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Abstract 

Background  Accurately predicting the risk of atherosclerotic cardiovascular disease (ASCVD) is crucial for imple-
menting individualized prevention strategies and improving patient outcomes. Our objective is to develop machine 
learning (ML)-based models for predicting ASCVD risk in a prospective Chinese population and compare their perfor-
mance with conventional regression models.

Methods  A hybrid dataset consisting of 551 features was used, including 98 demographic, behavioral, and psy-
chological features, 444 Electrocardiograph (ECG) features, and 9 Echocardiography (Echo) features. Seven machine 
learning (ML)-based models were trained, validated, and tested after selecting the 30 most informative features. We 
compared the discrimination, calibration, net benefit, and net reclassification improvement (NRI) of the ML mod-
els with those of conventional ASCVD risk calculators, such as the Pooled Cohort Equations (PCE) and Prediction 
for ASCVD Risk in China (China-PAR).

Results  The study included 9,609 participants (mean age 53.4 ± 10.4 years, 53.7% female), and during a median fol-
low-up of 4.7 years, 431 (4.5%) participants developed ASCVD. In the testing set, the final ML-based ANN model out-
performed PCE, China-PAR, recalibrated PCE, and recalibrated China-PAR in predicting ASCVD. This was demonstrated 
by the model’s higher area under the curve (AUC) of 0.800, compared to 0.777, 0.780, 0.779, and 0.779 for the other 
models, respectively. Additionally, the model had a lower Hosmer–Lemeshow χ2 of 9.1, compared to 37.3, 67.6, 
126.6, and 18.6 for the other models. The net benefit at a threshold of 5% was also higher for the ML-based ANN 
model at 0.017, compared to 0.016, 0.013, 0.017, and 0.016 for the other models, respectively. Furthermore, the NRI 
was 0.089 for the ML-based ANN model, while it was 0.355, 0.098, and 0.088 for PCE, China-PAR, and recalibrated PCE, 
respectively.

Conclusions  Compared to conventional regression ASCVD risk calculators, such as PCE and China-PAR, the ANN 
prediction model may help optimize identification of individuals at heightened cardiovascular risk by flexibly incor-
porating a wider range of potential predictors. The findings may help guide clinical decision-making and ultimately 
contribute to ASCVD prevention and management.
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Introduction
Atherosclerotic cardiovascular disease (ASCVD), defined 
as nonfatal acute myocardial infarction, coronary heart 
disease (CHD) death, and stroke, has become the lead-
ing cause of morbidity and mortality worldwide [1]. In 
China, cardiovascular disease (CVD) accounts for 38.9% 
of deaths among females and 35.5% of deaths among 
males [2], and approximately 61% of these deaths were 
attributed to ASCVD [3]. Identification of high-risk indi-
viduals is critical for the primary prevention of ASCVD. 
However, personalized assessment of cardiovascular risk 
remains a challenge in clinical practice. Current medi-
cal guidelines recommend the use of risk calculator to 
perform risk assessment and guide decision-making in 
ASCVD management [4–7]. The 2017 American Col-
lege of Cardiology/American Heart Association (ACC/
AHA) guideline highlighted the use of the pooled cohort 
equations (PCE) to determine 10-year ASCVD risk [5], 
which present a widely used guideline-endorsed risk cal-
culator in clinical setting. The PCE were derived primar-
ily from non-Hispanic Whites and African-American 
populations, over- and underestimation of risk have been 
reported for specific population cohorts [8–11]. Recently, 
the Prediction for ASCVD Risk in China (China-PAR) 
equations were published as a risk prediction calcula-
tor designed for Chinese adults and has been approved 
by the Chinese guidelines in 2019 [7], while more evi-
dence is warranted to confirm its generality for different 
population.

