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Abstract
Introduction Esophageal cancer (EC) is a significant global health problem, with an estimated 7th highest incidence 
and 6th highest mortality rate. Timely diagnosis and treatment are critical for improving patients’ outcomes, as over 
40% of patients with EC are diagnosed after metastasis. Recent advances in machine learning (ML) techniques, 
particularly in computer vision, have demonstrated promising applications in medical image processing, assisting 
clinicians in making more accurate and faster diagnostic decisions. Given the significance of early detection of EC, this 
systematic review aims to summarize and discuss the current state of research on ML-based methods for the early 
detection of EC.

Methods We conducted a comprehensive systematic search of five databases (PubMed, Scopus, Web of Science, 
Wiley, and IEEE) using search terms such as “ML”, “Deep Learning (DL (“, “Neural Networks (NN)”, “Esophagus”, “EC” and 
“Early Detection”. After applying inclusion and exclusion criteria, 31 articles were retained for full review.

Results The results of this review highlight the potential of ML-based methods in the early detection of EC. The 
average accuracy of the reviewed methods in the analysis of endoscopic and computed tomography (CT (images of 
the esophagus was over 89%, indicating a high impact on early detection of EC. Additionally, the highest percentage 
of clinical images used in the early detection of EC with the use of ML was related to white light imaging (WLI) 
images. Among all ML techniques, methods based on convolutional neural networks (CNN) achieved higher accuracy 
and sensitivity in the early detection of EC compared to other methods.

Conclusion Our findings suggest that ML methods may improve accuracy in the early detection of EC, potentially 
supporting radiologists, endoscopists, and pathologists in diagnosis and treatment planning. However, the current 
literature is limited, and more studies are needed to investigate the clinical applications of these methods in early 
detection of EC. Furthermore, many studies suffer from class imbalance and biases, highlighting the need for 
validation of detection algorithms across organizations in longitudinal studies.
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Background
Esophageal cancer (EC) is a malignant neoplasm arising 
from the esophagus tissues and is classified into two most 
common forms: esophageal adenocarcinoma (EAC) and 
esophageal squamous cell carcinoma (ESCC) according 
to the National Cancer Institute’s definition [1]. As the 
7th most common cancer in the world and the 6th leading 
cause of cancer-related death, its incidence is expected to 
increase by 140% in the next few years [2]. The burden 
of EC is considerably higher in less developed regions, 
where approximately 80% of cases occur. Roughly 70% 
of cases are found in males, and there is a 2 to 5-fold 
higher incidence and mortality rate between the genders, 
which increases with age [3]. Esophageal malignancies 
have a grim prognosis due to their tendency to remain 
asymptomatic, leading to late-stage diagnosis. Conse-
quently, definitive resection and treatment are often not 
viable options. More than half of the cases involve distant 
metastases or unresectable disease, resulting in a dis-
couraging 5-year survival rate of only 18%, albeit show-
ing slight improvement over time. Considering the weak 
correlation between esophageal symptoms and cancer or 
precursor lesions, screening and monitoring for EC pose 
significant challenges. In fact, most patients diagnosed 
with early-stage EC exhibit no symptoms until the onset 
of dysphagia and weight loss, which could indicate an 
advanced tumor. However, in cases where EC is detected 
early, evolving therapies not only enhance cure rates but 
also reduce treatment-related complications [4].

The incidence of EC has exhibited a significant surge on 
a global scale in recent times. Based on the GLOBOCAN 
2020 report, if the present trends continue, the antici-
pated figures of EC occurrences and fatalities in 2030 
and 2040 can be estimated by multiplying the 2020 rate 
with the anticipated populace in 2030 and 2040. It is pre-
dicted that by 2030, the number of fresh cases of EC will 
reach 739,666, and the associated deaths will amount to 
723,466 [3].

Endoscopy is a primary diagnostic tool to determine 
the presence and location of EC, the distance between 
the cancer and the tooth, the length of the tumor [5], 
the degree of peripheral involvement [6], the degree of 
obstruction [7], and the presence of mucous nodes [8]. 
However, these symptoms are not always easy to detect 
[9], and an accurate diagnosis requires experienced phy-
sicians. Several studies have shown that it is often pos-
sible to miss symptoms and suspicious areas during 
endoscopy [10]. Therefore, suspected patients should be 
regularly followed up through endoscopic examination to 
control the progress of abnormalities in the next stages 
[11, 12].

Machine learning in EC
As the number of patients with EC continues to grow, 
computer-aided diagnosis (CAD) systems have attracted 
increasing attention [13]. Recent advancements in AI 
have shown promising applications in diagnostic imaging 
in various medical fields [14–16]. AI is a general term that 
refers to a wide range of algorithms capable of identifying 
features among a large amount of data to provide clinical 
inference and insights. Machine learning (ML) is a subset 
of AI and refers to algorithms that can learn and predict 
with or without explicit instructions [17]. ML in medical 
imaging can improve decision making and diagnosis time 
by providing reliable clinical decision support. The most 
important characteristic of a ML model is to adapt inde-
pendently, learn from previous calculations and produce 
reliable results when new datasets are exposed to models 
repeatedly [18–20].

