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Abstract 

Purpose This study aimed to construct a mortality model for the risk stratification of intensive care unit (ICU) patients 
with sepsis by applying a machine learning algorithm.

Methods Adult patients who were diagnosed with sepsis during admission to ICU were extracted from MIMIC-III, 
MIMIC-IV, eICU, and Zigong databases. MIMIC-III was used for model development and internal validation. The other 
three databases were used for external validation. Our proposed model was developed based on the Extreme Gradi-
ent Boosting (XGBoost) algorithm. The generalizability, discrimination, and validation of our model were evaluated. 
The Shapley Additive Explanation values were used to interpret our model and analyze the contribution of individual 
features.

Results A total of 16,741, 15,532, 22,617, and 1,198 sepsis patients were extracted from the MIMIC-III, MIMIC-IV, 
eICU, and Zigong databases, respectively. The proposed model had an area under the receiver operating charac-
teristic curve (AUROC) of 0.84 in the internal validation, which outperformed all the traditional scoring systems. In 
the external validations, the AUROC was 0.87 in the MIMIC-IV database, better than all the traditional scoring systems; 
the AUROC was 0.83 in the eICU database, higher than the Simplified Acute Physiology Score III and Sequential 
Organ Failure Assessment (SOFA),equal to 0.83 of the Acute Physiology and Chronic Health Evaluation IV (APACHE-
IV), and the AUROC was 0.68 in the Zigong database, higher than those from the systemic inflammatory response 
syndrome and SOFA. Furthermore, the proposed model showed the best discriminatory and calibrated capabilities 
and had the best net benefit in each validation.

Conclusions The proposed algorithm based on XGBoost and SHAP-value feature selection had high performance 
in predicting the mortality of sepsis patients within 24 h of ICU admission.
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Introduction
Sepsis is a heterogeneous life-threatening syndrome 
that affected approximately 50 million patients globally 
and resulted in 11 million deaths worldwide in 2017 [1]. 
It poses a significant burden in the intensive care unit 
(ICU) with high in-ICU mortality, ranging from 22 to 
42% [2, 3]. Patients survived from sepsis could still suf-
fer from long-term health consequences [2]. Timely and 
appropriate interventions are crucial to save their lives 
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[4]. It is essential to identify those patients who are at a 
high risk of deterioration [5]. A risk stratification model 
could facilitate the identification of patients with different 
mortality risks. Those patients with a high risk of death 
require aggressive interventions, whereas those patients 
with a relatively favorable prognosis could receive more 
conservative management [5, 6]. In the ICU, developing 
such sepsis risk prediction models could better optimize 
the medical resources to give appropriate individualized 
treatments and improve patient outcomes [7].

Currently, a variety of clinical risk scoring systems are 
used routinely in the ICU settings to stratify patients 
with sepsis, such as sequential organ failure assessment 
(SOFA) score [8], systemic inflammatory response syn-
drome (SIRS) [9], and the simplified acute physiology 
score (SAPS) [10]. These traditional scoring systems were 
created mainly based on physicians’ knowledge and expe-
rience [11], and target the general patient population 
in the ICU, not the sepsis population specifically. Some 
studies have reported that these scores lacked sensitiv-
ity and specificity and performed poorly to predict mor-
bidity and mortality in early stage of sepsis [12, 13]. The 
prognostic significance of quick SOFA (qSOFA) score is 
not specific to infection [14], and the SOFA score aims 
to assess the severity of organ failure rather than make 
predictions [15]. Up to 90% of ICU patients could meet 
the SIRS criteria during their stay [16]. In addition, most 
of these scores are calculated based on the laboratory 
test results that take time to obtain [7, 17]. The accuracy 
of the scores was attributed to the numerous variables, 
which also led to their complexity in the calculation [17].

Recently, machine learning (ML) techniques have 
become increasingly popular in the medical field due 
to the growing amount of electronic health data and 
advancements in the computer technology [18, 19]. ML 
can process high-complexity clinical information and 
use the acquired knowledge to diagnose, manage, and 
predict disease outcomes [19]. Patient risk stratification 
is one of the most wide potential applications of ML 
techniques [20]. Several studies have already developed 
ML-based risk assessment models for patients with sep-
sis in the ICU settings [21–23], such as Extreme Gra-
dient Boosting (XGBoost), stepwise logistic regression, 
stochastic gradient boosting, and random forest (RF). 
These ML models were reported to have satisfactory 
sensitivity and specificity on the training data. However, 
these models are limited by their small sample sizes, 
few predictor variables, or old sepsis definitions [22]. 
In addition, the lack of external validation, poor inter-
pretability, and non-transparency from black box issues 
have limited the clinical applications of these models 

[21, 24]. Lundberg et al. [25] proposed a Shapley Addi-
tive Explanation (SHAP) technique to overcome the 
black box issue during the ML model creation. Explain-
able ML has been successfully applied to sepsis mortal-
ity prediction [21, 23].

