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Abstract 

Background Data mining of electronic health records (EHRs) has a huge potential for improving clinical decision 
support and to help healthcare deliver precision medicine. Unfortunately, the rule‑based and machine learning‑based 
approaches used for natural language processing (NLP) in healthcare today all struggle with various shortcomings 
related to performance, efficiency, or transparency.

Methods In this paper, we address these issues by presenting a novel method for NLP that implements unsupervised 
learning of word embeddings, semi‑supervised learning for simplified and accelerated clinical vocabulary 
and concept building, and deterministic rules for fine‑grained control of information extraction. The clinical language 
is automatically learnt, and vocabulary, concepts, and rules supporting a variety of NLP downstream tasks can 
further be built with only minimal manual feature engineering and tagging required from clinical experts. Together, 
these steps create an open processing pipeline that gradually refines the data in a transparent way, which greatly 
improves the interpretable nature of our method. Data transformations are thus made transparent and predictions 
interpretable, which is imperative for healthcare. The combined method also has other advantages, like potentially 
being language independent, demanding few domain resources for maintenance, and able to cover misspellings, 
abbreviations, and acronyms. To test and evaluate the combined method, we have developed a clinical decision 
support system (CDSS) named Information System for Clinical Concept Searching (ICCS) that implements the method 
for clinical concept tagging, extraction, and classification.

Results In empirical studies the method shows high performance (recall 92.6%, precision 88.8%, F‑measure 90.7%), 
and has demonstrated its value to clinical practice. Here we employ a real‑life EHR‑derived dataset to evaluate 
the method’s performance on the task of classification (i.e., detecting patient allergies) against a range of common 
supervised learning algorithms. The combined method achieves state‑of‑the‑art performance compared 
to the alternative methods we evaluate. We also perform a qualitative analysis of common word embedding methods 
on the task of word similarity to examine their potential for supporting automatic feature engineering for clinical NLP 
tasks.

Conclusions Based on the promising results, we suggest more research should be aimed at exploiting the inherent 
synergies between unsupervised, supervised, and rule‑based paradigms for clinical NLP.
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Background
Natural Language Processing (NLP) driven clinical 
systems (e.g., decision support systems) have been her-
alded as an important brick for healthcare to deliver 
on the future expectation of precision medicine. Pre-
cision medicine is medicine tailor-made to each par-
ticular patient and their needs. A patient’s narrative 
may typically amount to hundreds or thousands of 
documents [1]. NLP has the capacity to search through 
unstructured text for clinical concept relevant infor-
mation, tag and extract significant data, condense and 
synthesize such data into new information, and even 
aggregate it to new knowledge for advanced decision 
support [2].

Rule-based systems for NLP capable of extract-
ing structured clinical information from the narrative 
were introduced into healthcare during the 1970s, and 
have been used successfully [3, 4]. Some well-known 
examples of rule-based systems used for clinical infor-
mation tagging and/or extraction are MERKI, MedLEE 
(based), SymText, NegEx, MedEx, MedXN, MetaMap, 
KnowledgeMap, HITEx and ContextD [5–12]. How-
ever, while rule-based systems have a proven accuracy 
record, such systems may suffer performance-wise 
if words that appear in the narrative text are not 
accounted for in lexical resources [13, 14]. The medi-
cal language displays a range of different styles and 
grammatical structures, and it is opulent with abbre-
viations, compound words, lexical variants, and mis-
spellings [15]. Thus, such systems are dependent on 
human clinical expertise for quality assurance of deter-
ministic rules and the development and maintenance 
of specialized medical dictionaries used for clinical 
information extraction [16].

Machine learning-based systems for clinical NLP 
are a more recent phenomenon, with classification 
being a primary focus [17, 18]. Some well-known 
algorithms that have been implemented include 
Naïve Bayes, k-nearest neighbor (kNN), Conditional 
random field (CRF), Support Vector Machine (SVM), 
Logistic regression, Decision tree, Random forest, and 
artificial neural networks (ANN) [17–22]. However, 
despite there being a plethora of retrospective 
studies on supervised machine learning methods 
for NLP on anonymized patient data, only a limited 
number of prospective studies have been published, 
and relatively few such systems (e.g., Lancet, IBM 
Watson, and CTAKES being some notable exceptions) 
seems to have reached the maturity needed for 

practical implementation and impact [1, 2, 20, 23–
31]. Indeed, supervised machine learning efforts in 
healthcare has been troubled with defending the cost 
of having clinical expertise annotate large amounts 
of narratives, which is necessary for even narrow-
scope concept learning [32]. There is also the issue 
of privacy and confidentiality concerns, which 
hinders manual curation initiatives and excludes the 
sharing of annotated medical corpora [16]. Finally, 
supervised methods have also been criticized for 
being inaccurate, as they lack the fine-graininess of 
the deterministic rule-driven systems [33].

Provided enough data for extensive feature engineer-
ing, unsupervised machine learning requires no labeled 
data and may be used to learn meaningful representa-
tions of words from text [34–36]. Representation learn-
ing based on context-predicting methods received 
increased attention especially from 2013 when Mikolov 
et  al. pioneered the Word2vec Continuous Bag-of-
Words model (CBOW) and the Skip-Gram model for 
learning word representations [37–41]. More recent 
developments in this area are fastText, Global Vec-
tors for Word Representation (GloVe), and StarSpace 
[37, 38, 42–45]. Large-scale unsupervised pre-training 
for global context embedding has lately been revolu-
tionized by Transformer-based models such as bidi-
rectional encoder representations from transformers 
(BERT) [46] and Generative Pre-training (GPT) [47].

These large neural networks consume huge amounts 
of unlabeled text corpora and learn nonlinear 
embeddings underlying the structure of the text. 
However, due to the scarcity of EHR data courtesy of 
privacy issues, limited availability of computational 
power and need for interpretability, using these 
large models is infeasible for critical applications in 
healthcare [48, 49]. Pre-trained word embeddings 
have been successfully used as extra word features 
in existing supervised NLP systems [50]. It has 
also been shown that training cluster-based word 
representations on domain corpora can improve 
classification performance versus, e.g., newswire-
domain corpora [51–53]. However, there is still little 
research on employing real-life longitudinal EHR data 
to learn word representation for clinical NLP purposes 
[26, 53–59]. Although it has been suggested that state-
of-the-art unsupervised semantic models may be 
utilized to automatically produce lexical resources, 
they do not constitute perfect representation-
learning or similarity estimation engines [16, 60–
63]. Consistent with the results of the classification 
experiments we perform, pure supervised and semi-
supervised machine learning approaches (i.e., without 
also applying domain relevant rules) still struggle with 
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achieving the high recall and precision rates that are 
required for patient diagnosis and treatment [18, 27, 
64, 65]. Moreover, building high performing machine 
learning-based models requires powerful computing 
resources that are seldom available as part of 
contemporary healthcare institution IT infrastructure 
[66]. More complex algorithms, such as for instance 
those based on deep neural network principles, to 
varying degrees, can also be perceived as so-called 
“black boxes.” Once they are trained, it can be difficult 
to interpret why a particular response to a set of 
data inputs is given. This is certainly a disadvantage 
for healthcare, where decision making depends on 
transparency to achieve trust and understanding [67].

Evidently, none of the approaches described rep-
resent viable solutions for effectively and precisely 
searching the clinical narrative’s unique and rich 
vocabulary for information. As evidenced by recent 
clinical NLP challenges organized by the i2b2 Founda-
tion, ensembles of complementary approaches gener-
ally improved performance, and the best-performing 
methods often used hybrid approaches that combined 
machine learning and rule-based methods [18, 27, 64, 
65]. These systems could have multiple layers that lev-
eraged the complementary strengths of each other, 
where the output of one method addressing portions 
of the NLP-related tasks could be a direct input to 
another adding both value and transparency. A chal-
lenge with the majority of these approaches, however, 
is their reliance on annotated datasets.

We present a novel hybrid-method for clinical NLP 
that leverages the combined synergies of unsupervised 
machine learning, semi-supervised machine learning, 
and deterministic rules. Unsupervised machine-
learning is used in the pipeline architecture to 
automatically learn word representations from the 
clinical narrative and to build a knowledge base of 
the clinical language. Next, semi-supervised learning 
uses the word representations in the knowledge base 
to simplify and accelerate the building of specialized 
clinical vocabulary and concepts. In brief, this 
constitutes an interactive labeling process, where 
word clusters of related word representations are 
visualized in a two-dimensional Treemap structure 
that clinicians can manipulate dynamically to shape 
specialized clinical vocabularies. Built vocabularies 
can next be used and reused as building blocks to 
synthesize multiple clinical concepts (e.g., patient 
allergy) used for clinical information extraction. 
Because the underlying vocabulary is derived directly 
from the clinical narrative itself, the interactive 
process of building such clinical concepts represents 

an alternative accelerated and transparent approach 
to traditional manual feature engineering and 
tagging. Finally, a precision layer of deterministic 
rules is implemented for each concept to allow fine-
grained control of information extraction from the 
narrative. The rules are domain comprehensible 
and post-process the output of the machine learning 
algorithms for achieving rule-based system level recall 
and precision at run-time. The integrated method 
takes advantage of each method’s strengths, while 
minimizing inherent weaknesses. The clinical language 
is automatically learnt, and vocabulary, concepts, and 
rules supporting a variety of NLP downstream tasks 
can be built with minimal manual feature engineering 
and tagging required from clinical experts. The 
method’s open processing pipeline architecture 
gradually refines unstructured (i.e., unlabeled) 
information into structured (i.e., labeled) data, 
which is different from a “black-box” type approach. 
Imperative for healthcare, data transformations are 
thus made transparent and predictions interpretable. 
The combined method also has other synergistic 
effects, like potentially being language independent, 
automatically updatable (meaning minimum manual 
maintenance is necessary for the algorithms and the 
built vocabularies and concepts), and able to cover 
misspellings, abbreviations, and acronyms.