Notably, recent evidence suggested that besides tra-
ditional risk factors of ASCVD (age, sex, smoking, etc.), 
parameters from electrocardiography (ECG) and echo-
cardiography (Echo) are also helpful in predicting the risk 
of CVD by detection of subclinical impairment before 
cardiac symptoms appear [12]. Abnormality in P wave, 
PR intervals, and left ventricular ejection fraction (LVEF) 
has been demonstrated to be associated with adverse car-
diovascular outcomes [12–17]. However, these massive 
amounts of parameters reflecting the electrophysiology, 
structure, and function of the heart were unlikely to be 
included in traditional prediction models. In this context, 
developing a trainable model for different populations 
may provide novel insights for the prevention of ASCVD.

Machine learning (ML) offers a novel approach for 
individualized risk assessment, which could incorpo-
rate variables that may not be considered in traditional 
regression algorithms to develop risk prediction model 
by exploring the multidimensional and nonlinear rela-
tionship between potential variables [18]. Many studies 

have applied machine learning to the evaluation of vari-
ous disease and with good results [19–21]. Although 
there has been a rapid expansion of ML being applied to 
cardiology [22–24], few direct comparisons have been 
made between ML and traditional ASCVD models [25, 
26], none of these studies have included the Chinese 
population.

The present study aimed to establish ML-based risk 
prediction models from the dataset that integrates demo-
graphic, behavioral, psychological, Electrocardiograph 
and Echocardiography variables to predict ASCVD in 
a community-based general population in Northeast 
China. Meanwhile, we compared the performance of ML 
algorithms to traditional Cox regression models (PCE 
and China-PAR) to evaluate which method provided 
superior predictive performance.

Methods
Study population
The Northeast China Rural Cardiovascular Health Study 
(NCRCHS) is a multistage, stratified, random cluster 
sampling prospective population cohort of 11,956 par-
ticipants aged ≥ 35 years, recruited between Jan 9, 2013, 
to Aug 23, 2013, from rural residents living in the Liaon-
ing Province, China. Demographics, physical status and 
vitals, medical histories, echocardiography data, ECG 
exams, and laboratory data were collected. Consistent 
with the target population of contemporary risk predic-
tion scores, participants were included in case of age 
between 35 and 85 years, no history of CVD. Of 11,956 
participants assessed for eligibility, 10,349 (86.6%) par-
ticipants completed at least one follow-up visit.

Clinical demographics
At baseline face-to-face interviews, detailed informa-
tion included Clinical demographics (sex, age, mar-
riage, education, nation, etc.) as well as lifestyle factors 
and (family) medical histories (heart disease, stroke, 
diabetes, hypertension, etc.) were collected using 
standardized questionnaires by trained staff (Supple-
mentary file 1). Weight (the nearest 0.1 kg), height and 
waist circumference (the nearest 0.1 cm) of participants 
were measured. The body mass index (BMI) was calcu-
lated as weight in kilograms divided by height in meters 
squared. Blood pressure (BP) was measured using a 
standardized automatic electronic sphygmomanometer 
(HEM-907; Omron, Tokyo, Japan) after 5  min of rest 
for three times, and the mean values of systolic/dias-
tolic blood pressure were calculated. The questionnaire 
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was checked by trained staff at the end of each par-
ticipant’s follow-up to ensure that the data collected 
were complete and accurate. The paper questionnaire 
was manually double-entered and subsequently saved. 
Blood samples from all participants were collected in 
the morning after > 12 h of overnight fasting.

Hypertension was defined as a mean systolic blood 
pressure > 140  mmHg and/or diastolic blood pres-
sure > 90 mmHg or taking antihypertensive medications. 
Diabetes mellitus was defined by medical history and/or 
use of insulin or oral hypoglycemic agents. Participants 
were considered to be current smokers/drinkers if they 
had smoked/drank at any point in the 3 months prior to 
the date of the ECG examination.