Therefore, in the present study, we developed an inter-
pretable risk stratification model for the sepsis popula-
tion in ICU settings based on the SHAP technique [25] 
and XGBoost algorithm [26] by using multi-source data. 
XGBoost can handle sparse and missing data [27], such 
as EHR data. In order to evaluate the generalizability 
of the proposed model and because model validation is 
necessary for digital health product development, the 
proposed model was validated in different databases 
and compared with the existing clinical scoring systems 
available in the databases (such as SOFA, SAPS, and 
APACHE-IV scores).

Methods
Databases
Data used in this study were extracted from four publicly 
available databases. The Medical Information Mart for 
Intensive Care (MIMIC-III v1.4, ICU admissions at the 
Beth Israel Deaconess Medical Center between 2001 and 
2012, USA) [28] database was used for the model devel-
opment and internal validation. The other three databases 
were employed for the external validation, the MIMIC-IV 
v1.0 (ICU admissions at the Beth Israel Deaconess Medi-
cal Center between 2008 and 2019, USA) [29], the eICU 
Collaborative Research Database (ICU admissions across 
USA between 2014 and 2015) [30], and the critical care 
database encompassing patients with infection at Zigong 
Fourth People’s Hospital (Zigong, ICU admissions 
between 2019 and 2020, China) [31]. Since the MIMIC-
IV and MIMIC-III have overlapping timelines, duplicate 
patients in the MIMIC-IV were removed based on timing 
information. Data were stored in PostgreSQL (v13.1). The 
SQL scripts were developed and queried via Navicat Pre-
mium (v16.0.10).

Study population
Adult patients (ages 18 and over) were included in this 
study. Adult patients with sepsis at the time of ICU 
admission were diagnosed based on Sepsis-3 [4, 32]. The 
inclusion criteria in this retrospective analysis were as 
follows: 1) Having infection-related diagnostic records 
or microbiological examination and antibiotic treat-
ment within 24  h of ICU admission; 2) the total SOFA 
score increased by 2 points or more. Baseline SOFA 
score was assumed to be 0 [4, 33]. Exclusive criteria 
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included: 1) Missing discharge information; 2) Length 
of ICU stay ≤ 1 day; 3) A missing rate ≥ 70% in collected 
variables. The same inclusion and exclusion criteria were 
applied for all datasets. The flowchart of study design is 
shown in Fig. 1.

Data pre‑processing
A total of 125 variables were collected and extracted from 
MIMIC-III, MIMIC-IV, eICU, and Zigong databases for 
patients who were admitted to ICU within 24  h. These 
variables included demographics, vital signs, laboratory 

results, and SOFA score. The existing clinical score sys-
tems in the databases were also obtained, including 
SOFA, APACHE-IV, and SAPS scores.

For each database, all continuous variables with mul-
tiple measurements within 24 h of ICU admission were 
aggregated into the average value for final analysis. 
For numeric variables, the missing values were filled 
in using the median; for discrete variables, “null” was 
used as the default value. The clinicians checked and 
converted the terms and units of measurement for the 
features in the different databases.

Fig. 1 Flowchart of data processing and model development
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Model development and evaluation
This study applied an ML technique to create a model 
that could stratify the risk of in-ICU mortality in adult 
patients with sepsis. Model development and evalua-
tion consisted of the following four steps.

Feature selection and model interpretation
Feature selection was used to eliminate irrelevant or 
redundant features. SHAP, as a unified framework for 
interpreting predictions and feature selection from tree 
ensemble methods [25], was applied to rank the con-
tributions of each feature and interpret the model. In 
addition, the predictor selection was also referred to 
the opinions of four physicians and the existing clinical 
scoring systems. More specifically, the SHAP method 
was initially utilized to assess the importance of each 
feature in predicting events. Physicians then examined 
the top-ranked features based on importance scores 
and removed confounding factors that were not con-
sistent with clinical practice to obtain candidate fea-
tures. By repeating this feature selection process, the 
top 15 features selected multiple times for the pend-
ing list were used as the final modeling variables (the 
lower the importance, the less stable the ranking of the 
features).

Model development
For the traditional scoring system, if the corresponding 
standard did not propose a calculation method for the 
probability of in-ICU mortality, a logistic regression (LR) 
model of the score was established. Therefore, the LR 
models of the SOFA, SIRS, and Logistic Organ Dysfunc-
tion System scores (LODS) were established. Grid search 
and eight-fold cross-validation (CV) were used for the 
fine-tuning step. The best combination of hyperparam-
eters was selected based on the nested and non-nested 
CV scores. These models were trained and tested using 
the Scikit-learn toolkit (v1.0.2) in the Python scripting 
language (v3.8.5).