To test and evaluate the method, we have developed a 
clinical decision support system (CDSS) named Infor-
mation System for Clinical Concept Searching (ICCS) 
that implements the method for clinical concept tag-
ging, extraction, and classification. The system’s per-
formance has been empirically demonstrated in two 
previous papers. The system delivers high recall and 
precision rates (recall 92.6%, precision 88.8%, F-meas-
ure 90.7%), and the results of a recent field trial indi-
cates high degrees of system acceptance among its 
clinical users [1, 68].

While the two earlier studies are important in 
that they give a preliminary outline of the system’s 
architecture, components, and user interface [1, 
68], and also prove the system’s usability in clinical 
practice [68], this paper’s attention is first on 
describing the system’s underlying method. Second, 
complementing limited earlier research and validating 
the method proposal, we perform experiments with 
various unsupervised methods on the task of word 
similarity to evaluate their capability for feature 
engineering; i.e., whether the models produced 
can serve as the base for further semi-supervised 
building of specialized clinical vocabularies. Third, 
the performance of the proposed combined method 
is evaluated on the task of classification (i.e., 
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detecting patient allergies) against a range of common 
supervised learning algorithms. Finally, we analyze 
and discuss the results of the evaluation tasks, and we 
interpret the results in the context of clinical NLP.

Methods
The combined method we propose for clinical NLP 
was motivated by the possibilities and limitations out-
lined in the Background section. We experimented with 
orchestrating different methods for accurate and effec-
tive clinical concept tagging and extraction. Being aware 
of the inherent challenges that go with manual annota-
tion of medical datasets, we aimed to devise a method 
independent of such means by leveraging on machine 
learning’s potential for automatic feature engineering.

The pipeline architecture for the combined method has 
been designed for deployment in a hospital production 
environment (i.e., ICCS) [69]. The architecture includes a 
series of sequential steps, as depicted in Fig. 1. Except for 
the first subsection that provides a short introduction of 
the architecture, modules, and functionality of the CDSS 
we have developed, the rest of this section is organized 
in accordance with the pipeline architecture and explains 
each step successively.

System architecture, modules, and functionality
Figure  2 shows a simplified overview of the system 
architecture implemented for building and using 
specialized clinical vocabulary, concepts, and rules.

The main functionality of ICCS is its capability for 
clinical concept building, searching, and classifica-
tion by processing unstructured information (i.e., the 
narrative) and structured data (i.e., laboratory results 
and critical information) in EHRs. At run-time (step 6 
in Fig.  2), the system typically provides the user (e.g., 
a doctor or nurse in the hospital) with lists of docu-
ments, laboratory results, and critical information that 
are patient specific and relevant to a particular use-case 
(e.g., drug allergies, infectious diseases, or patient diag-
noses) defined by a set of seed words (the term “word” 
may hereafter also be used in the meaning of “phrase”) 
and rules. The system is further able to identify and 
extract clinical concept relevant information with con-
text to make it meaningful, and map that information 

into a structured representation. For example, using the 
clinical concept of “drug allergies,” the system can iden-
tify “Penicillin”, and provide context such as whether a 
patient is allergic to the drug. While the system’s main 
processes and modules are depicted in Fig. 2, we refer 
to [1, 68] for further presentations of system design, 
development, and functionality.

Data collection
The pipeline architecture with all of its steps, including 
the data collection component (step 1 in Fig.  1) briefly 
described here, must support volume, variety, and velocity, 
which also are the three defining properties of big data [70, 
71]. Data collection needs to be able to keep up with the 
real-time production of data in the clinical environment 
(i.e., velocity), which typically may amount to thousands 
or tens of thousands of documents each day in medium- 
or large-sized Norwegian hospitals. Methods for calculat-
ing deltas on large amounts of data must be designed to 
support the continuous export of fresh data with as little 
latency as possible. The production environment data-
bases or data warehouses must also allow real-time query-
ing of both structured data (demographics, vital signs, etc.) 
and unstructured information such as clinical notes.

Data collection also needs to be able to accommo-
date the large volumes of historical data that is typi-
cally stored in such hospitals’ contemporary EHR 
systems, where data volumes commonly amount to 
tens or hundreds of terabytes. For example, in a previ-
ous study, we evaluated our method in a middle-sized 
Norwegian hospital [68] that has a daily production 
of about 11 000 new documents and stores about 67 
million documents, or 23 terabytes of data, only in its 
enterprise EHR system.

With reference to variety, contemporary EHR systems 
may contain a range of different data or document 
formats. Most EHR systems also scan documents and 
store these in different image formats. Because NLP 
techniques and ML algorithms typically only support 
processing of plain text, the content of documents or 
images must be extracted and transformed into raw text 
before further processing. Legacy document formats, 
or proprietary vendor-specific formats, may further 
require reverse engineering of composition and content 

Fig. 1 The pipeline architecture for the combined method as a series of sequential steps
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Fig. 2 A simplified overview of the system achitecture for building and using specialized clinical vocabulary, concepts, and rules. The management 
module is related to step 4 and 5 of the pipeline architecture, while the user interface is related to step 6 (step 1–3 are shown on the left)

Table 1 A subset of the document types and database datatypes stored in the hospital’s enterprise EHR system

Data formats Oracle datatypes Document type examples

RTF CLOB Discharge summaries, surgery notes, journal notes

PDF CLOB Laboratory results, anesthesia and intensive care journals

Formflow CLOB Specialized forms, surgical nurse reports, medical certificates

TIFF BLOB Scanned documents, clinical curve data

XML XML Physician referrals, CAVE/drug reactions

HTML VARCHAR Physician referrals

Proprietary/legacy data formats VARCHAR Specialized forms, pre‑operative assessments and planning forms

Text VARCHAR Older documents from converted legacy EHRs
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and the development of custom-built solutions for 
extraction and transformation of text. A subset of the 
most common document types and database datatypes 
we encountered when we exported documents from the 
hospital’s enterprise EHR system is listed in Table 1.

The data collection step, with all of its sub-processes, 
must be streamlined, integrated, and automated 
to prepare data for further NLP preprocessing and 
the later steps. Finally, the processes must be able to 
execute without causing disturbances to the EHR 
systems so as not to result in catastrophic system 
errors or delays (i.e., potentially affecting patient 
treatment negatively).

In the previous evaluation study [68], patients’ 
EHR data and documents (transformed into raw text 
format) were continuously sampled and imported into 
a document database for further pre-processing, text 
mining, and building of machine learning models. As no 
off-the-shelf solution capable of supporting the necessary 
extraction and transformation of data from the EHR 
system was available, we developed several customized 
C# and Python-based software solutions to automate and 
integrate these steps for near real-time execution.

NLP pre‑processing
Unlike structured data, where machine learning 
algorithms can operate directly on the underlying 
data, text in EHR documents requires preprocessing 
before machine learning algorithms can be success-
fully applied. The NLP pre-processing stage (step 2 in 
Fig.  1) uses several methods including lowering case, 
removal of punctuations, sentence boundary detection 
and splitting, and tokenization. Stop words are not 
removed, because these are important for determin-
ing word co-occurrence central to word embedding. 
We consider a token to be any sequence of symbols, 
separated by white space. Additionally, N-gram (uni-
gram, bigram, trigram, and quadrigram) models neces-
sary for machine learning feature generation are built 
by performing chunking of tokens [72]. We designed 
the NLP pre-processing through an iterative process 
where the medical domain knowledge of the language 
and vocabulary played a central role.

Fig. 3 Word cloud depicting the drug name “Penicillin” and the 33 
misspelled variants identified in the dataset

Fig. 4 Zip’s eponymous law [76]. Illustrated by a selection of word counts based on the analysis of the 863 937 clinical notes included in the dataset 
we use to conduct experiments, which yielded 863 937 unique unigram tokens and 1 803 428 common phrases in the knowledge base. Frequent 
words account for a large percentage of the text, but a large portion of words appear at a low frequency



Page 7 of 25Berge et al. BMC Medical Informatics and Decision Making          (2023) 23:188  

Unsupervised building of the clinical language knowledge 
base
Even though great efforts have been made to 
standardize medical language (e.g., the use of 
international medical classification systems such 
as the Systematized Nomenclature of Medicine 
Clinical Terms [SNOMED-CT] and the International 
Classification of Disease [ICD]), there are still 
variations between healthcare providers depending 
on, e.g., medical domain specializations, culture, 
equipment and techniques, and employees’ professions 
and background, as well as misspellings and medical 
acronyms present in the narrative. To illustrate the 
amplitude of the misspellings challenge, Fig. 3 depicts 

the 33 misspelled variants of the drug name “Penicillin” 
identified by implementing a simple 4-edit distance 
limited algorithm on the 863 937 clinical notes 
included in the dataset we use to conduct experiments. 
Because we only use about 2% of the available hospital 
narratives to train on in our experiments, increasing 
the dataset size would likely result in the detection 
of even more misspelled variants. Missing out on 
only one of the variants could potentially be fatal for 
patient treatment depending on the use scenario of a 
downstream clinical NLP system. We observed similar 
misspelling rates for most of the key medical terms 
we examined. To facilitate high levels of precision and 
recall in downstream clinical NLP tasks, it is necessary 

Fig. 5 Transformation of words into vectors in the VSM. In the figure to the left are shown how words are represented as vectors according 
to contextual (document) frequency. In the table in the middle is shown an example of a word‑context matrix (for the sentences “I like machine 
learning,” “I like NLP,” and “I enjoy programming”) where unique corpus relevant co‑occurring words are counted on a global scale. Finally, to the right 
is shown an example of how closely related words vectors relate to each other in the continuous vector space

Fig. 6 Exploring one of the clinical language models as a 3D VSM using a Tensorflow implementation. Using “Apocillin” as the seed word, 
the nearest neighboring words are shown. The model may be twisted and zoomed in and out to explore word relations
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to learn the unique features of the medical language in 
local context (i.e., a specific healthcare organization) 
[73]. Because manually labeling the narrative is not 
feasible, we devise the use of unsupervised learning to 
map local context medical language (step 3 in Fig. 1).

