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Abstract 

Background  Accurate segmentation of stroke lesions on MRI images is very important for neurologists in the plan‑
ning of post‑stroke care. Segmentation helps clinicians to better diagnose and evaluation of any treatment risks. 
However, manual segmentation of brain lesions relies on the experience of neurologists and is also a very tedious 
and time‑consuming process. So, in this study, we proposed a novel deep convolutional neural network (CNN‑Res) 
that automatically performs the segmentation of ischemic stroke lesions from multimodal MRIs.

Methods CNN‑Res used a U‑shaped structure, so the network has encryption and decryption paths. The 
residual units are embedded in the encoder path. In this model, to reduce gradient descent, the residual units 
were used, and to extract more complex information in images, multimodal MRI data were applied. In the link 
between the encryption and decryption subnets, the bottleneck strategy was used, which reduced the number 
of parameters and training time compared to similar research.

Results CNN‑Res was evaluated on two distinct datasets. First, it was examined on a dataset collected from the Neu‑
roscience Center of Tabriz University of Medical Sciences, where the average Dice coefficient was equal to 85.43%. 
Then, to compare the efficiency and performance of the model with other similar works, CNN‑Res was evaluated 
on the popular SPES 2015 competition dataset where the average Dice coefficient was 79.23%.

Conclusion This study presented a new and accurate method for the segmentation of MRI medical images using 
a deep convolutional neural network called CNN‑Res, which directly predicts segment maps from raw input pixels.
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Background
Stroke has been one of the most thoughtful intimidations 
to human health, which can lead to long-term disability 
or even death [1]. Stroke has emerged as a major global 
health problem and recently became the third leading 
cause of death and disability [2]. Also, Ischemic stroke is 
the most common vascular disease and is one of the lead-
ing causes of death and disability worldwide. It has grown 
rapidly in developed and poor countries in recent decades 
[3, 4]. Recent investigations have proven that the preva-
lence of stroke is significantly higher in Iran compared 
with developed countries and has an increasing pattern 

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom‑
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Informatics and
Decision Making

*Correspondence:
Taha Samad‑Soltani
samadsoltani@tbzmed.ac.ir
1 Department of Software Engineering, Faculty of Electrical and Computer 
Engineering, University of Tabriz, Tabriz, East Azerbaijan, Iran
2 Neurosciences Research Center (NSRC), Tabriz University of Medical 
Sciences, Tabriz, Iran
3 Department of Health Information Technology, School of Management 
and Medical Informatics, Tabriz University of Medical Sciences, Tabriz, Iran

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-023-02289-y&domain=pdf


Page 2 of 14Gheibi et al. BMC Medical Informatics and Decision Making          (2023) 23:192 

[5]. Ischemic stroke is defined as “neurological symptoms 
resulting from focal brain ischemia or necrosis by abrupt 
occlusion of the cerebral vessels” [6]. There have been 
great advances in prevention, diagnosis, and therapy over 
the past decades. Advanced medical imaging technolo-
gies have dramatically changed the approach to ischemic 
stroke diagnosis and treatment. Noninvasive multimodal 
CT and MRI provide high-quality images to make bet-
ter decisions on diagnosis, identify causes of stroke, and 
enhance reperfusion therapy [7, 8]. Furthermore, com-
puter-aided diagnosis (CAD) on medical images has been 
a major field of research in recent years. As Hiroshi Fujita 
explained in his paper, the third Artificial Intelligence (AI) 
boom has arrived, and the CAD on imaging is provided 
by deep learning technology [9, 10]. Using the machine 
learning approach in the automatic identification of brain 
lesions caused by stroke is the main priority and focus 
of researchers in this field. Using different algorithms, it 
is possible to achieve an accurate estimate of the sever-
ity and extent of lesion damage [11]. MRI is mostly used 
to identify and diagnose a stroke lesion in patients who 
have symptoms of a stroke. The processing of multimodal 
MRI images by intelligent methods is very important 
because it helps physicians understand the abnormal 
growth of lesions and facilitates decision-making. Stud-
ies suggested that MRI imaging is superior to CT imag-
ing in stroke detection [12, 13]. Determining the location 
and extent of irreversible brain tissue in stroke is one of 
the vital parameters in the decision process of diagno-
sis that has been addressed in recent clinical trials [14]. 
Despite the importance of this procedure in planning 
treatment strategies, monitoring disease progression, and 
predicting patient outcomes, a qualitative assessment is 
not sufficient. Without the use of quantitative and com-
putational imaging to predict the severity of the lesions 
and the consequences that will affect the patient, vari-
ous important diagnostic and therapeutic challenges will 
have occurred. Lesions are usually expressed in terms of 
average volume and number. Accurately calculating the 
area and volume of the lesions and counting them can be 
complicated, time-consuming, and difficult for humans, 
also [15] in outlines a hybrid diagnostic strategy for iden-
tifying COVID-19 on chest X-ray pictures and differenti-
ating it from other viral pneumonias. Three phases make 
up the model we suggest. Using the deep models from 
MobilenetV2, Efficientnetb0, and Darknet53, classifica-
tion was done in the first stage. Using the MobilenetV2, 
Efficientnetb0, and Darknet53 architectures, the feature 
maps of the pictures in the Chest X-ray data set were 
independently extracted for each architecture in the sec-
ond stage. To make these feature maps smaller, the NCA 
approach was used [15, 16].