Electrocardiograph and Echocardiography measurement
Standard 12-lead ECGs (MAC 5500, GE Healthcare, 
Little Chalfont, UK) were recorded in the resting supine 
position at baseline and were analyzed automatically 
with the MUSE Cardiology Information System, version 
7.0.0 (GE Marquette™ 12SL™ ECG analysis program) 
[27]. Total of 645 parameters from the unprocessed 
digital ECG data were disposed by the GE system. 201 
parameters (9 not lead-specific and 192[16*12] lead-
specific) were temporally stored that including the rela-
tive coordinate points (the start point of the p-wave, 
etc.), and calculated values (QTc Framingham and QTc 
Fridercia, etc.) were excluded. The remaining 444 vari-
ables were used for analysis.

Transthoracic doppler echocardiography (Vivid; GE 
Healthcare, Connecticut, USA) constituted M-mode, two-
dimensional, spectral, and color Doppler formats were oper-
ated by the sonographers with a 3.0-MHz transducer. Three 
professional doctors performed readings and analysis of the 
echocardiogram and had the option to consult two addi-
tional specialists if questions or uncertainties arose. Total of 
9 echocardiographic parameters were used for analysis.

Outcome assessment
Primary endpoints include stroke and CHD. Health sta-
tus, hospital admissions, outpatient diagnosis, and deaths 
of each participant were followed up from 2015 to 2018. 
Two physicians reviewed medical records independently, 
categorized the events and specified the event dates. 
Stroke was defined as a sudden onset of focal neurologi-
cal dysfunction lasting 24  h or until death, or less than 
24 h but with a clinically relevant brain lesion. CHD was 
defined to include any myocardial infarction (MI), resus-
citated cardiac arrest, definite angina, probable angina 
followed by revascularization, and CHD death.

Machine learning
Feature selection
In this study, a total of 635 candidate variables were col-
lected and 84 variables with a missing ratio greater than 
10% were excluded. Missing values were imputed using 
the Multiple imputation method when missingness 
was < 10%. The filtered dataset included 551 variables: 98 

Fig. 1  Flow chart of inclusion of participants for final analyses
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demographics, behavioral and psychological variables (age, 
sex, BP, BMI, lifestyle, biochemical test, etc.), 444 ECG 
parameters and 9 Echo parameters. The detailed descrip-
tions of features are available in Table S1. Feature selection 
was implemented using an approach known as ‘Recursive 
Feature Elimination’ (RFE) to reduce the feature dimension 
and find out the most discriminative information by select-
ing the most relevant variables and removing redundant 
variables. During the recursion process, an optimal subset 
of candidates is generated by eliminating the least impor-
tant features from the complete feature set (Figure S1).

Feature importance
To determine the major predictors of ASCVD in our study 
population, the importance of each permutation feature 
was judged from the final model. Permutation feature 
importance weighs the importance of each feature by cal-
culating the increase in the prediction error of the model 
after permuting its values. A feature is considered impor-
tant if removing its values decreases the discriminative 
capability of the model, as the model depends significantly 
on that feature for prediction. A feature is immaterial if 
removing its values but the mean area under the receiver 
operating characteristic curve (AUC) remains the same, as 
the model ignores the feature for prediction in this case.

Model building and testing
The datasets were randomized into training (80%) and 
testing sets (20%). Model development included trials of 
several ML classifiers such as Artificial Neural Network 
(ANN), Random Forest (RF), Gradient Boosting Machine 
(GBM), K Nearest Neighbors (KNN), Adaptive Boosting 
(AdaBoost), Support Vector Machine (SVM), Categorical 
Boosting (CatBoost). Models were trained using optimal 
subset and evaluated with stratified 10-fold cross-valida-
tion on the training set and we used a grid search approach 
to determine the appropriate hyperparameters of each ML 
model [9, 28] (Table S2). To solve the class imbalance in the 
datasets, we assigned more weights to the minority class 
sample to increase the misclassification cost of minority 
class samples. We then evaluated the performance of PCE 
(White), China-PAR, Recalibrated PCE (White), Recali-
brated China-PAR and ML-based risk prediction model 
in terms of discrimination, calibration, net benefit, and net 
reclassification improvement (NRI) (Table S3).