Considering that texts are largely made up of rare 
words (see Fig. 4), the assumption of normal distribution 
may limit the ability to analyze and learn corpora in 
an unsupervised way [74–76]. However, the empirical 
experiments we conduct (see the Experiments section) 
reflect that the volumes of clinical data available in most 
healthcare organizations are sufficient for such methods 
to produce semantic vector space models (VSMs) that 
can effectively serve as knowledge bases to facilitate 
accelerated supervised building of specialized clinical 
vocabulary [77].

By using the explicitly encoded linguistic regularities 
and patterns stored in such word embedding vectors, 
the semantic meaning of words can to some extent 
be captured. As depicted in Fig.  5, the vector of each 
word contains components that capture contexts that 
characterize how it is used. As further illustrated to the 
right in Fig. 5, drugs such as “Truxal” and “Penicillin” are 
likely to share the same neighborhood of co-occurring 
words in clinical narratives (e.g., “he reacted to Penicillin”, 
“she reacted to Truxal”).

Figure  6 shows a visualization of one of the clinical 
language models trained on data from authentic 
EHRs from Sørlandet Hospital Trust. We observe that 
semantically similar words are typically mapped to 
nearby points, reflected by their relatively small angle or 
short distance between each other (see also Table 3 in the 
Experiments section).

The specific word embedding method (see Algo-
rithm 1, activity A) that we implement in the combined 
method (i.e., as part of the CDSS and the experiments 
here) was developed by one of the authors and uses 
global matrix factorization and local context window 
method [34, 37, 43]. While grammar and word order 
are disregarded, features such as frequency of words, 
word location, and word co-occurrence related to the 
usage of words are extracted and encoded in word-
context matrixes. Our method implements probabil-
istic clustering technique based on Bayesian reasoning 
for prediction. This allows the confidence in the pre-
diction to be quantified as a predictive distribution 
instead of relying on a single number (i.e., the “dot 
product”) [78], which helps with vagueness (an entity 
may be equally applicable to multiple points in the 
VSM) and gradedness (an entity may be more appli-
cable to some points in the VSM than to others). The 
present paper has a system and applied perspective, 
focusing on how the underlying methods combine and 

interact to solve a challenging real-world problem. We 
refer to Berge et  al. [1] for some more details on the 
method. Our encouraging results with producing word 
embeddings (see Table  3 in the Experiments section) 
demonstrate that any of the included word embedding 
methods may potentially be used to build a VSM of the 
medical language in patient EHRs.

Algorithm 1. Details of activities included in step 3–6 in Fig. 1 
described as algorithms. The provided usage examples demonstrate 
how the activities in the steps have been implemented in ICCS to detect, 
e.g., relevant allergy information in the clinical narrative.
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Semi‑supervised building of vocabulary and clinical 
concepts by querying the knowledge base
Lexical repositories have proven to be very useful 
resources for NLP [79]. However, despite the recent 
progress with producing unsupervised semantic mod-
els, they are not able to automatically generate perfect 
lexical resources [16, 60–63]. While it is an easy task for 
humans to measure semantic distance (i.e., closeness 
in meaning) of two concepts, it represents a challenge 
with such models in particular because of word sense 
ambiguity [62]. A large portion of words correspond 
to several unrelated meanings (i.e., are homonyms) or 
multiple related senses (i.e., are polysemes), which is 
problematic with most word embeddings that typically 
only represent each word with one vector. For example, 
the word “sign” may both convey an objective finding 
of a disease state (e.g., fever or rash), a plus or minus 
indication in math (e.g., laboratory tests), and meaning 
like in the sentence “she took it as a sign” (i.e., in the 
psychiatric narrative).

To alleviate the shortcomings intrinsic to pure unsu-
pervised approaches, the combined method we propose 
makes use of an optimized word embedding model to 
create dictionaries of specialized clinical vocabulary 
semi-automatically (step 4 in Fig. 1). Using a vector dis-
tance measure such as cosine, relevant categories of pos-
itive seed words (e.g., drug names, diagnoses, diagnostic 
procedures, medical conditions, contagious diseases, 

implants, laboratory tests, and radiology exams) are used 
as manual input to query a word embedding model for 
candidate similar words. The similarity of two words 
(e.g., seed word w1 and word w2) in a VSM can be com-
puted as the inner product between their vectors,

where the simple range of cosine coefficients from -1 to 
1 may be thought of as correlation coefficients that can 
be used for two-dimensional projection of word embed-
ding vectors. A value of 0 means words are orthogonal 
(90 degrees) and completely unrelated, a value of 1 means 
they share the same orientation and is perfectly related, 
while a value of -1 represents a perfect opposite relation-
ship (180 degrees).

More specifically, the system we have developed 
features a management module (see Fig. 2) that simplifies 
and accelerates the building of both vocabularies and 
concepts by human supervision (e.g., a medical domain 
expert). The system makes use of nested rectangles with 
different colors, sizes, and scores in a Treemap structure 
to intuitively visualize word similarity (see Fig.  7). That 
is, both the colors and area sizes of the candidate words 
reflect vector score or relatedness to positive seed words. 
This represents a further simplified abstraction of the 

(1)

Sim(w1,w2) = cos(θ) =
w1 • w2

�w1��w2�
= i

w1iw2i

i
w12

i i
w22

i

Fig. 7 A Treemap structure of 1853 drug relevant phrases returned by the system (text in Norwegian)
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cosine word similarity measure, more suitable for human 
manipulation than word vectors in a complex VSM model.

In brevity, when starting to build a new specialized 
vocabulary, relevant seed words (e.g., three drugs) are 
entered in the graphical user interface (GUI) as input (see 
Algorithm  1, activity B). The words are next translated 
into their embedding vectors. The knowledge base is 
queried, and the value of the input vectors are compared 
to stored vectors in the knowledge base to identify the 
corresponding nearest matches. Clustering is performed 
in real-time, to group sets of coherent vectors in the 
knowledge base. Having established all of the relevant 
clusters with their boundaries, the words included in the 
clusters are returned as candidate vocabulary relevant 
words (e.g., all of the 1853 drug names occurring in the 
dataset used for training word embeddings; see Fig. 7).

Further, similar to e.g. the programmatic implementation 
of the Word2vec Python Gensim library [37, 80], the 
returned list of candidate words can be semantically 
shaped (i.e., widened or shrinked) interactively by having 
the user introduce multiple positive and negative words 
until the required level of recall and precision is achieved 
(see Algorithm 2). Lists of candidate similar words can also 
be pruned for example by limiting the number of returned 
top n ranked words or by returning only supra-threshold 
(specified) cosine values. All the word embedding models 

we experiment with (see the Results and discussion 
section) can be manipulated in a similar manner.

Algorithm 2. Querying the VSM to shape vocabularies.

The system also has the ability to let users explicitly 
add words in the case they are not present in the word 
embedding model, and to remove words if the described 
pruning methods are not successful (e.g., sometimes a 
specific negative seed word that is introduced may over-
lap with several adjacent word clusters, and the result is 
pruning of more similar words than desired).

The vocabulary building process is an iterative process 
that ends when all the vocabularies that define a clinical 
concept has been created. Once built, vocabularies can 
be reused as building blocks in multiple clinical concepts. 
The user builds a clinical concept by selecting the 
vocabularies that define it as building blocks (see activity 
C in Algorithm  1). For example, the concept of “allergy” 

Fig. 8 An illustration of the simplified and accelerated process of building clinical concepts in the developed CDSS, building higher‑order 
hierarchical medical concepts, and showing three lower‑order medical concepts being reused and pooled together to build a higher‑order hybrid 
medical concept (corresponds to the “Concepts” object in Fig. 2)
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contains 23 specialized vocabularies including allergens 
(e.g., drugs, environmental, and foods), reactions, and 
symptoms.

Finally, the system contains functionality to pool several 
clinical concepts together into larger hybrid- or higher-
order hierarchical clinical concepts (see Fig.  8). For 
example, the higher-order concept of “alert information” 
typically contains the five lower-order concepts allergy, 
infectious diseases, special disorders (e.g., haemophilia, 
angioedema, Addison’s disease, porphyria), implants, and 
previous complications associated with anesthesia. Thus, 
creating new larger hybrid clinical concepts, containing 
several smaller refined clinical concepts with specific 
clinical vocabulary, becomes an accelerated process with 
the possibility of reusing already fabricated building 
blocks in various configurations. As further described in 
the next section, precisely searching for and classifying 

a built clinical concept at system run-time depends on 
the fulfillment of a set of rules also defined by the user at 
concept design-time.