AI has influenced all dimensions of human life and 
neurology is no exception to this growing trend [17]. 
AI in neurology has been used to predict diseases and 
their consequences. Especially in patients with acute 
stroke. It has shown its effectiveness in helping clini-
cians to make confident and decisive decisions [18]. 
These methods include simple classification, clustering, 
and supervised or unsupervised learning [19, 20]. AI is 
a rapidly expanding field of stroke imaging, including 
ischemic and hemorrhage subtypes [21]. Early diagno-
sis of acute stroke is critical for initiating prompt inter-
vention save the patients. AI can help different stroke 
treatment paradigms, including infarct or hemorrhage 
detection, segmentation, classification, large vessel occlu-
sion detection, Alberta Stroke Program Early CT Score 
grading, and prognostication [22]. It should be noted that 
segmentation is the most important step in identifying 
and diagnosing lesions. Without proper segmentation, 
subsequent classification will not perform properly [23]. 
In recent years, deep learning approaches have created 
an amazing impact on addressing scientific and applied 
challenges in various fields. Health also massively bene-
fits from the use of customized and improved deep learn-
ing models which save time, cost, and produce confident 
outputs [24]. Deep convolutional neural networks (CNN) 
have been successfully applied in medical studies for 
image segmentation and CAD. various CNN structures, 
both 2D and 3D, were recommended into automatic 
and semi-automatic stroke segmentation due to its abil-
ity to learn non-linear relationships from the raw image 
data and to perform feature extraction without using any 
domain knowledge [25, 26].

In the current study, a U-net CNN, called Res-CNN, 
was used to predict lesions in patients with acute 
ischemic stroke, with the multimodal MRIs serving as 
input images to the customized model. To avoid the lim-
ited number of cases available for training, we trained a 
model with all available stroke cases and reported its per-
formance. As well, to benchmark the proposed model, we 
trained and tested it on the popular SPES competition 
dataset. We view this model as a key step to producing 
personalized prediction for patients with acute ischemic 
stroke and an important interim step to move toward 
models that will also incorporate clinical information.

Methods
This research is divided into several sections as follows.

Dataset
The first step in machine learning projects is the process 
of collecting training samples [27]. The raw data source 
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containing MRI images was obtained from PACS of the 
Tabriz University of Medical Sciences in collaboration 
with the Neuroscience Research Center. 44 MRI images 
with the ischemic stroke diagnosis were extracted in form 
of a DICOM file. All samples were in gray color scale and 
are three dimensional. Each 3D sample had 60 2D image 
slices. The directory of each sample consisted of several 
modalities. At the recommendation of expert neurosci-
entists as well as our findings on previous research, two 
modalities, DWI and Flair, were used to conduct this 
research. Modalities are various types of MRI images that 
are captured with different filters. In this study, 34 sam-
ples for model training, five for model development, and 
the remaining five samples for final model testing were 
applied.