Internal and external validation
The proposed model was compared with clinical score 
systems in four validation cohorts. The MIMIC-III popu-
lation was split into training and internal validation sets 
(ratio 2:1) by stratified random sampling according to 
in-ICU mortality. In addition, three external validations 
were performed to assess whether the model predic-
tions would hold true in different settings. The MIMIC-
IV population was used for temporal validation, eICU 
for multi-center validation, and Zigong for validation in 

Chinese population. All numeric features were processed 
by Z-score normalization to reduce the impact of hetero-
geneity among databases.

Model comparison
Different ML methods were used to establish the model. 
A “dummy” classifier, following a simple stratified strat-
egy [34], was used as a baseline model for comparison. 
Accuracy, Matthews correlation coefficient (MCC), geo-
metric mean (G-mean), F1-score, and area under the 
curve (AUC) were used as the performance metrics to 
compare the algorithms.

Model evaluation
The predictive efficiencies of the model and traditional 
clinical scores were compared by various metrics. The 
area under the receiver operating characteristic curve 
(AUROC) and decision curve analysis (DCA) were 
assessed to evaluate the performance of the models. The 
Delong test was used to perform pairwise comparisons 
of the AUROC of the models. In addition, discrimination 
and calibration are two important aspects of model per-
formance. The discrimination of this study was evaluated 
using the ROC curve, the box plots of predicted mortal-
ity, and the corresponding discrimination slopes, defined 
as the difference between the mean predicted mortality 
in survivors and non-survivors [35]. Considering that it 
was difficult to determine whether individual risk esti-
mates differed between the new model and other models 
[36, 37], continuous net reclassification index (cNRI) and 
integrated discrimination improvement (IDI) were used 
as reclassification metrics to quantify the improvements 
provided by the proposed model to the traditional scor-
ing system.

Statistical analysis
The statistical analysis was focused on comparing the 
heterogeneity of different populations. Continuous vari-
ables were reported as median and interquartile range 
(IQR) under a normal distribution and analyzed by 
Kruskal Wallis rank sum test, whereas categorical vari-
ables were reported as percentages and analyzed by Chi-
square test. Statistical significance was set at a p < 0.05. 
Python scripting language (v3.8.5) and R (v4.1.1) were 
employed for the analysis.

Results
Patient characteristics
A total of 16,741 patients with sepsis were extracted from 
the MIMIC-III population to serve as the development 
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Table 1 Characteristics of included patients

Data are median [IQR] or N (%). P value: continuous variables were assessed by the Kruskal Wallis rank sum test, and categorical variables were evaluated by the Chi-
square test

INR international normalized ratio, SysBP systolic blood pressure, PTT activated partial thromboplastin time

Characteristics MIMIC‑III MIMIC‑IV eICU Zigong P value

Number of patients 16,741 15,532 22,617 1,198 -

Age, years 67.00 [55.00, 79.00] 68.00 [58.00, 78.00] 67.00 [56.00, 78.00] 68.00 [55.00, 78.00] 0.080

Gender

 Male 9,352 (55.9) 9,393 (60.5) 12,153 (53.7) 737 (61.5) < 0.001

 Female 7,389 (44.1) 6,139 (39.5) 10,464 (46.3) 461 (38.5)

Respiratory rate, breaths/min 19.00 [17.00, 22.00] 19.00 [17.00, 22.00] 20.00 [17.00, 23.00] 17.77 [15.61, 19.65] < 0.001

Spo2, % 98.00 [96.00, 99.00] 97.00 [96.00, 99.00] 97.00 [96.00, 99.00] 98.85 [98.14, 99.38] < 0.001

Temperature, °C 36.85 [36.41, 37.35] 36.83 [36.62, 37.12] 36.86 [36.58, 37.21] 36.88 [36.63, 37.30] < 0.001

Heart rate, beats/min 87.00 [76.00, 100.00] 84.00 [76.00, 96.00] 88.00 [77.00, 100.00] 88.08 [74.87, 101.74] < 0.001

SysBP, mmHg 113.00 [104.00, 126.00] 112.00 [104.00, 121.00] 112.00 [103.00, 124.00] 123.79 [113.27, 131.81] < 0.001

Creatinine, mg/dL 1.13 [0.80, 1.93] 1.00 [0.75, 1.50] 1.00 [1.00, 2.00] 0.81 [0.61, 1.19] < 0.001