Using deterministic rules for precision‑based search 
and classification results
A literature study was conducted to identify common 
deterministic rules used for clinical NLP purposes. 
Through an iterative process of applying domain knowledge 
and using semi-supervised built clinical concepts (step 4 
in Fig. 1), we identified a final set of 35 deterministic rules 
that can be applied to augment the machine learning-
based methods used for clinical concept searching and 
classification (step 5 in Fig. 1). These rules (see activity D 
and F in Algorithm 1, and Table 2) effectively constitutes 
a precision layer, which is necessary to implement because 
searching for relevant terms without applying fine-grained 

Table 2 A subset of the 35 rules used by the system to detect relevant allergy information

Rule Description Comments

1. Document filtering Documents must contain concept‑related 
words, or else they are filtered out [7, 32]

E.g., for the clinical concept of “allergy”, documents 
must contain concept‑related words associated 
with e.g. “allergy”, “allergen” “allergic reaction” 
or “symptom”

2. Paragraph Boundary Concept‑related words must be located 
within the same paragraph [81, 82]

E.g., in case an “allergy”, “reaction” or “symptom” 
is identified in another sentence, a check for con‑
formity with rule 2 and 3 is initiated again

3. Window of context Allergy concept‑related words must be located 
within the same sentence, or if located in adja‑
cent sentences must be in proximity (within 
a ± 6 word distance), of other identified allergy 
concept‑related words [9, 69]

Distance tolerance can easily be adjusted 
in the system. We experimented with different 
scopes. As also reported by Afzal et al. [5], we 
found a six to ten word distance to be optimal

4. Dependency Concept‑related words can be of type [32]
1) Exist alone
2) Primary (exist when supported by 1 or 3)
3) Secondary (depend on 2 for existence)

E.g., for the clinical concept of “allergy”: 
while words of type 1 (strong indicators like e.g. 
“Anaphylaxis”) are allowed to “exist alone” in a sen‑
tence, other types must conform to rules 2 and 3

5. Part of compound words In case concept‑related words are found as part 
of seldom‑used compound words, they are 
also highlighted [69, 83, 84]

E.g., “Cave information”

6. Header detection Specific rules apply for relevant text detected 
below headers until the start of the next 
detected paragraph [9, 69]

E.g., in case of “Allergies” header, all allergy 
concept‑related words (with certain limitations) 
should be highlighted

7. Highlight color The degree of word concept‑relatedness deter‑
mines (from low to high) text highlight color 
yellow, orange or red [81]

E.g., allergy concept‑related words are highlighted 
in the text

8. Disambiguation Often repeated words where non‑conceptual 
meaning (“word sense disambiguation”) 
is alluded are filtered out [9, 18]

E.g., «the patient reacts to light» in eye examina‑
tion reports

9. Negation Detection of positive/negative contexts is han‑
dled by checking for the existence of negations 
in the text [6, 33]

E.g., “reacts to Penicillin” versus “does not react 
to Penicillin”

10. Permutations Use of the word permutations dictionary may 
be enabled or disabled [13, 69]

An algorithm detects and stores the most used 
misspellings not already covered by the clinical 
knowledge base

11. Omitted documents EHR documents of certain types or with certain 
headers or contents may be left out [28, 83]

Documents which, e.g., contain specific sensitive 
information may be left out of the results for some 
users

12. Concept search access control Performing search for specific clinical concepts 
may be assigned or restricted to a group of users

Group of users may be defined in a flexible way
E.g., a clinical department or individual users
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domain and concept specific knowledge would mostly 
return documents that are concept irrelevant. The step 
includes the application of rules such as combining 
multiple tagged concept-related words in close proximity 
to filter documents, identifying relevant windows of 
context, and paragraph/sentence starts/stops to remove 
obvious false positives. For example, when searching for 
the clinical concept of “allergy”, it is not enough to search 
for drug names, as these commonly occur in various 
contexts throughout the narrative. Concept relevant words 
may be subject to dependency structures for true positive 
detection (see Table 2, rule 4). In the case of drug allergies, 
while we do want to detect sentences like “The patient is 
allergic to Penicillin,” we are not so much interested in 
sentences such as “The patient is described Metformin 
for…”. Likewise, certain documents or paragraphs may be 
particularly concept relevant and demand careful attention 
to details when tagging and extracting text (Table  2, rule 
1 and 6). For instance, by detecting the document types 
and the headlines occurring throughout the text, specific 
rules may be leveraged to analyze areas of the text with 
particular attention. When searching for e.g. the clinical 
concept “allergy”, a headline which includes the word 
“allergies” most of the time means that what follows may 
be relevant to examine meticulously for information about 
drug allergies by applying explicit concept relevant rules.

To achieve granular contents control, and thus high-
precision search results, the system embeds “If–Then” 
rules together with flexible regular expression (RegEx) 
based rules. An example of a simple “If–Then” rule is 
one that conditions the application of a set of specific 
deterministic rules according to which clinical concept is 
being searched for (see Algorithm 3).

Algorithm 3. Function RuleBasedPruning(RD, IE).

A RegEx-based rule is a sequence of characters that 
defines search patterns (see Algorithm  4). Regex-based 
rules have been successfully applied in prior clinical NLP-
related research, including e.g. NegEx and MedEx [6, 9].

Algorithm 4. Proximity search algorithm.

The management module is used to define rules for 
detecting the location of concept-related words and their 
relations in the text. The defined rules are automatically/
programmatically converted into RegEx-based search 
algorithms which are applied at run-time. Both the distance 
between concept-related words, whether they occur in the 
same sentence or in different sentences, their order and their 
dependence on each other are taken into consideration. 
Particularly, the so-called “Paragraph boundary” (rule 2), 
“Window of context” (rule 3), and the “Dependency” (rule 
4) rules in Table 2 working together are central to achieving 
a precise search mechanism. For example, by applying the 
“Dependency” rule to a concept, it can be defined whether 
concept-related words have the power to stand-alone in 
the text (e.g., the word “anaphylaxis” when searching for 
the concept of “allergy”), or whether detection depends 
on another concept being detected in close proximity (see 
Fig. 9).

Run‑time utilization of the combined method for clinical 
concept searching and classification
Health professionals working for example in the out-
patient’s clinic or in the operating theatre typically use 
the system to search for and classify clinical concepts 
in the patient EHR (step 6 in Fig. 1). The process starts 
with a health professional selecting a patient and a clini-
cal concept by interacting with the system’s GUI. Based 
on the selected clinical concept’s stored seed words of 
(i.e., stored at concept build time), the knowledge base is 
queried for relevant vocabulary and the EHR is retrieved. 
While the building of vocabulary mimics the process 
previously described for semi-supervised building of 
vocabulary (step 4 in Fig. 1), the clustering to group sets 
of coherent vectors in the knowledge base is now per-
formed on-the-fly for all of the included vocabularies. For 
instance, the clinical concept of "Allergy" uses the seed 

Fig. 9 The dependency rule. Exemplified for the concept of “allergy.” 
Detection of “drugs” vocabulary words is dependent on detecting 
“reaction” vocabulary words in close proximity
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words stored for its 23 dependent vocabularies to quickly 
generate a total defining vocabulary of about 7000 words. 
The system can optionally store a clinical concept’s total 
vocabulary “offline” for VSM independence or for export 
to other NLP tasks. However, run-time generation of 
vocabulary from scratch is preferable as it occurs almost 
instantaneously and ensures the automatic inclusion of 
new vocabulary after updated word embedding models 
have been implemented.

To perform clinical concept searching and classification, 
the system’s inference engine amalgamates the clinical 
concept relevant knowledge (i.e., stored in the knowledge 
base) with the relevant patient data stored in the EHR. 
Reflecting step 4 and 5 in the pipeline architecture (see 
Fig.  1), concept classification is essentially a two-step 
process. First, using the generated concept relevant 
vocabulary, a preliminary keyword-based searching 
and scoring of patient EHR data is performed. The 
documents in the selected patient’s narrative are scored 
according to the exact mixture of phrases from the clinical 
vocabulary they contain, probabilistically measuring the 
presence of the concept (see activity E in Algorithm  1, 
and Algorithm  5). All EHR data that does not contain 
concept relevant vocabulary is filtered out, and a much 
smaller sample is left for further in-depth rule-based 
concept analysis. Second, selected deterministic rules 
(see Table 2) are applied for fine-grained concept analysis. 
The partitioning of the process into two steps helps 
with transparency (i.e., the result of each process can be 
explained to the user) and also speeds up the classification 
process by ensuring we do not waste CPU-cycles on 
analyzing EHR data that does not contain concept 
relevant vocabulary. Finally, the concept relevant EHR 
data is presented to the user as a filtered list of documents, 
where concept relevant information is automatically 
focused (successively scrolled to) and highlighted for each 
of the viewed documents (see activity F in Algorithm  1, 
and rule 7 in Table 2, and Fig. 2).

Algorithm 5. Function Categorize (KB, SP, D).

As noted, the combined method has been implemented 
in a CDSS (ICCS) we developed for clinical concept 
searching and classification. Using a dataset of authentic 

clinical notes, we empirically evaluated our combined 
method through several methods of analysis [1]. The 
results demonstrate that the method (see Figs.  1 and 2) 
is able to support clinical decisions by effectively filtering 
and summarizing information in allergy concept relevant 
clinical documents with a high degree of recall (92.6%) 
and precision (88.8%). The use of the system in clinical 
practice further allowed clinicians to identify patients 
at risk for allergy and provide early interventions that 
would prevent or mitigate the associated morbidity and 
mortality [68]. In the experiments we perform here (see 
Table  4), the combined method reaches state-of-the-art 
performance, with respectively 18.4% and 23.8% better 
precision and recall scores than the best performing pure 
machine learning-based method we evaluate.

Experiments
We perform empirical experiments to evaluate the per-
formance of the combined method on medical datasets 
containing complete real-life patient EHRs derived from 
Sørlandet Hospital Trust.

The combined method proposes to use unsupervised 
produced word embeddings to semi-automate the build-
ing of specialized clinical vocabulary. A condition for this 
is that methods employed for producing word embed-
dings are able to learn and represent the semantics of 
EHR-derived datasets. Complementing limited earlier 
research on the subject, we evaluate the quality of vari-
ously produced word embeddings on the task of word 
similarity by using clinically relevant (i.e., allergy related) 
seed terms as input.

Second, we evaluate the combined method on a clini-
cally relevant classification task against other commonly 
used supervised learning methods. Based on the content 
of patient narratives, we perform classification of whether 
patients have allergies or not. This basically translates to the 
task of text classification, which typically sorts documents 
into a fixed number of predefined categories. The task here 
is much hardened, however, by the fact that classification 
has to be performed on the collective of each patient’s EHR 
documents. Each EHR contains large volumes of complex 
structured longitudinal data, including clinical events that 
are unevenly distributed over time [85]. To better under-
stand the significance of our method’s rule-based compo-
nent on performance, we also include extended results for 
the best scoring supervised method where unsupervised 
word embeddings are used as extra word features [50]).

