	27.	 Nam B, Kim JY, Kim IY, Cho BH. Selective prediction with long short-term 
memory using unit-wise batch standardization for time series health data 
sets: algorithm development and validation. JMIR Med Inform. 2022;10(3): 
e30587.

	28.	 Azimi H, Gilakjani SS, Bouchard M, Goubran RA, Knoefel F, editors. 
Automatic apnea-hypopnea events detection using an alternative sensor. 
2018 IEEE sensors applications symposium (SAS); 2018: IEEE.

	29.	 Leino A, Nikkonen S, Kainulainen S, Korkalainen H, Töyräs J, Myllymaa 
S, et al. Neural network analysis of nocturnal SpO2 signal enables easy 
screening of sleep apnea in patients with acute cerebrovascular disease. 
Sleep Med. 2021;79:71–8.

	30.	 Díaz García J, Brunet Crosa P, Navazo Álvaro I, Vázquez Alcocer PP, edi-
tors. Downsampling methods for medical datasets. Proceedings of the 
International conferences Computer Graphics, Visualization, Computer 
Vision and Image Processing 2017 and Big Data Analytics, Data Mining 
and Computational Intelligence 2017: Lisbon, Portugal, July 21–23, 2017; 
2017: IADIS Press.

	31.	 Yeom S, Choi C, Kim K, editors. AutoEncoder Based Feature Extraction for 
Multi-Malicious Traffic Classification. The 9th International Conference on 
Smart Media and Applications; 2020.

	32.	 Lea C, Flynn MD, Vidal R, Reiter A, Hager GD, editors. Temporal convolu-
tional networks for action segmentation and detection. proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition; 2017.

	33.	 Thill M, Konen W, Bäck T, editors. Time series encodings with temporal 
convolutional networks. Bioinspired Optimization Methods and Their 
Applications: 9th International Conference, BIOMA 2020, Brussels, Bel-
gium, November 19–20, 2020, Proceedings 9; 2020: Springer.

	34.	 Wang J, Yu L-C, Lai KR, Zhang X, editors. Dimensional sentiment analysis 
using a regional CNN-LSTM model. Proceedings of the 54th annual 
meeting of the association for computational linguistics (volume 2: Short 
papers); 2016.

	35.	 Potra FA, Wright SJ. Interior-point methods. J Comput Appl Math. 
2000;124(1–2):281–302.

	36.	 Sadr N, de Chazal P. A comparison of three ECG-derived respiration 
methods for sleep apnoea detection. Biomedical Physics & Engineering 
Express. 2019;5(2): 025027.

	37.	 Halder B, Anjum T, Bhuiyan MIH. An attention-based multi-resolution 
deep learning model for automatic A-phase detection of cyclic alternat-
ing pattern in sleep using single-channel EEG. Biomed Signal Process 
Control. 2023;83: 104730.

	38.	 Srivastava G, Chauhan A, Kargeti N, Pradhan N, Dhaka VS. ApneaNet: 
a hybrid 1DCNN-LSTM architecture for detection of obstructive sleep 



Page 12 of 12Bark et al. BMC Medical Informatics and Decision Making          (2023) 23:190 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

apnea using digitized ECG signals. Biomed Signal Process Control. 
2023;84: 104754.

	39.	 Ghassemi MM, Moody BE, Lehman L-WH, Song C, Li Q, Sun H, et al., 
editors. You snooze, you win: the physionet/computing in cardiology 
challenge 2018. 2018 Computing in Cardiology Conference (CinC); 2018: 
IEEE.

	40.	 Kathirvel P, Sabarimalai Manikandan M, Prasanna S, Soman K. An efficient 
R-peak detection based on new nonlinear transformation and first-order 
Gaussian differentiator. Cardiovasc Eng Technol. 2011;2:408–25.

	41.	 Sarkar S, Bhattacherjee S, Pal S, editors. Extraction of respiration signal 
from ECG for respiratory rate estimation. Michael Faraday IET Interna-
tional Summit 2015; 2015: IET.

	42.	 Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of 
machine learning research. 2008;9(11).

	43.	 Sharma M, Kumbhani D, Tiwari J, Kumar TS, Acharya UR. Automated 
detection of obstructive sleep apnea in more than 8000 subjects using 
frequency optimized orthogonal wavelet filter bank with respiratory and 
oximetry signals. Comput Biol Med. 2022;144: 105364.

	44.	 Sharma P, Jalali A, Majmudar M, Rajput KS, Selvaraj N, editors. Deep-Learn-
ing based Sleep Apnea Detection using SpO2 and Pulse Rate. 2022 44th 
Annual International Conference of the IEEE Engineering in Medicine & 
Biology Society (EMBC); 2022: IEEE.

	45.	 Bahrami M, Forouzanfar M, editors. Detection of sleep apnea from single-
lead ECG: Comparison of deep learning algorithms. 2021 IEEE Interna-
tional Symposium on Medical Measurements and Applications (MeMeA); 
2021: IEEE.

	46.	 Faust O, Barika R, Shenfield A, Ciaccio EJ, Acharya UR. Accurate detection 
of sleep apnea with long short-term memory network based on RR 
interval signals. Knowl-Based Syst. 2021;212: 106591.

	47.	 Van Steenkiste T, Groenendaal W, Deschrijver D, Dhaene T. Auto-
mated sleep apnea detection in raw respiratory signals using long 
short-term memory neural networks. IEEE J Biomed Health Inform. 
2018;23(6):2354–64.

	48.	 Zou Q, Xie S, Lin Z, Wu M, Ju Y. Finding the best classification threshold in 
imbalanced classification. Big Data Research. 2016;5:2–8. https://​doi.​org/​
10.​1016/j.​bdr.​2015.​12.​001.

	49.	 Barandela R, Sánchez JS, Garcıa V, Rangel E. Strategies for learning in class 
imbalance problems. Pattern Recogn. 2003;36(3):849–51.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.bdr.2015.12.001
https://doi.org/10.1016/j.bdr.2015.12.001

	SelANet: decision-assisting selective sleep apnea detection based on confidence score
	Abstract 
	Background 
	Method 
	Result 
	Conclusion 

	Background
	Methods & materials
	Feature extraction
	Classification & selective prediction
	Optimization
	Performance evaluation
	Dataset
	Pre-processing

	Result
	Feature extraction performance
	Coverage violation & selective risk
	False-positive and False-negative rate
	Classification performance
	Ablation test

	Discussion
	Overview
	Rejection
	Strengths and limitations of the study

	Conclusion
	Acknowledgements
	References