Urine output, ml 1455.00 [827.00, 2330.50] 1490.00 [905.00, 2265.00] 1162.00 [555.0, 2020.00] 2330.00 [1075.00, 3645.00] < 0.001

Lactate, mmol/L 1.80 [1.25, 2.77] 1.90 [1.40, 2.70] 2.00 [1.00, 3.00] 2.20 [1.55, 3.25] < 0.001

Urea nitrogen, mg/dL 24.50 [15.00, 41.50] 19.50 [13.50, 32.50] 27.00 [16.00, 43.50] 18.32 [13.44, 26.97] < 0.001

Anion gap, mEq/L 14.00 [12.00, 16.33] 14.00 [12.00, 16.50] 10.67 [8.00, 14.00] 12.40 [10.17, 15.30] < 0.001

INR 1.33 [1.20, 1.68] 1.30 [1.20, 1.53] NA [NA, NA] 1.21 [1.11, 1.33] < 0.001

PTT, sec 33.00 [28.10, 42.63] 30.75 [27.50, 37.15] 35.00 [30.00, 44.00] 29.70 [26.20, 34.05] < 0.001

Platelet count, K/μL 198.00 [135.58, 277.00] 160.33 [117.67, 222.67] 173.00 [120.50, 241.00] 194.75 [153.62, 240.92] < 0.001

SOFA 6.00 [4.00, 9.00] 5.00 [4.00, 8.00] 4.00 [3.00, 6.00] 10.00 [8.00, 11.00] < 0.001

Mortality, n 19.00 [17.00, 22.00] 19.00 [17.00, 22.00] 20.00 [17.00, 23.00] 17.77 [15.61, 19.65] < 0.001

Table 2 Characteristics of survivors versus non-survivors in the training set

Data are median [IQR] or N (%). P value: continuous variables were assessed by the Kruskal Wallis rank sum test, and categorical variables were evaluated by the Chi-
square test

INR international normalized ratio, SysBP systolic blood pressure, PTT activated partial thromboplastin time

Characteristic Survival Non survival P value

Number of patients 14,001 2,740

Age 67.00 [54.00, 79.00] 72.00 [59.00, 82.00] < 0.001

Gender

 Male 7,819 (55.9) 1,524 (55.7) 0.854

 Female 6,182 (44.1) 1,216 (44.3)

Respiratory rate, breaths/min 19.00 [16.00, 22.00] 21.00 [18.00, 25.00] < 0.001

Spo2, % 98.00 [96.00, 99.00] 97 [95.00, 99.00] < 0.001

Temperature, °C 36.87 [36.45, 37.35] 36.72 [36.13, 37.31] < 0.001

Heart rate, beats/min 87.00 [76.00, 98.00] 92.00 [79.00, 105.00] < 0.001

DiasBP, mmHg 114 [105.00, 127.00] 108.00 [99.00, 120.00] < 0.001

Creatinine, mg/dL 1.10 [0.75, 1.80] 1.47 [0.90, 2.57] < 0.001

Urine output, ml 1560.00 [925.00, 2435.00] 905.00 [353.00, 1631.00] < 0.001

Lactate, mmol/L 1.70 [1.20, 2.47] 2.50 [1.60, 4.58] < 0.001

Urea nitrogen, mg/dL 23.00 [14.50, 38.50] 34.00 [20.00, 55.55] < 0.001

Anion gap, mEq/L 13.67 [12.00, 16.00] 16.00 [13.00, 19.33] < 0.001

INR 1.30 [1.20, 1.60] 1.50 [1.23, 2.10] < 0.001

PTT, sec 32.50 [27.90, 40.64] 37.73 [29.53, 52.75] < 0.001

Platelet count, K/μL 201.00 [140.67, 279.00] 180.50 [106.00, 270.00] < 0.001

SOFA 6.00 [4.00, 9.00] 10.00[7.00, 14.00] < 0.001
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set. Additionally, 15,532, 22,617, and 1,198 patients with 
sepsis from the MIMIC-IV, eICU, and Zigong, respec-
tively, served as the external validation sets. The charac-
teristics of these patient cohorts are shown in Tables  1 
and 2.

Risk factors analysis
Although the number of features is very important for 
the model training, increasing the number of features 
can also increase the difficulty and cost. Feature selec-
tion methods can be used to reduce the number of use-
less features, thus reducing the complexity of the final 
model [38]. Several common feature attribution methods 
for XGBoost model are inconsistent and may prevent 
the meaningful comparison of feature attribution values, 
whereas SHAP values can better explain the impact and 
importance of individual feature [25]. The significance 
of each feature was sorted according to the SHAP val-
ues. Following selection, the 15 features with the highest 
contribution were used to construct the final model, as 
shown in Fig. 2.