Preprocessing
To annotate the MRI images, the DICOM files were con-
verted to NIfTI format which is a type of file for neuro-
imaging (using the dmc2niix library) [28]. In this study, 
pre-processing has been performed twice. At first, addi-
tional information such as demographics was removed 
from the images and then the brain object in all MRI 
slices was placed in the center of the image before anno-
tation. The second preprocessing was to select all MRI 
slices that included ischemic stroke lesions. The num-
ber of slices with ischemic brain injury varied in the 60 
image slices obtained for each modality. To separate 
images containing ischemic brain lesion, specific masks 
created by clinicians during annotation was processed 
and every mask and related 2D image with a stroke lesion 
were selected. On average, about 18 image slices were 
extracted for each sample. In the final preprocessing step, 
all stroke images and related masks, which were stored in 
NIfTI format, were selected and converted to 2D Numpy 
arrays [29].

Data annotation
Data labeling and annotation are an essential steps in 
machine learning. Labeling depends on a lot of manual 
work and should be performed by field experts. There-
fore, it is a time-consuming process. The data annotation 
of this study was performed after converting the file for-
mat and the first stage of preprocessing, with the efforts 
of two expert neurologists at Tabriz University of Medical 
Sciences. They annotated stroke lesions in every slice of 
the MRI images using the free MRIcron annotation soft-
ware. Regardless of the presence or absence of lesions, 
this software produces a mask for each 2D slice and saved 
them in form of NIfTI. The values of the produced masks 
were 1 or 0, of which 1 indicates stroke lesion tissue and 0 
indicates healthy tissue.

Data augmentation
In most MRI datasets, the sample number of MRI images 
is less than other types of medical images. So we have a 
limited number of training samples. Subsequently, the 
number of scanned lesions and injured tissues is also 
limited. However, deep learning models require a lot 
of images to train a large number of parameters in the 
model. If the training data is generated by cutting pieces 
of injured tissue on MRI images, still the number of train-
ing samples will be far from the needs of the deep learn-
ing model. Data augmentation approaches can be used 
for deep learning datasets, and these techniques increase 
the amount of data in medical work and greatly improve 
the performance of the model [30].

In the current research, data augmentation, mostly 
image transformations, is applied to 2D Numpy arrays 
[31]. Each 2D slice is rotated 0, 90, 180 and 270 degrees, 
respectively. The original image is then flipped and 
rotated again at 0, 90, 180, and 270 degrees, respectively. 
These transformations convert a 2D piece of the MRI 
image into eight 2D images. In validation and test sam-
ples, only the flip method is used and each 2D image is 
converted into two 2D images.

Training, samples
After the annotation stage, the number of 2D images for 
each modality was 792 images, of which 560 images were 
obtained for training, 120 images for validation and 112 
images for testing. After data augmentation, 4480 train-
ing samples, 240 validation samples, and 224 test sam-
ples were generated for each modality. Total training, 
validation, and test sample sizes are 8960, 480, and 448, 
respectively.

Proposed network architecture
We present a deep neural network for the automatic 
segmentation of ischemic stroke lesions called CNN-
Res, which reduces the problem of gradient degradation 
and the number of model parameters. Mainly U-shaped 
architecture and ResNet blocks have been used. The 
U-shaped is one of the best architectures for segment-
ing images that have fewer instances. This architecture 
is one of the masterpieces of medical image segmen-
tation approaches [32, 33]. It consists of two encoder 
and decoder paths. The dense structure of the trans-
lation and ResNet blocks is embedded in the encoder 
path of the U-shaped architecture. As shown in Fig. 1, 
the CNN-Res architecture consists of two subnets and 
benefits from both U-Net and ResNet advantages. The 
external framework of the network is mainly U-shaped 
and the extraction of internal features was performed 
by ResNet blocks. In the encoding path of the U-shaped 
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architecture, we replaced the ResNet and translation 
blocks with convolution and maximum pooling lay-
ers in the traditional form of U-Net. ResNet blocks 
reduce the Vanishing gradient problem. Translation 
blocks have been used for maximum pooling operation 
and input dimensions reduction. In the decoder path, 
dimensional expansion layers are used for the correct 
position of each pixel. The main connection between 
the two subnets is through a bottleneck block that 
transmits high-level features. To transfer positional fea-
tures, features mapped from the encoder path layers, 
peer-to-peer, are transferred to the decoder path layers. 
This leads to more informatical features. The proposed 
CNN-Res architecture uses 4 ResNet blocks, 4 trans-
lation blocks, and 5-dimensional expansion blocks. 
Architectural details are described in Table  1. This 
architecture consists of two symmetrical paths.