Dataset construction
The dataset we use for evaluation is non-public and 
derived from Sørlandet Hospital Trust’s enterprise EHR 
system. The dataset constitutes the clinical notes (863 
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937 documents, ∼1.2 billion tokens, and a dictionary 
of 863 937 unique unigram tokens or 1 803 428 com-
mon phrases) of 9267 patients that were admitted to the 
hospital for orthopedic surgical procedure performed 
between January  1st 2014 and December  31st 2015 (i.e., 
the study population). We employ the whole dataset to 
train the unsupervised algorithms on the task of word 
similarity, and a manually curated subset of the dataset 
(i.e., the subset dataset) to evaluate performance on the 
task of classification.

The subset dataset was produced by two health pro-
fessionals (an anesthetist and a nurse with special train-
ing) who annotated randomly selected complete patient 
EHRs for allergy relevant information [86]. The annota-
tions were registered, analyzed and systematized into 
categories of keywords reflecting that there had either 
been an “allergy” or an “allergic reaction” of some kind 
(allergy related terms and phrases, regular expressions 
consistent with allergic reactions, and symptoms conflu-
ent with allergy), together with ten categories constitut-
ing different types of reactive allergens. We next used 
this information to manually abstract and classify each 
of the patient EHRs into either an allergy “Yes” or “No” 
category. Thus, the labeled dataset effectively constitutes 
a binary classification problem. Next, the subset dataset 
was reduced in size to 430 randomly subsampled patient 
EHRs (76 319 documents, ∼15 951 K words, and ∼104 M 
tokens in total) to achieve a sufficiently balanced dataset. 
Finally, the dataset was prepared for compatibility with 
Weka (ARFF file format), Python (csv file format), and 
StarSpace (fastText file format), using C# to generate the 
necessary file formats.

Experimental setup
All of the experiments were conducted on an Ubuntu 
18.04 LTS × 64 server with Intel i7-8700 K 12-core CPU, 
64 GB of memory, 2 TB SSD, and Nvidia GeForce GTX 
1080 Ti GPU.

Word embedding experiments
We employed StarSpace, GloVe, Python Gensim (Word-
2vec and fastText CBOW and Skip-Gram variants), 
together with our own method using distributional 
semantics to train word embeddings on the whole data-
set. To evaluate the quality of the learned word embed-
dings, we perform word similarity evaluation where the 
task is to measure how well word vector representa-
tions capture the notion of word similarity according 
to humans [63]. Using allergens as input words to each 
method, we rank the 10 and 200 nearest word vector pairs 
(k ∊ {10} ∧ (k ∊ {200}) according to their trained cosine 
similarities. We compare the produced word vector pairs 

against a manually curated taxonomy of allergens (the 
gold-standard). The gold-standard was developed by 
health professionals in the hospital [1, 87, 88], and con-
tains approximately 7000 allergens classified as belonging 
to either drug, environmental, or food categories. There 
are currently no agreed-upon metric for evaluating word 
embeddings, and most suggested methods contain some 
element of qualitative analysis [54]. We used precision 
at K (Precision@K), corresponding to the percentage of 
relevant results in retrieved results, as metric to evaluate 
word similarity [54, 89]. I.e., if a word embedding method 
predicts  np words and  nr words among them are relevant, 
the performance equals:

We experimented with different NLP pre-processing 
techniques (e.g., lowering case, punctuation removal 
and tokenization) and various hyperparameters such 
as dimensionality of word vectors, minimum word fre-
quency, epochs, negative sampling (Word2vec and fast-
Text), window size, and learning rate (alpha) to obtain 
optimal models. Word vectors require significant 
amounts of memory and storage [90]. Based on Pen-
nington et al.’s observation that word vectors larger than 
300 dimensions produce small returns [43], we restricted 
length to 300 dimensions. Stop words are not removed 
because they may render significant meaning to word 
vector representations. Assuming that they are close to 
optimal, we set any unspecified hyperparameters to their 
default values. The final set of hyperparameters used for 
the word embedding experiments are given in Table S1 in 
the supplemental material (Additional file 1: Supplemen-
tal Section 1). Finally, we also report the elapsed time for 
producing 100 dimensional word embeddings for all the 
methods.

We further implemented the best performing super-
vised CNN 1D neural network model with the best 
performing GloVe, StarSpace, Word2vec and fastText 
CBOW and Skip-Gram pre-trained word embedding 
models (using 100 and 300 word vector dimensions) to 
examine how such semi-supervised approaches perform 
on the classification task against other pure supervised 
methods and our own combined method [50].

Classification experiments
We used Weka v3.9, StarSpace [26], and Python code 
with implementations from the Scikit-learn, Keras, and 
Tensorflow libraries for the classification experiments. 
The classifiers we employed in Weka were Naïve Bayes, 
decision tree (J48/C4.5-based decision tree algorithm, 

(2)Precision@np =
nr

np
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Logistic regression (Multinomial logistic regression), 
Random forest, kNN (Instance-Based k—a nearest neigh-
bors variant), SVM (Sequential Minimal Optimization—
an SVM variant), and MLP (DL4jMlp). The classifiers we 
implemented in Python include close to standard vanilla 
long short-term memory (LSTM) [91], LSTM CNN, Bidi-
rectional LSTM (Bi-LSTM), Bi-LSTM CNN, Bi-LSTM 
with Attention Mechanism [92], and Gated recurrent 
unit (GRU) [93]. For GRU and LSTM, we used the Nvidia 
CuDNN versions for increased GPU performance. 
Auto-Weka and random search were used in Weka for 
hyperparameter optimization, while Hyperas/Hyperopt 
random search and TensorBoard scalars and histograms 
were used in Python to identify optimal RNN/LSTM 
and CNN neural network specific parameter values such 
as filter size, hidden layers, dropout rate, back-propaga-
tion learning rate, and batch size. We also experimented 
with using different optimizers such as Adam, Adagrad, 
Adamax, Rmsprop, and Stochastic Gradient Descent 
(SGD), including parameters to control gradient clipping 
(clipnorm), momentum (SGD), and Nesterov momentum 
(SGD). The final results of the LSTM and GRU networks 
(except for the Bi-LSTM Attention variant) use Rmsprop 
with a learning rate of  10–4 [94], while most of the CNN 
networks adopts Adam with a learning rate of  10–3. How-
ever, we reduce the learning rate when the validation 
loss has stopped improving for 10 steps, as a strategy to 
prevent missing local minima during training in case of 
a loss plateau. For StarSpace, we employed a combina-
tion of random search parameters and default param-
eters. Again, unspecified hyperparameters were set to 
their default values based on the assumption that they are 
close to optimal. The final set of hyperparameters used 
for the classification experiments are given in Table S2 in 
the supplemental material (Additional file 1: Supplemen-
tal Section 2).

NLP-preprocessing in Weka, StarSpace, and Python 
(NLTK and Scikit-learn libraries) included cleaning and 
tokenization of the input data into unigrams and quad-
rigrams (e.g., the StringToWordVector filter in Weka). 
We adjusted relevant parameters (as closely as possible) 
to replicate the steps in Fig.  1 describing our combined 
method’s NLP pre-processing pipeline (including lower-
ing case, removal of non-alphanumeric characters, sen-
tence boundary detection and splitting, minimum term 
frequency 10) to ensure a fair comparison. For the con-
ventional methods, we used the InfoGainAttributeEval 
method to determine the most significant attributes. 
For the neural networks (except MLP), we converted 
the EHRs into sequences and truncated or padded them 
respectively at a length of 39  000 (equaling the average 
length of the EHRs).

We refer to true positive (the number of items correctly 
predicted as belonging the positive class), false positive 
(the number of items incorrectly predicted as belonging 
to the positive class), true negative (the number of items 
correctly predicted as belonging the negative class), and 
false negative (the number of items incorrectly predicted 
as belonging to the negative class) as respectively TP, 
FP, TN, and FN. We further employ macro averaged 
precision, recall, and F-measure as evaluation metrics for 
the text classification task as follows:

We used StarSpace’s debug information to calculate a 
confusion matrix for each run, from which we derived 
macro averaged precision, recall, and F-measure scores. 
The results are expressed in terms of percentage (%), and 
the corresponding standard deviations are indicated after 
the “ ± “ symbol. The best obtained results are shown in 
boldface.

We experimented with different training, validation, 
and test dataset splits. All the conventional supervised 
methods and StarSpace were evaluated using tenfold 
cross-validation repeated 10 times with a 90% training / 
10% test data split. For the LSTM, GRU, and CNN neu-
ral network variants, we implemented 100-fold cross 
validation, and in addition used a 10% validation dataset 
derived from the 90% train dataset split to provide unbi-
ased evaluation of model fit on the training dataset, early 
stopping, and for tuning model hyperparameters. We 
monitored validation loss, and saved the best weights for 
each model. Training stopped after 150 epochs or once 
there was no improvement on the validation set for more 
than fifteen epochs. We calculated results for each fold 
based on the best working model (i.e., using the best 
stored weights). Finally, we report averaged scores over 
all the folds to estimate a predictive model for each of the 
models.

The classification results for our combined method 
were obtained by using ICCS to retrieve allergy concept 
relevant information for all of the patients in the subset 
dataset. Each of the 430 patient cases was manually clas-
sified into either an allergy “Yes” or “No” category based 
on system allergy status. Following this, evaluation of our 
combined method’s performance could be performed 

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F −measure =
2xPrecisionxRecall

Precision+ Recall
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against the labeled subset dataset similarly to the other 
methods.