Statistical analysis
Categorical variables are presented as count (%), and con-
tinuous variables are reported as mean (± SD). Brier score 
and Matthews correlation coefficient (MCC) were used 
to assessing the overall performance [29, 30]. The calibra-
tion of the models was tested with Hosmer–Lemeshow 

χ2 statistic [31]. Pairwise comparisons were performed 
between all predictive models using the DeLong test [32]. 
Decision-curve analysis (DCA) was used to quantify the 
net benefit of each risk prediction model [33]. Statistical 
significance was defined as two-tailed P < 0.05. All analy-
ses were performed with R version 4.1.2.

Results
Study population
A total of 9,609 participants (mean [SD] age: 53.4 [10.4] 
years; male [46.3%]) with digital ECG and Echo free 
of CVDs at baseline were included in the final cohort 
(Fig. 1). During a median of 4.7 (IQR, 4.4–4.9) years, 431 

Table 1  Baseline clinical characteristics

Student’s t-test or Mann–Whitney U test for continuous variables, Chi-squared or 
Fisher’s exact test for categorical variables

Abbreviations: BMI Body Mass Index, SBP Systolic Blood Pressure, DBP Diastolic 
Blood Pressure, GLU glucose, eGFR Estimated Glomerular Filtration Rate, CR 
creatinine, WBC White Blood Cell, UA Uric Acid, BUN Blood Urea Nitrogen, 
AST Aspartate aminotransferase, LDL low-density lipoprotein, HDL high-density 
lipoprotein

Characteristics Total
(n = 9609)

ASCVD
(n = 431)

Age at enrollment (year)
[mean, ± SD]

53.4 (± 10.4) 62.4 (± 9.2)

Male gender (%) 4453 (46.3%) 244 (56.6%)

BMI (kg/m2)
[mean, ± SD]

24.8 ± 3.7 25.1 ± 3.6

SBP (mmHg)
[mean, ± SD]

141.8 ± 23.3 160.2 ± 27.6

DBP (mmHg)
[mean, ± SD]

82.1 ± 11.7 87.6 ± 14.6

GLU (mmol/L)
[mean, ± SD]

5.9 ± 1.6 6.22 ± 1.9

eGFR (mL/min/1.73m2)
[mean, ± SD]

94.0 ± 15.1 84.7 ± 15.2

CR (μmol/L)
[mean, ± SD]

71.1 ± 18.3 77.6 ± 39.5

WBC (109/L)
[mean, ± SD]

6.2 ± 1.9 6.3 ± 1.9

UA (μmol/L)
[mean, ± SD]

287.5 ± 82.7 306.8 ± 88.0

BUN (mmol/L)
[mean, ± SD]

5.6 ± 2.2 5.9 ± 1.7

AST (U/L)
[mean, ± SD]

22.3 ± 12.0 24.0 ± 15.3

LDL (mmol/L)
[mean, ± SD]

2.9 ± 0.8 3.2 ± 0.9

HDL (mmol/L)
[mean, ± SD]

1.4 ± 0.4 1.4 ± 0.4

Ventricular rate (/min)
[mean, ± SD]

71.9 ± 12.5 73.1 ± 13.7

Atrial rate (/min)
[mean, ± SD]

72.2 ± 15.1 74.6 ± 23.1

Current smoker (%) 3417 (35.6%) 185 (42.9%)

Current drinker (%) 2214 (23.0%) 105 (24.4%)
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(4.5%) participants developed ASCVD (Table  1). 7,688 
participants were included in the training cohort and 
1,921 in the test cohort.