Encoder path
The CNN-Res starts from the encoder path, which fol-
lows the convolutional neural network. This path uses 
two different blocks to extract and reduce the dimen-
sions of the features. The size of the input layer is 
160 × 160.

Translation block
The structure of the translation block is shown in Fig. 2. 
It includes the convolution layer, batch normalization, 
the ReLU activity function, and the maximum pool-
ing layer. Translation blocks have been used to improve 
the speed of training and reduce dimensions. This block 
applies a convolution layer and a maximum pooling layer 
to map the input X to the output. The convolution layer 
has a 3 × 3 filter with step size 1. To maintain the input 
dimensions at the layer output, the padding was used, 
followed by batch normalization and the ReLU activ-
ity function. To reduce the dimensions of the input, the 
maximum pooling layer with a 2 × 2 filters and step size 
2 has been used, which each time halves the dimensions 
of the input (Merely reduces the height and width of the 
input and does not affect the depth but retains outstand-
ing features). This block maps input xl−1 to xl via F (0). 
The function F (0) includes the convolution and the max-
imum pooling layer.

ResNet block
The network would face the problem of gradient destruc-
tion if only translation blocks were staked and the net-
work would be deeper. ResNet blocks have been used 

Fig. 1 Architecture of proposed CNN‑Res
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to solve this problem as well as gradient disappearance. 
Using these blocks, the network is deepened, which 
makes more complex features to be extracted. As shown 
in Fig. 3, there are two ways in the ResNet block for infor-
mation propagation, one a direct path from xl to xl+1 and 
the other an indirect path with several successive layers.

Each ResNet block has an input (xl) and represents 
the Features through batch normalization, ReLU, and 

convolution layer. It then combines the two features, as 
the xl+1 , and the information can flow directly in for-
ward and backward propagation. The ResNet block is 
expressed as:

Here xl is the input feature and xl+1 is the output of lth 
block. F () is the ResNet block function. In this block, two 

(1)xl+1 = xl + F(xl .Wl)

Table 1 CNN‑Res detailed architecture

Layer Architecture Output

Input (160× 160) (160× 160× 1)

Transition Block 1
[

Conv(3× 3).BN.Relu.S = 1
maxpooling(2× 2).S = 2

]

(80× 80× 32)

Residual Block 1
[

BN.ReLU.Conv(1× 1).S = 1
BN.ReLU.Conv(3× 3.S = 1)

]

(80× 80× 64)

Transition Block 2
[

Conv(3× 3).BN.Relu.S = 1
maxpooling(2× 2).S = 2

]

(40× 40× 64)

Residual Block 2
[

BN.ReLU.Conv(1× 1).S = 1
BN.ReLU.Conv(3× 3.S = 1)

]

(40× 40× 128)

Transition Block 3
[

Conv(3× 3).BN.Relu.S = 1
maxpooling(2× 2).S = 2

]

(20× 20× 128)

Residual Block 3
[

BN.ReLU.Conv(1× 1).S = 1
BN.ReLU.Conv(3× 3.S = 1)

]

(20× 20× 256)

Transition Block 4
[

Conv(3× 3).BN.Relu.S = 1
maxpooling(2× 2).S = 2

]

(10× 10× 256)

Residual Block 4
[

BN.ReLU.Conv(1× 1).S = 1
BN.ReLU.Conv(3× 3.S = 1)

]

(10× 10× 512)

Bottleneck
[

Conv(3× 3).BN.Relu.S = 1
maxpooling(2× 2).S = 2

]

(5× 5× 512)

[

BN.ReLU.Conv(1× 1).S = 1
BN.ReLU.Conv(3× 3.S = 1)

]

(5× 5× 1024)

[BN.ReLU.Conv(1× 1).S = 1] (5× 5× 64)

Upsampling block Upsampling 1 Upsampling(2× 2) (10× 10× 64)

Concatenate
[

TransitionBlock4.Upsampling1
]

(10× 10× 320)

Conv 1 Conv(3× 3).ReLU.S = 1 (10× 10× 256)

Upsampling block Upsampling 2 Upsampling(2× 2) (20× 20× 256)

Concatenate
[

TransitionBlock3.Upsampling2
]

(20× 20× 384)

Conv 2 Conv(3× 3).ReLU.S = 1 (20× 20× 128)