Furthermore, as shown in Fig. 3, the SHAP dependency 
plots for the contributing features quantified the clinical 
relationship between the in-ICU mortality and risk fac-
tors. The SHAP value is a measure of feature importance, 
with a higher value suggesting a greater influence on 

the increased risk of death. The approximate thresholds 
leading to the increased mortality were, SOFA score > 7 
points, age > 65  years, respiratory rate > 22 breaths/min, 
serum creatinine < 2.0 mg/dL, urea nitrogen > 35 mg/dL, 
mean systolic blood pressure < 90 mmHg or > 130 mmHg, 
anion gap > 16  mEq/L, mean heart rate > 95 beats/min, 
serum lactate > 2.5 mmol/L, and platelet count < 150 K/μL 
or > 380 K/μL.

Performance comparison among machine learning 
methods
A comprehensive summary of the performance for each 
classifier during model development is shown in Fig.  4. 
All methods performed better than the dummy classi-
fier, and XGBoost had relatively better performance com-
pared with other ML methods.

Cross‑validation
The results from nested and non-nested CV on the train-
ing dataset are compared in Fig. 5. Thirty trials were con-
ducted. Then, the CV scores and the average difference in 
scores from each trial were calculated. The average differ-
ence was 0.002086 with standard deviation of 0.000918. 
The non-nested CV scores were slightly higher than the 
nested CV scores.

Fig. 2 SHAP summary plot of the proposed model
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Fig. 3 SHAP dependency plots of the top 15 features. The X-axis represents the actual value of the feature, the Y-axis represents the SHAP value 
of the feature, and the points correspond to the samples in the training set. A SHAP value above zero indicates an increased risk of in-ICU mortality
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Performance comparison with clinical scores
The AUROCs of the proposed model and clinical scores 
in validation cohorts are provided in Fig. 6. The Delong 
test results were also assessed. Compared with the tra-
ditional scoring systems, the proposed model had bet-
ter or equivalent performance. The Delong test also 
revealed that there were significant differences in AUCs 
between the present model and the traditional scoring 
systems (Delong test: p < 0.001), except for the APACH 

IV (Delong test: p = 0.4364) developed from the eICU 
database.

Decision curve analysis
The DCAs of the proposed model and traditional scor-
ing systems in four populations are provided in Fig. 7. 
DCA graphically presents the “net benefit” obtained by 
applying each strategy [39]. In this analysis, for all data-
bases, the net benefit of the proposed model was better 

Fig. 4 Performance evaluation of different ML methods

Fig. 5 Non-nested and nested cross-validation on XGBoost in training dataset
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than the net benefit of any of the traditional scoring 
systems.

Discrimination and calibration
To better compare the discriminative abilities of the 
model, the whole population was grouped into five 
levels according to the predicted probability of in-ICU 
mortality of sepsis patients. The mortality of each level 
was calculated as the number of deaths in the level 
divided by the total number of patients in the level. As 
shown in Table  3, the relative rate of patient mortal-
ity was consistent with risk score, suggesting that the 
proposed model had a good risk stratification power 

and could successfully identify the mortality risk of 
patients.

The differences between the predicted probabilities of 
in-ICU mortality among the survivors and non-survivors 
provided from each model were used to evaluate the 
discrimination (Fig. 8). Among the proposed model and 
traditional scoring systems, the proposed model had the 
best discrimination in MIMIC-IV and Zigong popula-
tions, with a discrimination slope of 0.303 and a c-index 
of 0.862 in MIMIC-IV, and a discrimination slope of 
0.123 and a c-index of 0.679 in Zigong. The violin plots 
suggested that the new model can focus on the true nega-
tive while ensuring the stability of true positives in the 
risk distribution.

Fig. 6 The area under the receiver operating characteristic (AUROC) curve. Internal validation performance: A The new prediction model 
in the MIMIC-III population during ICU hospitalization (iii_hosp) versus the OASIS, APACH III, SAPS II, LODS, SIRS, and SOFA models. External validation 
performance: B The new model used in the MIMIC-IV population (iv_hosp) versus the OASIS, APACH III, SAPS II, LODS, SIRS, and SOFA systems. C 
The new model used in the eICU population (eicu_hosp) versus the SAPS III, APACH IV, and SOFA scores. D The new model used in the Zigong 
population (Zigong_hosp) versus the SOFA and SIRS scores
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Fig. 7 Decision curve analysis of proposed model and traditional scoring systems in four populations: A MIMIC-III population; B MIMIC-IV 
population; C eICU population; D Zigong population

Table 3 Relative risk ratios for various in-ICU mortality risk groups in different populations