Performance of traditional ASCVD prediction models
Figure  2 depicted the discrimination and calibration of 
the PCE (White) and China-PAR models before and after 

recalibration. All models showed moderate discrimina-
tion, and the highest discrimination was showed in the 
China-PAR model with an AUC of 0.780. However, all 
models exhibited poor calibration with a Hosmer–Leme-
show χ2 value greater than 18 (p < 0.05). The Brier score 
was between 0.043 and 0.057 and MCC was between 
0.186 and 0.194 (Table 2).

Fig. 2  Discrimination and Calibration of Contemporary Prediction Models in Our Cohort. Discrimination and calibration of contemporary prediction 
models in each cohort. A Receiver operating characteristic curve (AUC) analysis for contemporary prediction models. B Hosmer–Lemeshow 
calibration plots of contemporary prediction models. Abbreviations: ReChina-PAR, Recalibrated China-PAR; RePCE, Recalibrated PCE

Table 2  Performance of risk prediction models in the test cohort

Abbreviations: ASCVD atherosclerotic cardiovascular disease, CI confidence interval, MCC Matthews correlation coefficient, AUC​ area under the receiver operating 
characteristic curve, PCE Pooled Cohort Equations, China-PAR Prediction for ASCVD Risk in China, RePCE Recalibrated PCE, ReChina-PAR Recalibrated China-PAR, ANN 
Artificial Neural Network, RF Random Forest, GBM Gradient Boosting Machine, KNN K Nearest Neighbor, Adaboost Adaptive Boosting, SVM Support Vector Machine, 
Catboost Categorical Boosting

Algorithms Overall Discrimination Calibration Clinical 
Usefulness

Brier MCC AUC (95%CI) Hosmer–Lemeshow χ2 (p 
value)

Net 
benefit at 
threshold 
of 5%

PCE (White) 0.045 0.186 0.777 (0.733–0.821) 37.3 (p < 0.01) 0.013

China-PAR 0.043 0.191 0.780 (0.737–0.822) 67.6 (p < 0.001) 0.016

RePCE (White) 0.057 0.194 0.779 (0.734–0.825) 126.6 (p < 0.001) 0.016

ReChina-PAR 0.043 0.193 0.780 (0.737–0.822) 18.6 (p < 0.05) 0.017

ANN 0.041 0.218 0.800 (0.759–0.838) 9.1 (p = 0.33) 0.017

RF 0.042 0.181 0.759 (0.713–0.804) 12.6 (p = 0.13) 0.011

GBM 0.042 0.193 0.774 (0.727–0.820) 12.1 (p = 0.15) 0.013

KNN 0.042 0.175 0.767 (0.723–0.811) 34.7 (p < 0.01) 0.015

Adaboost 0.051 0.163 0.727 (0.679–0.775) 136.4 (p < 0.001) 0.010

SVM 0.043 0.145 0.697 (0.642–0.752) 4.0 (p = 0.86) 0.009

Catboost 0.041 0.206 0.787 (0.745–0.830) 10.2 (p = 0.25) 0.015
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Compared of ML‑based ASCVD and traditional models
Through stepwise model building and RFE algorithm, 
the final ML-based ASCVD models were reduced to 30 
key predictor variables (Table 3). Figure 3 depicted the 
comparison of discrimination and calibration between 
the established ML classifiers. As shown, the ANN 
algorithm outperformed other classifiers and had the 
greatest AUC value and consistency. The AUC value 
of the ANN model was 0.800, which was higher than 
that in the China-PAR and PCE model (p = 0.12, 0.08). 

Calibration of the ANN model showed a significant 
improvement, the Hosmer–Lemeshow χ2 value was 9.1 
(p = 0.33), and the Brier score and MCC of the ANN 
model were respectively 0.041 and 0.216, indicating a 
superior overall performance of the ANN model than 
traditional regression models. Decision Curve Analy-
sis (DCA) demonstrated that ANN model provided a 
greater net benefit within a range of thresholds (Fig. 4). 
When the threshold was 5%, the ANN model had the 
greatest net benefit value of 0.017 among all models 
(Table 2). We also assess the NRI when using ML mod-
els compared to the traditional models, ANN model 
correctly classified more events and more non-events 
than China-PAR, PCE, Recalibrated China-PAR, and 
Recalibrated PCE (NRI: 0.355, 0.089, 0.088, 0.098, all 
p < 0.05) (Table 4).