Upsampling block Upsampling 3 Upsampling(2× 2) (40× 40× 128)

Concatenate
[

TransitionBlock2.Upsampling3
]

(40× 40× 192)

Conv 3 Conv(3× 3).ReLU.S = 1 (40× 40× 64)

Upsampling block Upsampling 4 Upsampling(2× 2) (80× 80× 64)

Concatenate
[

TransitionBlock1.Upsampling4
]

(80× 80× 96)

Conv 4 Conv(3× 3).ReLU.S = 1 (80× 80× 64)

Conv 5 Conv(3× 3).ReLU.S = 1 (80× 80× 32)

Upsampling 5 Upsampling(2× 2) (160× 160× 32)

Conv5 Conv(1× 1).Sigmoid.S = 1 (160× 160× 1)

Output Segmentationmap (160× 160× 1)
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convolution layers were used. The convolution layer with 
1 × 1 filter size was used to reduce the depth of the input 
volume and improve the extracted features and Convolu-
tion layer with 3 × 3 filter size was used to extract higher-
level features.

Bottleneck block
The number of feature maps increases with network 
depth, which leads to a significant increase in the number 
of parameters. It finally causes more training time com-
putational load of the graphical processing unit (GPU). 

The bottleneck block in neural networks is just a layer 
with fewer neurons than the upper and lower layers. Hav-
ing such a network layer encourages the representation 
of compact features. In CNN-Res, the bottleneck block 
was used to reduce the number of feature maps. Before 
transferring a large number of feature maps to the costly 
decryption path, the number of them has been reduced 
to decrease the cost of computations. Although the num-
ber of feature maps is reduced by the bottleneck, promi-
nent features are retained. The main connection of the 
two subnets is through this block and connects the last 

Fig. 2 Translation block structure (BN: Batch Normalization, Conv: Convolution Layer)



Page 7 of 14Gheibi et al. BMC Medical Informatics and Decision Making          (2023) 23:192  

layer of encoder path to the first layer of the decoder 
path. Figure 4 shows the structure of the bottleneck block 
of CNN-Res. This block includes the transfer block, the 
ResNet, and the 1 × 1 convolution layer. The convolution 
layer can have the effect of modifying, refining or extract-
ing new features, in addition to reducing the number of 
feature maps.

Decoder path
Decoder path follows the encoder path and increases 
the size and resolution of the encoder path to produce 

the segmentation feature map [34]. This path includes 
dimensional expansion blocks, dimensional expansion 
layers, and convolutional layers that increase the reso-
lution of the encoder path feature maps. Skip connec-
tions were used to transmit positional information. The 
decoder path allows the network to incorporate feature 
maps and positional information, which were obtained 
from jump connections, to improve the size and resolu-
tion of feature maps. This creates a segmentation map 
for each input image. This path receives the high-level 
features of the encoder path through the bottleneck 
block. As shown in Fig.  5, the block consists of the 

Fig. 3 ResNet architecture
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dimension expansion (up sampling), Concatenate, and 
convolution layers.

Upsampling doubles the length and height of feature 
maps obtained from the bottleneck layer by a 2 × 2 filter 
with step size 2. It then appends the information obtained 
through the skip connections to the feature maps and 
then applies a layer of convolution by a 3 × 3 filter with 
step size 1 and the ReLU activity function to learn the 
features. It has four upsampling and five convolution lay-
ers. At the end of this path, a convolution layer by a 1 × 1 
filter and Sigmoid activity function is used to classify the 
input image pixels into two categories and generate a seg-
mentation map. The output of this path is a 2D binary 
segmentation map for each input image.

Skip connections
Skip connections are used to transmit positional infor-
mation from the encoder path to localize high-resolution 
features [35]. It transfers the positional information of 
each layer in the encoder path to the corresponding layer 
in the decoder path.

Network training
In this study, an encoder and decoder-based model was 
developed for ischemic stroke lesion segmentation pre-
sented in which two subnets were trained globally with 
the collected dataset. DWI and Flair sequences have 
been used for more information. 2D slices of all MRIs 
were converted to 160 × 160 pixels. We implemented 

Fig. 4 The structure of the bottleneck block
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our model in a python programming language using 
Keras library in Google Colab platform on a Tesla 
P100-PCIE-16 GB GPU [36]. The core size was set 128 
and the initial weights were estimated using HeNormal 
initializer [37]. Adam optimizer algorithm has been 
used to optimize and update weights by a learning rate 
equal to 0.0001. L2 regularization and Dilution were 
used to prevent overfitting. The total number of model 
parameters is 6,471,105, of which 6,465,153 are traina-
ble and 5,952 are non-trainable parameters. The output 
layer contains the Sigmoid activity function, which pro-
duces a single-channel segmentation map with a size of 
160 × 160.