Results
Evaluating the quality of learned word embeddings
Employing the gold-standard containing manually 
classified allergens, we randomly picked the words 
“Apocillin”, “Cat”, and “Cultured milk” from each of the 
three categories of allergens (drugs, environmental, and 
food). Table 3 shows the results (precision@k, (k ∊ {10}) 
of the word embeddings models we evaluate, according 

to each of the allergen categories, where words (or part 
of phrases) that are co-occurring in the gold-standard 
are emphasized. We distinguish several measures of 
precision. Generally, only words that are fully matched 
in bold are counted as true positives. Phrases that are 
only partially matched are in bold italics and are given 
half score. In addition, to harden the precision task for 
the food allergen category, only foods that are drinkable 
liquids are given full score. Non-liquid items are marked 
in bold italics and are given half score. Similarly, only 
genuine environmental allergens are given full score in 

Table 3 Top 10 nearest neighbor (type of allergen‑related) words returned by the unsupervised word embedding methods. Words 
co‑occurring in the gold‑standard similarity list of words are emphasized

Type of allergen

Method Drugs: Apocillin Environmental: Cat Food: Cultured milk

Our unsupervised 
method

Apocillin mg Paracet Cat and House dust Biola Orange juice
Apocillin tab Dalacin Cat dog Mite Applejuice Oats soup
Penicillin Ekvacillin And cat Wormwood Apple juice Whole milk
Imacillin Diclocil Dog Pollen Buttermilk Or juice
Ciproxin Keflex Timothy Horse Coffee Juice

StarSpace Ciproxin Abboticin Dog Grass Drink Strawberries
Doxylin Amoxicillin Mite Wormwood Omelet Biola
Diclosil Selexid House dust mite Dust Scrambled eggs Piece of bread
Imacillin Diclocil Mold fungus House dust Youghurt Cereal
Apocillin Erymax Pollen Nuts Dessert White bread

Word2vec Skip‑
gram

Doxylin Abboticin Dog Timothy Fishballs Drunk juice
Imacillin Ciproxin House dust Mite Wormwood Orange juice Tomato
Amoxicillin Bactrim Mold fungus Dog cat Buttermilk Cereal
Ery Max Penicillin Grass Cat dog Extra lowfat milk Buttermilk
Diclocil Keflex Pollen Birch Cocoa Cucumber

Word2vec CBOW Imacillin Ery max Dog Mold fungus Chocolate pudding Two cups

Ery Max Penicillin Wormwood Dog cat Juicebased Pancake
Amoxicillin Weifapenin House dust mite Animals Cauliflower soup Semulina porridge
Doxylin Keflex Guinea pig Cat horse Yogurt Cream of rice
Abboticin Diclocil Cat dog Grass Crispbread Whole dinner

fastText Skip‑gram Imacillin Apocillin 1 g Treasure Splashed Milk Gl lowfat milk
Amoxycillin Bactrim Apocillin Dog cat In at Milk juice Soy milk
Amoxicillin Doktacillin Mite cat Batt Orangejuice Chocolate milk
Acillin Dicillin Cat bite Tax arrears Orangejuice Whole milk
Doxycillin Imacillin Cat hair Padding Rice milk Chocomilk

fastText CBOW Imacillin Apocilling Dog Cat housedust Whole milk Chocomilk
Apocillin Bactrim Apocillin Cat dog Cat hair Yogurt Chocolate milk
Apocillin Bactrim Apocillin 1 g Cats Animals Jogurt Lowfat milk
Ery max Apocilin Dogs cats Wormwood Chocolate pudding Orange juice
Amoxicillin Doktacillin imacil‑

lin
House dust mite Mite Chocolate taste Buttermilk

GloVe Imacillin Dalacin Dog Wormwood Semolina porridge Pommes frites
Ciproxin Bactrim Mold fungus Cat and dog Cauliflower soup Drunk juice
Doxylin Ery max Nickel Grass Caramel cream Gruel
Penicillin Keflex Dog and cat House dust mite Coffee Crispbread
Diclocil Selexid House dust Horse Oatmeal Buttered milk
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the environmental allergy category. Related allergens such 
as e.g. related to metals are marked in bold italics and are 
given half scores. The blue series in Fig.  10 reflects the 
total precision score (precision@k, (k ∊ {30}) in percent 
for each of the methods in Table 3. To also examine how 
precision holds up with more distant neighbors, we 
extend the experiment to the top 200 neighboring words 
for the frequently used drug “Apocillin” (precision@k, (k 
∊ {200}). Only returned phrases that contain the name of 
a drug are counted as true positives (see the orange series 
in Fig. 10).

We observe that most of the 10 nearest neighbor 
n-grams returned by the different word embedding 
methods in Table  3 are co-occurring in the gold-
standard. Thus, the returned terms are mostly analogous 
(i.e., synonymous) to the input allergen keywords. 
Word2vec CBOW and fastText Skip-Gram, return a few 
non-allergen terms such as e.g. “treasure,” “splashed,” 
“whole afternoon,” and “two cups.” As can be observed in 
Fig. 10 (see the blue series), fastText CBOW, Word2vec 
Skip-gram, and our own unsupervised method return the 
highest precision scores, followed by GloVe, Word2vec 
CBOW, StarSpace, and fastText Skip-gram. According 
to Mikolov et  al. [39], an advantage with CBOW over 

Skip-Gram is slightly better accuracy for frequent words, 
especially when used on larger datasets. A probable factor 
favoring fastText CBOW on this complex dataset is that 
it is able to enrich word vectors with sub-word character 
n-grams. For example, the word vector "Penicillin" is 
here broken down into the separate word vectors "Peni" 
and "cillin". This capability benefits word embeddings in 
Fig. 10 (the orange series) for rare words (e.g., misspelled 
words such as “Penecillin”), or even related “cillin” 
ending drugs not seen during training. While fastText 
Skip-Gram also gains much by this capability, the added 
information from irrelevant char n-grams may actually 
be contributing to the method’s low precision@30 score. 
Supporting the latter, is that the sub-word character unit 
“att” is part of all of the non-allergen terms returned as 
synonymous environmental allergens in Norwegian. The 
inclusion of most of these non-allergen terms were found 
not to be related to specific hyperparameter settings, as 
they prevailed across different configurations. Scoring of 
the two other categories was not affected similarly, where 
fastText Skip-gram, on the contrary, was the most precise 
method. Specifically, this can be observed for the food 
allergen category, where it is the only method capable of 
only returning foods that are liquid.

Fig. 10 Normalized precision scores for word similarity according to the gold‑standard. Blue series (Precision@30): 10 most similar words according 
to allergen categories drugs, environmental, and food. Orange series (Precision@200): extended 200 most similar words according to allergen 
category drugs



Page 18 of 25Berge et al. BMC Medical Informatics and Decision Making          (2023) 23:188 

We also observe the distinct dissymmetry of scores 
between the Word2vec and fastText Skip-Gram and 
CBOW variants in Fig.  10 (see the blue series). Recall 
that CBOW learns to predict a word by looking at the 
context of surrounding words, while Skip-Gram predicts 
the context from the input word. The result is somewhat 
surprising, as we had thought that dataset peculiari-
ties would favor either a Skip-gram or CBOW approach 
irrespective of the chosen method. However, if we omit 
fastText Skip-gram’s misses of environmental allergens 
in Table 3, results would have been in-favor of Skip-gram 
for both methods.

Sahlgren and Lenci [95] showed that some matrix 
models can be superior to neural embeddings when 
trained on smaller datasets. We observe that GloVe on 
this dataset scores better than two of the prediction-
based methods (see Table 3 and the blue series in Fig. 10). 
However, it fails quite badly when more distant neighbors 
are introduced (see Fig.  10, the orange series scores). 
While the fastText-based variants and our probabilistic 
approach are able to retain high precision scores for the 
200 nearest neighbors, GloVe over the course introduces 
progressively more non-drug related words. This effect is 
still pronounced whether we use 100 or 300 word vector 
dimensions for GloVe. Although increasing the word 
vector dimension size generally helps with precision, 
a finding with all the methods is that longer distances 
increases the likelihood of identifying neighboring words 
that are non-drug related. Pennington et al. [43] were able 
to outperform prediction-based methods using GloVe 
on semantic tasks. However, they used the Word2vec 
CBOW and Skip-gram methods with only one iteration 
over the dataset, while using multiple iterations (as here) 
has later been shown to greatly improve performance 
[96]. The rather weak results for GloVe compared to the 

other prediction-based methods here corroborates with 
the earlier findings of Baroni et al. [34].

Combining the different measurements, the perfor-
mance of StarSpace on this dataset is about average. 
We were somewhat surprised that StarSpace would not 
score closer to fastText on the extended word similar-
ity task. StarSpace was created in a later iteration by the 
same research group that invented fastText (Facebook 
AI research), and Wu et  al. found it to perform similar 
to fastText in their seed paper on StarSpace [42]. How-
ever, according to Facebook AI Research, the methods 
have different algorithms underneath which use different 
parameters, and StarSpace has not been optimized yet 
for training word level embeddings specifically [97].

Word embedding models used for clinical NLP must be 
regularly updated to keep the vocabulary relevant. Because 
the volume of clinical data available for training of such 
models in healthcare organizations typically may be much 
larger than what we use here, the total time it takes to 
train a word embedding model is important for practical 
feasibility. Figure 11 depicts the total elapsed training time 
for each of the word embedding models, while keeping 
key hyperparameters as similar as possible (i.e., using 100 
word vector dimensions, a minimum word frequency of 
10, 5 epochs, and window size of 5). Except for StarSpace 
that takes much longer to train, the small differences for 
the other methods are of little practical consequence. The 
time it takes to train the models are highly governed by 
specific hyperparameter settings. E.g., increasing the word 
vector size to 300 generally increased training time with a 
few hours for most of the methods, except for StarSpace 
where total elapsed training time increased to about 120 h.

The intention here is not on making conclusions as to 
what are better or worse methods for word embedding 
on medical datasets. While the results are far from 
comprehensive enough for such purposes, they also 

Fig. 11 Runtimes in minutes (log scale) for the different unsupervised word embedding methods (using 100 dimensions)
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reflect that any such claim would probably depend on 
several variables. Performance gains of specific word 
embeddings may as observed in our experiment be due 
to certain system design choices (e.g., the inclusion 
of environmental allergies) and hyperparameter 
optimizations, rather than the choice of an embedding 
algorithm itself [98]. Furthermore, dataset domain 
specifics and size are known to influence results to a large 
degree, and the dataset we use here is not particularly 
large [51, 96]. However, we believe the experiments 
and the results are encouraging to the degree that 
they validate our proposal for using optimized word 
embedding models to support the construction of 
dictionaries of specialized clinical vocabulary for 
implementation in various downstream NLP tasks. 