Variable importance
The leading predictors of the ANN ASCVD model are 
shown in Fig. 5 and a complete table of feature impor-
tance is available in Table  3. Age, SBP, R Area in V2, 
Max R Amplitude, and I.T Area (Full) in V2 were the 
most significant features to predict ASCVD.

Discussion
In a community-based general population which 
included 11,956 adults from Northeast China, we devel-
oped seven ML models based on different algorithms. 
After extensive evaluation, the ANN model was chosen 
as the best model. The ANN model includes 30 predic-
tors which can accurately and efficiently predict 5-year 
ASCVD in individuals with no history of CVD. Com-
pared to the traditional regression models (China-PAR 
and PCE), the ANN model showed higher discrimina-
tion, better calibration, net benefit, and improved NRI in 
predicting ASCVD. Besides, our study provided a rank-
ing of candidate variables by their significance in predict-
ing ASCVD, which may help ASCVD risk stratification 
and management.

Early detection of high-risk individuals is the most 
effective approach to reduce the escalating incidence 
of ASCVD across multiple countries, while significant 
improvements of available prediction models were absent 
[34]. The PCE integrates several cardiovascular risk pre-
dictors to assess an individual’s 10-year risk of ASCVD 
and to guide treatment decisions. Disparities on distri-
bution of cardiovascular risk factors existed between 
Asian and Western populations [35], clinical decisions 
may be influenced by over- or underestimation of risk. 
PCE provided moderate discrimination in the Korean 
KHS cohort, absolute 10-year ASCVD risk was overesti-
mated by 56.5% for men and underestimated by 27.9% for 

Table 3  Predictor variables in ASCVD models

The importance of each feature was quantified using the permutation feature 
importance method which measures the importance of a feature by calculating 
the decrease in the model’s performance (area under the ROC curve) after 
permuting its values. The higher their values, the more important the feature is. 
Features are sorted according to permutation importance

Abbreviations: ANN Artificial Neural Network, SBP Systolic Blood Pressure, CR 
creatinine, eGFR Estimated Glomerular Filtration Rate, GLU glucose, WBC White 
Blood Cell, UA Uric Acid, DBP Diastolic Blood Pressure

Rank ANN-based ASCVD prediction 
model

One minus 
AUC after 
permutations

1 Age 0.6458121

2 SBP 0.7290980

3 V2.R Area 0.7464859

4 V2.Max R Amplitude 0.7522701

5 I.T Area (Full) 0.7565553

6 V2.S Area 0.7570991

7 V4.Max S Amplitude 0.7575463

8 V3.QRS Area 0.7575922

9 CR 0.7578144

10 I.T Duration 0.7582132

11 V6.T Area (Full) 0.7585335

12 V6.T Area 0.7590182

13 eGFR 0.7591497

14 I.T Peak Amplitude 0.7594988

15 GLU 0.7600205

16 V2.Max S Amplitude 0.7602828

17 V3.Max S Amplitude 0.7606117

18 V2.QRS Area 0.7607344

19 V6.Max R Amplitude 0.7615041

20 Peak E Wave Velocity 0.7618305

21 WBC 0.7618512

22 UA 0.7618903

23 I.P Area (Full) 0.7619013

24 aVR.T Area 0.7619031

25 DBP 0.7619409

26 V1.QRS Area 0.7619643

27 V3.S Area 0.7620318

28 I.T Area 0.7622241

29 V2.T Duration 0.7623373

30 V6.QRS Area 0.7628234
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women [8]. In the CHERRY Study in Southeastern China, 
PCE overestimated the risk by 63% in men and underes-
timated the risk by 34% in women [9]. In the “stroke belt” 
of Northern China, Fangshan Cohort Study found PCE 
showed an underestimate of 76.2% for men and 88.2% for 
women with poor calibration [10].