We applied the Liu et al. recommended cost function 
[38]. The lesions in the MRI images are a very small 
region compared to the background, which can lead to 
bias in the segmentation. In this study, only the results 
of lesions segmentation are important, so the proposed 
model is trained using the cost function L (TX.PY) as 
follows:

In the Eq. 2, N is the number of 2D images. TX is the 
tagged images with True and PY is the set of segmented 

(2)L(TX .PY ) =
1

N

N
∑

i=1

S(TXi.PY i)

Fig. 5 Decoder block structure



Page 10 of 14Gheibi et al. BMC Medical Informatics and Decision Making          (2023) 23:192 

images. TXi and PY i are the images in TX and PY, 
respectively.

Evaluation
The CNN-Res model was tested on two distinct data-
sets. First, the model was evaluated on samples collected 
from Tabriz University of Medical Sciences and then 
on the published SPES 2015 dataset for stroke competi-
tions. It contains 30 samples, of which 20 samples were 
considered for training, five samples for validation, and 
five samples for testing. On average, there were 14 image 
slices containing stroke lesions for each 3D MRI image. 
Finally, U-Net was trained on the collected dataset to 
make a more accurate comparison between the proposed 
CNN-Res architecture and U-Net.

Dice(DC) or similarity coefficient was used to evalu-
ate the model. DC is one of the most important evalua-
tion criteria for segmentation studies. DC calculates the 
similarity of the two sets, that is, calculates the overlap 
space between the segmentation map and the True label 
of each image (Eq. 3).

Discussion
To critically compare the proposed CNN-Res model 
with other similar research, all models must be trained 
on the same dataset. Similar to our work, various stud-
ies had been trained and evaluated by different datasets. 
Therefore, for a more accurate comparison, the proposed 
CNN-Res network was trained on the SPES 2015 pub-
lished dataset, then we searched and investigated the 
studies that evaluated this dataset in recent years. The 
outputs were compared with the results of seven mod-
els and reported in Table  2. The proposed architecture 
performs excellently on the SPES 2015 dataset and the 
Dice coefficient score is very high. In this dataset, we 
obtained 420 2D image slices for each modality, of which 
275 images were obtained for training and 145 for model 
validation and testing. Then, to increase the training sam-
ples, data was augmented. Finally, the total number of 
training samples was 4400 2D image slices.

The cost function shows the model performance. A 
closer value to Zero is expected. Therefore, different 
functions have been used to reduce the cost. In various 
studies performed by Liang et al., some new functions 
have been introduced. They recommended a novel 
cost function aimed at the automatic segmentation of 
ischemic lesions in multi-modality MRIs, which does 
not include the background in the calculations. The 
results of this method showed a high score in lesion 

(3)Dice
(

y.̂y
)

=
2
∑

iyiŷi
∑

iyi +
∑

iŷi

segmentation. In this regard, they used the cost-based 
function of lesion and background similarity to seg-
ment the white matter of the cerebral cortex. The main 
purpose of this method was to provide a solution to the 
problem of class imbalance. Three functions of Focal, 
cross entropy and Dice were used, which obtained simi-
larity index of 71.93, 82.27 and 82.91, respectively. The 
Dice cost function simultaneously calculates both the 
target and the background tissue costs, which seems 
more appropriate and efficient for medical images than 
the other two methods [39]. In another study recently 
published by this team, it was noted that in scenarios 
related to medical image analysis, the number of nega-
tive pixels (including background) is more than positive 
pixels (including lesions). Moreover, in many cases, the 
size of the lesions is small, which leads to more diffi-
cult predictions. They also emphasize the class imbal-
ance problem in medical images, which can confuse 
the learning process to a local minimum and ultimately 
lead to negative class over prediction [40]. In the cur-
rent study, this cost function was used as the selected 
function. It was suggested that the recommended cost 
function can be used in other areas that deal with the 
segmentation of medical images including stroke.