Our empirical experiences with devising a CDSS 
implementing the proposed combined method to detect 
and classify patient allergies in EHRs show great usability 
at the level of precision achieved by fastText CBOW 
and our own probabilistic approach [68]. However, all 
of the methods benefit feature engineering to the extent 
that we believe they represent useful alternatives. The 
comparably higher training time for StarSpace, though, 
is a disadvantage and may limit practical applicability. 
Based on the findings, we suggest trying out different 
methods to determine which ones yield the best results 
in a particular context. As evidenced by earlier research 
[50], we also anticipate that even greater precision may 
be achieved by combining different word embeddings, as 
such furthering the case for cross-method usability.

Evaluation on the task of classification
Table 4 displays the average classification results for the 
evaluated methods. All methods perform better than 
random, suggesting that they contain valid classification 
information.

As Fig.  4 illustrates, according to Zipf ’s law [76], 
there are only very few irrelevant features in text 
categorization. This leads to the presumption that a good 
classifier should be able to combine many features, and 
that aggressive feature selection may result in a loss of 
information. Because we use a complex feature set (i.e., 
natural language), this should benefit neural networks 
that are able to cope with large feature spaces. As 
observed, plain 1D-CNN (68.6 ± 8.6) yielded the highest 
F-measure score of all the purely supervised methods. 
When also combined with pre-trained word embeddings, 
we were able to achieve even higher scores for 1D-CNN. 
The highest F-measure score (74.1 ± 1.5) was achieved by 
using the 300 dimensions fastText CBOW model, which 
also was the top performer in the word similarity task. 
Interestingly, a qualitative analysis reveals several more 
such scoring correlations. For example, Word2Vec Skip-
gram also scores high on both tasks, while Word2vec 
CBOW and fastText Skip-gram scores relatively lower 
on both. Recall that in the case of fastText Skip-gram, 
the word embeddings for the environmental allergies 
category contained several out of place words. We 
take this as an indication that careful manual analysis 
of word embeddings may potentially also provide 
information of actual prediction performance. Another 
expected observation is that the increasing accuracy of 
pre-trained word embeddings that comes with using 
more dimensions seems to impact classification results 
positively. Given the small size (e.g., few examples, but 
high variance) and complex nature of the dataset (e.g., 
multiple misspellings), it is also likely that fastText 
CBOW scores extra on the classification task because of 

Table 4 Average classification results for the evaluated methods. 
Results are presented in the format of mean percentage 
value ± SD at 95% confidence interval

Method Precision Recall F‑measure

Naïve Bayes 66.4 ± 1.7 70.5 ± 2.0 68.4 ± 1.6

Logistic regression 69.0 ± 1.8 59.6 ± 1.9 64.0 ± 1.5

Decision tree 64.7 ± 1.8 61.2 ± 2.4 62.9 ± 1.7

Random forest 62.8 ± 2.0 54.8 ± 2.0 58.5 ± 1.7

kNN 53.5 ± 3.2 29.1 ± 2.1 37.7 ± 2.3

SVM 66.7 ± 2.0 53.7 ± 2.0 59.5 ± 1.6

MLP 62.1 ± 2.1 61.9 ± 2.3 62.0 ± 1.6

StarSpace 62.4 ± 1.9 63.8 ± 2.2 63.5 ± 2.0

LSTM 63.9 ± 1.1 64.3 ± 1.3 64.1 ± 1.0

1D‑CNN 69.3 ± 1.8 67.9 ± 1.6 68.6 ± 1.7

LSTM CNN 62.3 ± 1.9 62.7 ± 1.4 62.3 ± 1.7

Bi‑LSTM 65.9 ± 1.5 65.2 ± 1.5 65.6 ± 1.5

Bi‑LSTM CNN 64.1 ± 1.4 64.0 ± 1.4 64.1 ± 1.4

Bi‑LSTM Attention 66.5 ± 2.1 67.2 ± 1.5 66.7 ± 1.9

GRU 65.5 ± 1.5 65.1 ± 1.5 65.3 ± 1.5

CNN 1D + fastText Skip‑Gram 100 
dims

60.7 ± 1.7 59.1 ± 1.3 59.9 ± 1.5

CNN 1D + fastText Skip‑Gram 300 
dims

63.3 ± 1.3 63.1 ± 1.4 63.2 ± 1.3

CNN 1D + fastText CBOW 100 dims 66.1 ± 1.3 63.9 ± 1.3 65.7 ± 1.2

CNN 1D + fastText CBOW 300 dims 74.2 ± 1.5 74.1 ± 1.5 74.1 ± 1.5
CNN 1D + Word2Vec Skip‑Gram 
100 dims

63.5 ± 1.9 61.5 ± 1.4 62.4 ± 1.7

CNN 1D + Word2Vec Skip‑Gram 
300 dims

70.7 ± 1.5 69.5 ± 1.4 70.1 ± 1.3

CNN 1D + Word2Vec CBOW 100 
dims

61.7 ± 2.2 57.5 ± 1.0 59.2 ± 1.5

CNN 1D + Word2Vec CBOW 300 
dims

66.1 ± 1.7 64.1 ± 1.3 64.5 ± 1.5

CNN 1D + Glove 100 dims 67.2 ± 1.3 67.2 ± 1.2 67.2 ± 1.2

CNN 1D + Glove 300 dims 71.3 ± 1.1 69.3 ± 1.3 70.3 ± 1.2

CNN 1D + StarSpace 100 dims 64.6 ± 1.5 63.0 ± 1.5 63.7 ± 1.4

CNN 1D + StarSpace 300 dims 70 ± 1.6 68.1 ± 1.6 68.9 ± 1.6

Our combined method 92.6 ± 4.2 97.9 ± 2.4 95.1 ± 2.5
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its ability to enrich word vectors with sub-word character 
n-grams [44]. Also note that not all of the 33 pre-trained 
word embedding models (all produced on our in-domain 
medical corpora, but with different hyperparameter 
settings) we experimented with benefitted recall and 
precision. We conclude that using pre-trained word 
embedding can help classification results on this dataset 
in some cases, but that results are highly sensitive to the 
methods and hyperparameters used for producing the 
actual word embeddings [98].

Another notable observation is that although the per-
formance difference is not large, the Recurrent neural 
network (RNN) based methods we evaluated (LSTM 
and GRU variants) scored somewhat lower than the 
plain 1D-CNN variant. While the performance of GRU 
on modelling of many phenomena has been found to be 
similar to that of LSTM [93], GRUs have, however, as 
reflected by the results here (plain LSTM versus GRU) 
been shown to exhibit better performance on smaller 
datasets [99]. Combining LSTM with CNN, with the 
idea being that the CNN is used as a feature extractor 
for the LSTM, did not yield improvements over their 
plain LSTM counterparts on this dataset. However, con-
trary to Kim et al.’s [100] character-level implementation, 
which achieved results on par with existing state-of-the-
art results on the English Penn Treebank dataset, our 
sequence implementation does not use a highway net-
work and is only at word level. By adding an attention 
mechanism layer on top of the Bi-LSTM, we were able to 
increase the performance somewhat, but not enough to 
catch up with the score of the plain 1D-CNN. Further-
more, somewhat depending on exact model configura-
tions, the plain 1D-CNN roughly completed learning five 
times faster than its plain LSTM (CuDNNLSTM) and 
GRU (CuDNNGRU) counterparts. We thus conclude 
that 1D-CNN is a strong performer on this particular 
dataset. This may be due to the fact that word order is of 
less importance than feature detection (e.g., searching for 
terms) when classifying this dataset, where CNNs have 
been shown to work particularly well for the latter [101].

Interestingly, among the conventional methods we 
evaluate, Naïve Bayes and Logistic regression score rela-
tively high with F-measures of respectively 68.4 ± 1.6 and 
64.0 ± 1.5. As most text classification problems are lin-
early solvable problems [102], it is reasonable to assume 
that these classifiers gain from their simple linear struc-
ture in this experiment. Unlike nonlinear models (e.g., 
neural networks), this may prevent fitting of training 
data too closely, which has been shown to benefit perfor-
mance in many complex real-world situations [103].

Furthermore, the dataset we employ has a small 
sample size of only 430 EHRs (however, each EHR has 
a large set of documents). Because of its oversimplified 

assumptions, Naive Bayes generally requires a small 
amount of training data for model estimation [104], 
much less than its more complex neural network-
based competitors [105]. Decision tree-based methods 
are used extensively in medicine due to their superior 
interpretability, which allow the immediate extraction of 
the decision process [106, 107]. However, the variants we 
implement here are only able to achieve F-measure scores 
of respectively 62.9 ± 1.7 (J48) and 58.3 ± 1.7 (Random 
Forest) on the dataset. The relatively weak recall 
and precision performances of the decision tree based 
algorithms are corroborated by previous research where they 
have been found to be outperformed in accuracy by other, less-
interpretable machine learning models [106]. Decision 
tree-based algorithms such as the J48 algorithm generally 
implements a pruning technique to build a tree. While 
pruning may simplify the tree, and thus potentially benefit 
interpretation of results and help to generalize to new samples 
by removing overfitting data, it may also lead to poor accuracy 
in predictions. Note also that SVM, which Wang et al. [20] 
recently found to be the most frequently applied machine 
learning method in clinical information extraction 
applications, is not a particularly strong contender in this 
context. We also observe that kNN fails catastrophically on the 
dataset with a score of 37.7 ± 2.3. Generally speaking, however, 
the relatively good scores of several of the conventional 
methods (versus the more complex neural network based 
ones), coupled with their simplicity, interpretability, and 
small demands for technical infrastructure may explain why 
these have been and still are considered attractive choices 
in healthcare [20].