The China-PAR model was derived from multiple con-
temporary Chinese cohorts, and external validation stud-
ies of the model are limited. In the CHERRY study, the 

China-PAR model underestimated by 20% in men and 
40% in women [9]. In the Fangshan Cohort, the China-
PAR model overestimated by 29.4% risk in women [10]. 
When PCE and China-PAR models were applied in our 
cohort, we found that PCE overestimated by 63.8% in 
men and inversely underestimated the risk by 10.3% in 
women. Meanwhile, the China-PAR model underes-
timated the risk by 55.5% in men and 52.4% in women. 
After recalibration, the recalibrated PCE overestimated 

Fig. 3  Discrimination and Calibration of Machine Learning-based ASCVD Models in Test Cohort. Discrimination and calibration of machine 
learning-based ASCVD prediction models in test cohort. A Receiver operating characteristic curve (AUC) analysis for machine learning-based 
ASCVD prediction models. B Hosmer–Lemeshow calibration plots of machine learning-based ASCVD prediction models. Abbreviations: ASCVD, 
Atherosclerotic cardiovascular disease; ANN, Artificial Neural Network; RF, Random Forest; GBM, Gradient Boosting Machine; KNN, K Nearest 
Neighbor; Adaboost, Adaptive Boosting; SVM, Support Vector Machine; Catboost, Categorical Boosting

Fig. 4  Decision Curves for PCE, China-PAR and Machine Learning-based Models. Abbreviations: PCE, Pooled Cohort Equations; ReChina-PAR, 
Recalibrated China-PAR; ANN, Artificial Neural Network; RF, Random Forest; GBM, Gradient Boosting Machine; KNN, K Nearest Neighbor; Adaboost, 
Adaptive Boosting; SVM, Support Vector Machine; Catboost, Categorical Boosting
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the risk by 144.8% in men and 129.9% in women, and the 
recalibrated China-PAR model inversely overestimated 
the risk by 98.3% in men and 64.7% in women. All PCE 
and China-PAR models had poor calibration, despite 
good discrimination. A potential reason for the differ-
ences in diverse Chinese populations is the regional dis-
parity [36]. Residents in Northeast China tend to have a 
diet with high sodium and fat, which leads to the high 
prevalence of ASCVD up to 12.6% in this area [37].

These contemporary ASCVD risk calculators are par-
simonious models based on a limited number of clinical 
risk variables, the potential influence of intricate and hid-
den interactions between weaker predictors may be over-
looked. With the extension of artificial intelligence, ML 
algorithms have emerged as highly effective methods for 
resolving medical prediction puzzles in large-scale data-
sets and to allow guideline-directed management based on 
risk assessment [38]. Same as previous studies [25, 39–41], 

Table 4  Net reclassification improvement (NRI) in the test set

Abbreviations: PCE Pooled Cohort Equations, China-PAR Prediction for ASCVD Risk in China, RePCE Recalibrated PCE, ReChina-PAR Recalibrated China-PAR, ANN Artificial 
Neural Network, RF Random Forest, GBM Gradient Boosting Machine, KNN K Nearest Neighbor, Adaboost Adaptive Boosting, SVM Support Vector Machine, Catboost 
Categorical Boosting; *P < 0.05; **P < 0.01; ***P < 0.001

Ref PCE China-PAR RePCE ReChina-PAR

ANN 0.089 *
(0.0104–0.1667)

0.355 ***
(0.249–0.462)

0.098 **
(0.033–0.162)

0.088 *
(0.017–0.158)

RF 0.005
(-0.094–0.104)

0.332 ***
(0.225–0.440)

0.036 *
(-0.07–0.138)

0.005
(-0.095 0.106)