RR Relative risk ratios

Risk MIMIC‑III MIMIC‑IV
Patients, N Mortality, % RR Patients, N Mortality, % RR

> 80% 149 83.89 5.13 334 82.63 7.71

60–79% 189 63.49 3.88 414 62.08 5.79

40–59% 321 46.73 2.86 602 40.20 3.75

20–39% 708 29.1 1.78 1404 22.93 3.75

< 19% 4158 7.29 0.45 12,778 4.45 0.41

Total 5525 16.36 - 15,532 10.72 -

Risk eICU Zigong
Patients, N Mortality, % RR Patients, N Mortality, % RR

> 80% 203 82.76 7.49 30 76.67 2.17

60–79% 473 70.19 6.36 158 56.96 1.61

40–59% 820 44.02 3.99 333 43.84 1.24

20–39% 2329 23.66 2.14 567 27.41 0.78

< 19% 18,792 5.78 0.52 210 17.14 0.49

Total 22,617 11.04 - 1198 35.31 -
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The proposed model exhibited excellent calibration 
properties (Fig.  8). The Brier scores of the proposed 
model were 0.068 (< 0.25) in the MIMIC-IV dataset, 
0.083 (< 0.25) in the eICU dataset, and 0.210 (< 0.25) in 
the Zigong dataset. The Brier scores obtained by the new 
model were all less than 0.25, which meant that the mod-
el’s predictions were correct [40]. In comparison, tradi-
tional scoring systems were lacking in fitness and stability 
for the sepsis population. The calibration plots of the 
proposed model indicated good agreement between pre-
diction and true outcome in the validation cohorts. The 
proposed model performed better across the entire range 
of mortality.

As shown in Table  4, in the MIMIC-IV population, 
among the proposed model and traditional scoring sys-
tems, the proposed model had the best discrimination, 
with a discrimination slope of 0.303 and a c-index of 
0.862. The Brier score is a commonly used metric that 
measures the overall performance of the model [41]. 
Traditional scoring systems were lacking in fitness and 
stability for the sepsis population. The Brier scores of 
the proposed model were 0.0678 (< 0.25) in the MIMIC-
IV and 0.0827 (< 0.25) in the eICU. However, APACHE 
IV had slightly better discrimination than the proposed 
model in the eICU population.

Reclassification
In the external validations, we calculated the risk of 
each individual and divided all patients into three 
groups based on the risk cut-off at 95% sensitivity and 
95% specificity [35]. The proposed model was consid-
ered as the updated model, and the traditional scor-
ing systems were considered as the initial models. The 
net reclassification improvement (NRI) was calculated 
in Table  4. The proposed model reclassified a large 
proportion of patients, especially patients with pre-
dicted probability less than 42% according to the initial 
model.

The cNRI and IDI were also calculated and shown 
in Table  5. All results of cNRI and IDI were posi-
tive values, indicating that the proposed model had 

better discriminative ability than the traditional scoring 
systems.

Discussion
The global burden and mortality caused by sepsis are 
greater than previously estimated, requiring urgent 
attention [1]. Sepsis associated deaths are potentially 
preventable with better hospital-based care [42]. ML 
techniques could help to develop risk stratification mod-
els to better manage the sepsis patients, including sep-
sis prediction [32, 43] and severity assessment [22, 23]. 
Therefore, the present study established and validated a 
predictive model based on the XGBoost algorithm for 
the risk stratification of sepsis patients in the ICU. The 
key findings and limitations of this study are discussed 
below.

There were many previous ML models to predict the 
mortality in sepsis patients, such as RF, gradient boosting 
decision tree (GBDT), and LR [22, 44], but few of them 
were widely used in the clinic. One major issue with these 
ML models was the black box effect, which made it hard 
to understand and interpret the selected features in the 
models. SHAP methodology that uses a game theoretic 
approach, was used for feature identification and prior-
itization, and it was also successfully used during the ML 
model construction in the clinic [23]. In addition to using 
SHAP to quantify the magnitude of contribution from 
each feature, we applied the XGBoost algorithm to create 
the ML model. The XGBoost algorithm uses a supervised 
gradient boosting approach for sequential model testing 
and selection. It has the advantages of excellent perfor-
mance, automatic modeling of non-linearities and high-
order interaction, and robustness to multicollinearity 
[45]. There were few recent studies that used SHAP and 
XGBoost to create the sepsis mortality prediction models 
[21, 23]. However, these studies either had no validation 
or validated the model in the same dataset to create the 
model. In the present study, we externally validated our 
model not only in a database in US but also in another 
database in China that was completely independent from 
the database used to develop the model. These external 