As shown in Table  2, our Dice coefficient score was 
close to the best results of the other studies, but the 
Res-CNN architectures have other advantages because 
they used the integration of two modalities in their 
research. Figure  6 shows some examples of segmenta-
tion maps on the SPES 2015 dataset.

The methods that are shown in the above table, the 
methods of Liang Chen et  al. [42], Zhiyang Liu [45], 
and Liangliang Liu et al. [47] have reached better accu-
racy than our method. But it should be considered that 
our method is less complicated than previous methods 
due to the use of numbers. In addition, this presented 
method has a much better speed than the previously 
presented methods.

Table 2 Summary of evaluation results in the studies based on 
SPES 2015

Study Architecture Measure Results

U‑net [41] U‑net DC 42.47

Liang Chen et al. [42] EDD Net DC 81.43

Jonathan Long et al. [43] FCN DC 39.27

Michal Drozdzal et al. [44] FC‑ResNet DC 49.70

Zhiyang Liu [45] Res‑FCN DC 80.47

Michal Drozdzal et al. [46] FC + FC_ResNet DC 76.58

Liangliang Liu et al. [47] Res‑CNN DC 83.94

Our study CNN‑Res DC 79.23
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For a more accurate evaluation of the model perfor-
mance, a U-Net was also trained on the collected dataset 
to compare the performance of CNN-Res model and the 
U-Net. To implement the U-Net architecture its related 
codes have been downloaded from GitHub [41]. Accord-
ing to the results, the performance of the proposed CNN-
Res is much better than the U-Net (Table 3). The number 
of CNN-Res parameters is 6,465,153 and the number of 
U-Net parameters is 31,031,685. CNN-Res network has 
fewer parameters than the U-Net architecture. There-
fore, it consumes less training time and calculations 
than the U-net architecture and the training time of 

this architecture is less than the U-net architecture. The 
average CNN-Res and U-Net prediction times are about 
1.5 s and 60 s, respectively. Experimental results showed 
that the proposed model worked 17.24% better than the 
U-Net architecture. Figure  7 shows some examples of 

Fig. 6 A sample shot of CNN‑Res segmentation

Table 3 CNN‑Res and U‑Net results

Architecture Dataset Parameters No Measure Results

U‑Net Local 31,031,685 DC 68.19

CNN‑Res Local 6,465,153 DC 85.43
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segmented MRI images predicted by the CNN-Res and 
U-Net architectures.

We also examined and reported the computation cost 
of the proposed model. The training time of the present 
model on the assigned Google Colab platform was one 
hour and 27 min. In a similar study conducted by Liang 
Liu et al.(2019), various models were developed and the 
similarity index in the single modality was 83.94. They 
also reported the consumed time of model training, 
which is shown in Fig. 8. Although in the following fig-
ure, the results obtained from the present study are lower 
than other studies in terms of similarity index compared 
to other studies, the number of educational parameters 

of this model is much less than the compared models 
[48]. The number of training parameters of CNN-Res 
model is much less than the compared models, although, 
the DICE is lower than in some studies.

Conclusion
The aim of this study was to segment ischemic stroke 
lesions on multimodal MRI images, effectively. Ischemic 
stroke is the most common vascular disease of the 
brain and one of the leading causes of death and dis-
ability worldwide and has grown rapidly in developed 
and low-income countries in recent decades. Locating 
and expanding irreversibly damaged tissues in the brain 

Fig. 7 The result of U‑Net and CNN‑segmentation
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is a vital part of the clinical decision-making process in 
stroke. In this study, we presented a clinical decision 
model using deep neural networks called CNN-Res, for 
the automatic segmentation of ischemic stroke lesion 
tissue from MRI images. This study presented a new 
method for the segmentation of MRI medical images 
using deep convolutional neural networks called CNN-
Res, which directly generates segmentation maps from 
raw image input pixels. In order to overcome the limi-
tations of the present study and in order to improve the 
segmentation process, we recommended more local data 
collection, MRI modality integration to obtain additional 
metadata and better positional data, use of 3D convolu-
tion layers, convert input images into small 3D pieces, 
use of embedded layer between skips, and apply trans-
lated convolution layers rather than expansion layers.

Brief information about the limitations of the study and 
future studies should be given. Kind regards.
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