GBM 0.003
(-0.083–0.089)

0.299 ***
(0.195–0.404)

0.093 *
(0.010–0.176)

0.042
(-0.048–0.133)

KNN -0.150 **
(-0.259–0.041)

0.085 *
(0.008–0.162)

0.034 *
(-0.067–0.134)

-0.003
(-0.105–0.098)

Adaboost -0.312 ***
(-0.414–0.211)

0.160 ***
(0.103–0.217)

-0.333 ***
(-0.395–0.271)

-0.327 ***
(-0.396–0.258)

SVM -0.110
(-0.232–0.0120)

0.189 ***
(0.086–0.293)

-0.087
(-0.180–0.006)

-0.066
(-0.172–0.041)

Catboost 0.017
(-0.069–0.105)

0.264 ***
(0.159–0.369)

0.072
(-0.003–0.147)

0.072
(-0.012–0.157)

Fig. 5  Radar Plot for the Ten Most Important Predictors of ASCVD. As the values of feature importances were spread over a wide range (more orders 
of magnitude), base-10 logarithmic transformation was performed to facilitate plotting
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when compared with conventional models, our ANN-
based ASCVD prediction model exhibited improved pre-
diction performance (Table S4). The AUC of the ANN 
model was + 0.023, + 0.02, + 0.021, + 0.02 compared to 
that of PCE (White), China-PAR, Recalibrated PCE, and 
Recalibrated China-PAR (p = 0.08, 0.12, 0.12, 0.12), while 
calibration was significantly better (HL χ2 = 9.1 vs. 37.3, 
67.6, 126.6, 18.6). In addition, DCA that accounts for the 
influence of false-negative (undertriage) and false-positive 
(overtriage), suggests an increased net clinical benefit with 
use of the ANN model as compared to traditional mod-
els if the ideal risk threshold for medical consultation lies 
between 5 and 10%. NRI also highlight the ability of ANN 
model to augment ASCVD prediction and provide a better 
risk stratification strategy for patients.

The observed incremental gains compared to tra-
ditional methods demonstrate the potential value of 
machine learning algorithms. The major advantage of ML 
algorithms over linear models is their capacity to capture 
the complex underlying interactions of myriad features 
and improve ex-sample predictions [42]. Althought the 
ML algorithms are inherently complex and difficult to 
interpret, ML models remain attractive due to their more 
accurate predictive power and the capacity to assimilate 
and evaluate large amounts of complex healthcare data.

Limitations
Our study has several limitations. First, the ML algorithm 
cannot assess the independent effects of each variable on 
events and may be difficult to identify specific treatments 
to reduce individual risk. However, as the volume of data 
increases, ML algorithms allow for more in-depth pro-
spective studies to identify the causative factors and inter-
action mechanisms. Second, longer follow-up is needed 
considering the chronic, progressive course of ASCVD. 
Third, we excluded 84 variables with > 10% missing data 
that might have predictive value, and the imputation of 
missing data might bias the analysis. However, the imputa-
tion by Multiple Imputation (MI) is known to be a precise 
method for imputation. Fourth, external validation studies 
are required to demonstrate the accuracy of the model’s 
predictions in diverse populations. Ultimately, the models 
were established using the initial follow-up blood pressure 
and glucose, but it may have changed during the follow-up 
period and this was not taken into account in the model.

Conclusion
In this contemporary cohort of Northeast China, we 
observed that the PCE and China-PAR models provided 
adequate discrimination but poor calibration in pre-
dicting 5-year ASCVD risk. However, the ANN-based 
model incorporating 30 clinical variables outperformed 
PCE and China-PAR, even after recalibration. Our study 

highlights the limitations of traditional risk prediction 
models for ASCVD and demonstrates the potential of 
machine learning algorithms in improving risk prediction 
accuracy. Further studies are required to demonstrate the 
benefits of ML algorithms and to enhance the clinician’s 
triage decision making.
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