Fig. 8 Calibration and discrimination potentials of the proposed model and traditional scoring systems in external validation. A–G The external 
validation results in the MIMIC-IV dataset: A The new model (Brier score = 0.068; C-index = 0.862; discrimination slope = 0.303); B OASIS (Brier 
score = 0.097; C-index = 0.795; discrimination slope = 0.215); C APS III (Brier score = 0.079; C-index = 0.857; discrimination slope = 0.287); D SAPS 
II score (Brier score = 0.126; C-index = 0.794; discrimination slope = 0.275); E LODS score (Brier score = 0.082; C-index = 0.844; discrimination 
slope = 0.222); F SOFA score (Brier score = 0.0821; C-index = 0.773; discrimination slope = 0.123); G SIRS score (Brier score = 0.097; C-index = 0.621; 
discrimination slope = 0.011). H–K The external validation results in the eICU dataset: H The new model (Brier score = 0.083; C-index = 0.820; 
discrimination slope = 0.270); I SAPS III (Brier score = 0.081; C-index = 0.782; discrimination slope = 0.154); J APACHE IV score (Brier score = 0.091; 
C-index = 0.826; discrimination slope = 0.290); K SOFA score (Brier score = 0.090; C-index = 0.714; discrimination slope = 0.060). L–N The external 
validation results in the Zigong dataset: L The new model (Brier score = 0.210; C-index = 0.679; discrimination slope = 0.123); M SOFA score (Brier 
score = 0.250; C-index = 0.505; discrimination slope = 0.003); N SIRS score (Brier score = 0.285; C-index = 0.469; discrimination slope = -0.002)

(See figure on next page.)
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Fig. 8 (See legend on previous page.)
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validations showed satisfactory generalizability and 
robustness of our proposed model.

Regarding feature selection, four large ICU databases 
were used in this retrospective cohort study. SHAP val-
ues were calculated to illustrate the contribution of each 
feature to the prediction task of the proposed model. 
The selected clinical features were highly consistent 
with clinical practice, especially with the SOFA, SIRS, 
and qSOFA scores. Clinical indicators such as serum 

lactate, heart rate, respiratory rate, temperature, white 
blood cell count, and platelet count are mentioned in 
sepsis-related guidelines, such as sepsis 3.0 [4], sepsis 
1.0 [9], and sepsis-induced coagulopathy [46]. Correla-
tions and changes among features were ignored due to 
the fractionalization process based on the features. New 
features were required to link to the in-ICU mortality in 
sepsis patients. An unexpected discovery of this study 
was that the relationship between serum creatinine 

Table 4 Reclassification table

NRI net reclassification improvement, OASIS Oxford acute severity of illness score, APS III Acute Physiology Score III, APACHE IV Acute Physiology, Age, Chronic Health 
Evaluation IV

External Validation Initial Model Predicted probability according 
to initial model

Reclassified (%) Statistics

< 5% 5–42% > 42% NRI (95% CI) p‑value

MIMIC‑IV OASIS < 5% 1026 807 166 49 0.789 (0.754–0.825) < 0.0001

5–42% 5592 4400 929 61

> 42% 1185 837 190 91

APS III < 5% 1645 1193 253 47 0.773 (0.738–0.807) < 0.0001

5–42% 5682 4217 896 61

> 42% 876 634 136 92

SAPS II < 5% 604 474 87 48 0.747 (0.710–0.784) < 0.0001

5–42% 5749 4194 897 61

> 42% 1850 1376 301 91

LODS < 5% 463 340 60 46 0.830 (0.796–0.864) < 0.0001

5–42% 6959 5138 1089 61

> 42% 781 566 136 91

SIRS < 5% 0 0 0 - 0.909 (0.876–0.941) < 0.0001

5–42% 8203 6044 1285 61

> 42% 0 0 0 -

SOFA < 5% 893 663 151 48 0.848 (0.815–0.881) < 0.0001

5–42% 7125 5229 1101 61

> 42% 185 152 33 91

eICU SAPS III < 5% 3649 3776 490 54 0.571 (0.542–0.600)  < 0.0001

5–42% 5303 5412 690 53

> 42% 365 351 43 94

APACHE IV < 5% 1824 1918 247 54 0.560 (0.526–0.594) < 0.0001

5–42% 5502 5664 733 52

> 42% 1213 1185 159 94

SOFA < 5% 1822 1781 239 53 0.636 (0.609–0.663) < 0.0001

5–42% 8776 8776 1141 53

> 42% 30 46 6 93

Zigong SIRS < 5% 0 0 0 - 0.318 (0.258–0.379) < 0.001

5–42% 29 690 479 42

> 42% 0 0 0 -

SOFA < 5% 0 0 0 - 0.304 (0.244–0.365) < 0.0001

5–42% 29 687 459 42

> 42% 0 3 20 13
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(SCr) level and the mortality of patients with sepsis 
was contrary to the guideline from the Kidney Disease: 
Improving Global Outcomes [47]. However, some stud-
ies have reached conclusions similar to ours, namely, 
low admission SCr level and decrease in SCr after 
admission were associated with increased mortality [48, 
49]. Sepsis and other complex problems may affect SCr 
generation [50]. In our study, the proposed model could 
explore the interaction among features and higher-
order information that could potentially be helpful for 
risk assessment.