Finally, our combined method, using both unsupervised 
and supervised machine learning methods in combination 
with rules, outperforms all the other methods, with a pre-
cision score of 92.6 ± 4.2, recall score of 97.9 ± 2.4, and an 
F-measure score of 95.1 ± 2.5.

Discussion
An argument for using combined methods to obtain better 
predictions for clinical NLP
Both traditional rule-based and machine learning-based 
NLP systems have drawbacks that limit the feasibility of 
such systems in healthcare. Combined methods, such 
as the one we present here, may be perceived as a syn-
thesis that endeavors to leverage the strengths of several 
methods while avoiding their weak spots. As previously 
described, ensemble and hybrid approaches for NLP 
have won machine learning competitions because they 
are able to produce results with high accuracy. Our com-
bined method has documented high performance, and 
has also demonstrated its value in clinical practice [1, 
68]. By combining multiple high-performing algorithms, 
we are able to obtain better predictive performance than 
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could be obtained from any of the constituent algorithms 
alone. The combined method implements unsupervised 
and supervised machine learning for clinical concept 
building and pattern recognition, and deterministic rules 
for fine-grained control.

As demonstrated by the results, unsupervised word 
representations are potentially very useful in NLP tasks 
both as inputs to supervised learning algorithms and as 
extra word features in NLP [108], but current approaches 
suffer various shortcomings. Using a single point in a vec-
tor space to represent a word simplifies a concept or issue 
so that its nuance and complexity are lost, or important 
details are overlooked, limiting the usefulness for down-
stream NLP-tasks. While excelling at detecting complex 
patterns in text corpora, machine learning still lack the 
contextual and temporal awareness of humans. EHRs 
basically contains longitudinal, patient-based reporting 
of their clinical experience, and as such for successful 
classification purposes they must be analyzed in multiple 
dimensions (e.g., time and clinical context) and at multi-
ple levels (e.g., document, paragraph, sentence, and word 
window). Although a clinical event such as patient allergy 
(the classification task here) described in the recent nar-
rative of a patient may be of major importance for the 
correct classification of allergy status, it may be mislead-
ing in the case of another patient where it was mentioned 
10  years ago but recently no longer applies. Modelling 
such temporal data has been shown to be extremely dif-
ficult for machine learning algorithms [85]. As observed 
in our own work, without the guidance of domain 
knowledge derived rules, learning algorithms may reject 
ambiguous domain relevant patterns as these in favor of 
“biased” but stronger patterns such as for example the 
name of a certain doctor who has treated many allergy 
patients. Detected patterns that cannot be related to 
domain knowledge are, however, usually of little rel-
evance because they hold limited explanatory power 
for health professionals and patients. The use of domain 
knowledge derived rules on top of machine learning 
allows for fine-grained control of the detection of both 
contextual and domain relevant patterns, as it gives the 
ability to model complex relevant and dependent rela-
tionships. Rules makes it possible to operate at the EHR 
integral level, while simultaneously also take into consid-
eration document, paragraph, sentence, and even word 
window levels of understanding to better model e.g. tem-
poral events.

One can argue that given enough labeled data, nonlin-
ear models (e.g., the neural networks used here) should 
be able to learn the fine-grained dependencies and pat-
terns embodied by our method’s rules. However, large-
sized labeled medical datasets (i.e., narrative focused) 
with the volume of samples needed to fine-tune data 

hungry neural networks for NLP are hard to come by. 
Due to medical domain experts being a scarce resource, 
the cost of obtaining enough labeled clinical data effec-
tively renders the approach out of reach for most health-
care organizations. The process of creating the relatively 
small labeled dataset used in this work serves as an exam-
ple in this respect. While the dataset only contains the 
EHRs of 430 patients (however, each EHR has a large set 
of documents), two health professionals still used about 
3  months to analyze it for relevant allergy information. 
Furthermore, because of privacy issues, existing labeled 
medical datasets are mostly restricted to research pur-
poses, and can seldom be shared across healthcare insti-
tutions. There are also interpretability issues with the 
results deep neural networks produce (i.e., “the black 
box”), and currently only a few healthcare institutions 
have the knowledge or technical infrastructure necessary 
for training such complex machine learning algorithms.

The combined method for clinical NLP that we have 
described also has other advantages, like potentially 
being language independent, automatically updatable 
(meaning minimum manual maintenance is necessary to 
build vocabularies and concepts), and able to cover mis-
spellings, abbreviations, and acronyms. Finally, unlike a 
“black-box” type approach, by pushing raw data into an 
open processing pipeline that gradually refines the data, 
data transformations are made transparent and predic-
tions interpretable. Input and output values from step to 
step may be monitored, traced, and judged, making the 
method highly suitable for implementation in for exam-
ple CDSSs in healthcare [1, 68]. Such systems should 
ideally not only support clinical decisions; they should 
like human beings also be able to explain their decision 
making.

In conclusion, we believe the arguments put forth 
reflect the limits of pure machine learning-based 
approaches, including semi-supervised ones, for clinical 
NLP per se. In this respect, our combined method may 
be seen as a pragmatic attempt at using machine learning 
to augment traditional rule-based clinical NLP-systems 
that excel at accuracy and therefore are still mostly used. 
Our work leaves us with the insight that machine learn-
ing-based methods can play important roles in the con-
text of clinical NLP, but that practical success to a large 
degree still depends on domain knowledge to derive pre-
cise vocabulary and rules.

Limitations
A limitation of this research was that the EHR derived 
dataset we used has some weaknesses. First, the size of 
the dataset is only 1.2 billion tokens. Several of the neural 
network-based methods we evaluated would expectedly 
be favored by adding even more data. Pennington in their 
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study for example, used both datasets containing 1, 1.6, 
4.3, 6, and 42 billion tokens [43].

More data would also be a prerequisite for training 
large-scale Transformer-based (e.g., GPT and BERT) 
models [46, 47]. While we plan to further examine 
the effect on word embedding quality by training on 
larger medical datasets in the future, restrictions 
and regulations apply for accessing medical datasets 
that prevented us from doing so here [48]. Second, 
because the dataset is non-public, the results are not 
easily reproducible. Whereas benchmarking on public 
datasets is of interest to future research, this study is 
part of a larger research project in a Norwegian hos-
pital where we have a particular focus on structuring 
the clinical (unstructured) Norwegian narrative by 
using automated methods. As described in the Back-
ground section, the medical language possesses char-
acteristic features not reproduced in public datasets 
derived from other domains. As no readily available 
anonymized medical datasets exist in Norwegian, we 
had to construct our own dataset. The effective use of 
machine learning techniques depends on the charac-
teristics of specific datasets [109]. Thus, an advantage 
is that our results have practical value and reliabil-
ity for healthcare in the sense they are based on data 
derived from an empirical healthcare setting.

Our emphasis here was first on dissemination of 
the combined method, and not so much on achieving 
state-of-the-art results. As such, the experiments we 
performed were designed for simple setup and fair com-
parisons. Although we strived to achieve good perform-
ing hyperparameter configurations for all the included 
methods, it was impossible to fully traverse hyperpa-
rameter space for every method and variant. Therefore, 
unbeknown to us, better configurations may exist. How-
ever, the overall results are in-line with previous findings 
confirming the superior performance of combined meth-
ods (i.e., ensembles or hybrids) over other constituent 
algorithms alone [18].

A limitation with the combined method is that word 
embeddings trained in a particular healthcare organi-
zation setting cannot easily be transferred to other 
healthcare organizations. As discovered during our 
work, such models may contain sensitive information 
such as names, social security numbers, and phone 
numbers related to e.g. patients or health profession-
als. Currently, to our knowledge, no automated and 
reliable method for anonymizing VSMs exists. There-
fore, besides the already described benefits of training 
word embeddings in the local context, for this reason 
it becomes imperative.

Finally, the combined method does not yet support 
linking of semi-supervised produced vocabulary with 

standardized medical terminologies such as SNOMED 
and ICD. We believe developing such mechanisms 
should be a prioritized next step with the system, 
as it would likely further complement the vocabu-
lary building process and help further bridge the gap 
between structured data and unstructured informa-
tion in EHRs.

Conclusions
We have presented our novel combined method for 
clinical NLP, which implements unsupervised learning 
of word embeddings, semi-supervised learning for sim-
plified and accelerated clinical vocabulary and concept 
building, and deterministic rules for fine-grained control 
of information extraction. The clinical language is auto-
matically learnt with minimal manual feature engineer-
ing and tagging required from clinical experts to build 
vocabulary, concepts, and rules that supports a variety 
of clinical NLP downstream tasks. Effectively, the pro-
cess renders the time-consuming manual annotation of 
the narrative obsolete. Employing a real-life EHR-derived 
dataset, we also evaluated various word embedding meth-
ods on the task of word similarity. We concluded that all 
of the produced models benefit feature engineering, and 
that they are capable of serving as the basis for further 
semi-supervised building of specialized clinical vocabu-
laries that may be implemented for clinical NLP. The 
combined method’s performance was further evaluated 
on the task of classification against a range of common 
supervised learning algorithms, and achieved state-of-
the-art performance. Unlike a “black-box” type approach, 
raw data is pushed into an open processing pipeline that 
gradually refines the data. Data transformations are thus 
made transparent and predictions interpretable, which 
is imperative for healthcare. The combined method also 
has other advantages, like potentially being language 
independent, demanding few domain resources for main-
tenance, and able to cover misspellings, abbreviations, 
and acronyms. Based on the promising results we have 
achieved by combining unsupervised, supervised, and 
rule-based algorithms, we suggest more research should 
be aimed at exploiting the inherent synergies between 
these paradigms for clinical NLP. Plans for implementing 
the combined method in more advanced CDSS to aggre-
gate information for diagnosis purposes in the hospital 
are now being discussed.
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