In the model development, XGBoost showed the 
highest quality of binary classification in imbalanced 
data compared to other algorithms.Additionally, there 
was not much difference between nested and non-
nested CV, indicating that the non-nested approach 
could get good generalization and less intensive com-
putational burden [51]. Regarding the performance of 
the proposed model with clinical scores, the results of 
this study demonstrated that the XGBoost algorithm 
could outperform the traditional scoring systems. DCA 
indicated that the proposed model obtained the best 
net benefit. Furthermore, the proposed model showed 
satisfactory discriminatory power and calibrated capac-
ity. Both internal and external validations were done in 
both single- and multi-center databases. The proposed 
model yielded good performance in not only the inter-
nal validation but also external validations on three 
other databases. Thus, the proposed model has good 

generalizability and efficiency. Furthermore, among the 
traditional scoring systems, SIRS was not applicable to 
assess the risk of death of sepsis patients in these data-
bases, and SOFA was greatly affected by the heteroge-
neity among the databases.

There were some limitations in this study. Firstly, the 
specific mechanism of clinical features in model con-
struction was not clear. The SHAP method interpret-
sthe model well, and the background dataset’s choice 
can significantly impact the SHAP values, which may 
potentially lead to biased or incorrect interpretations 
[52], so further clinical verification is still needed. Addi-
tionally, due to the availability of databases, there was 
no way to compare the proposed model with every tra-
ditional scoring system in every database. Furthermore, 
assuming the baseline SOFA score of zero may result in 
the inclusion of patients with no change in SOFA score. 
Some clinical indicators that may be important for sep-
sis mortality prediction were missing. The validation 
of the model on the Zigong database was not satisfac-
tory, probably due to the quality and heterogeneity of 
the data itself. False survivors, who chose to withdraw 
from treatment and died shortly after discharge [31], 
influenced the mortality calculation. In addition, poten-
tial selection bias may exist. Finally, the proposed model 
only used the data during the first 24  h after the ICU 
admission. Dynamic monitoring and prediction remain 
to be explored.

Table 5 Reclassification statistics

cNRI continuous net reclassification index, IDI integrated discrimination improvement, OASIS Oxford acute severity of illness score, APS III Acute Physiology Score III, 
APACHE IV Acute Physiology, Age, Chronic Health Evaluation IV

Initial Model MIMIC‑IV eICU Zigong

OASIS cNRI 0.964 (0.918–1.011) -

IDI 0.330 (0.313–0.348) -

APS III cNRI 0.960 (0.916–1.005) -

IDI 0.329 (0.312–0.347) -

SAPS II cNRI 0.893 (0.844–0.941) -

IDI 0.322 (0.303–0.341) -

LODS cNRI 1.019 (0.973–1.065) -

IDI 0.331 (0.314–0.347) -

SIRS cNRI 1.101 (1.056–1.146) - 0.137 (0.078–0.195)

IDI 0.330 (0.315–0.345) - 0.126 (0.102–0.149)

SOFA cNRI 1.053 (1.010–1.095) 0.896 (0.860–0.931) 0.285 (0.198–0.371)

IDI 0.329 (0.313–0.344) 0.237 (0.226–0.247) 0.120 (0.098–0.142)

SAPS III cNRI 0.780 (0.744–0.817)

IDI 0.238 (0.226–0.249)

APACHE IV cNRI 0.717 (0.673–0.761)

IDI 0.233 (0.218–0.249)
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Conclusions
In this study, a multi-source data-driven predictive model 
using the XGBoost algorithm was developed to predict 
the in-ICU mortality of patients with sepsis. The model 
not only showed significant improvement over current 
scoring systems (including SOFA, OASIS, APS III, SIRS, 
SAPS II, and SAPS III) but also revealed the associations 
between several clinical indicators and in-ICU mortality 
in sepsis patients. The results demonstrated the general-
izability and robustness of the proposed model. Although 
further clinical validation is needed, the proposed model 
offers an example of how the application of ML based on 
multi-source data can be helpful for understanding dis-
ease mechanisms and optimizing clinical managements.
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