With the surge of medical imaging for screening 
esophagus tissues, a large volume of imaging data with 
various characteristics including type and stage of EC 
and patients’ complications is produced every day. This 
amount of data can be a great resource for better under-
standing underlying factors of EC, early detection, and 
ultimately timely diagnosis of EC. On the other hand, 
monitoring and analyzing this type of massive imaging 
data is beyond the capability of humans. To fill this gap, 
several previous studies have applied ML-based meth-
ods in early detection and diagnosis of EC. However, our 
understanding regarding the performance of these ML-
based modeling approaches in EC is still very limited. 
The aim of this study was to systematically review the 
scientific literature and describe how ML algorithms have 
been applied to the early detection of EC. Additionally, 
we aimed to discuss the methodological and design char-
acteristics of the existing studies in this realm, informing 
future research and development efforts on using ML 
methods to improve patients’ outcomes and reduce the 
burden of costs for patients, organizations, and insur-
ances. Specifically, this study aims to answer the follow-
ing research questions:

(1) To what extent has ML been effective in the early 
detection of EC?

(2) Which ML algorithms have demonstrated superior 
performance in the analysis of esophagus-related 
images?

This systematic review has been conducted to address 
research questions related to the development of more 
accurate and efficient diagnostic tools for a particular 
medical condition. The review methodology involved 
a rigorous search of the literature to identify relevant 
studies, followed by a systematic and thorough extrac-
tion and analysis of the data. The results section of the 
review provides a detailed examination of the target 
population, dataset quantity and characteristics, and 
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algorithms employed in the reviewed articles. The algo-
rithms are categorized based on the methodologies used 
in the respective articles, and specific details are analyzed 
and explained. In the discussion section of the review, 
the obtained results are compared and elucidated, with 
a focus on highlighting noteworthy aspects, challenges, 
weaknesses, and strengths of both the articles and the 
utilized algorithms. This synthesis of the data from the 
included studies provides a comprehensive and rigorous 
analysis of the current state of knowledge on the topic, 
and has the potential to inform the development of more 
accurate and efficient diagnostic tools, ultimately improv-
ing patient outcomes.

Methodology
Search strategy
A systematic search strategy was developed based on 
previous studies and criteria selected by the authors. 
All articles that used ML methods for the early detec-
tion of EC were reviewed. A comprehensive search was 
conducted in PubMed, Scopus, Web of Science, Wiley, 
and IEEE databases using keywords such as ML, Deep 

Learning (DL), Neural Networks (NN), esophagus, EC, 
and early detection, based on inclusion and exclusion 
criteria from 2018 to December 10, 2022. Related articles 
were extracted from these databases.

Eligibility of studies
The inclusion and exclusion criteria for the systematic 
review were carefully defined. The inclusion criteria were 
as follows: [1] studies that used ML methods for the early 
detection and classification of EC, [2] studies written in 
English, [3] full-text articles available, and [4] studies 
published in the last 5 years. Any study that met all of 
the above criteria was selected for review. The exclusion 
criteria included: [1] studies related to other diseases, [2] 
studies published in a non-English language, [3] studies 
that used other imaging modalities except for endos-
copy, and [4] review, meta-analysis, and narrative stud-
ies. Any study that met at least one of the above criteria 
was excluded from the systematic review. The process of 
study selection is presented in a PRISMA flowchart, as 
shown in Fig. 1.

Fig. 1 Flow diagram of studies identified in the systematic review
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Data extraction
In this systematic review, the process of data extraction 
involved a thorough examination of previous articles to 
gather information regarding their methods and results. 
The articles were extracted using standardized table for-
mats, encompassing the following elements:

  • Article title.
  • Country where the study was conducted.
  • Year of publication.
  • Type of ML methods utilized.
  • Studied society.
  • Accuracy, sensitivity, and specificity of the ML 

algorithm.
  • Modality.
  • Cancer type.

The methodology used in this study involved a rigorous 
and systematic approach to identifying and selecting 

relevant articles for inclusion. The process began with a 
review of the abstracts of all relevant articles, which were 
then input into Endnote for further analysis. Next, the 
research team assessed the title, abstract, and keywords 
of each article, applying inclusion and exclusion criteria 
to select studies that met the predetermined standards 
for quality and relevance. Duplicates were removed, 
and the research team performed full text review of the 
selected papers. To ensure the accuracy and validity of 
the data extraction process, a designated data extraction 
form was used, which had been confirmed for validity 
by two medical informatics experts. The full text of each 
article was reviewed by two researchers, and data were 
collected using this form. Finally, all findings obtained 
from the data extraction form were reviewed and vali-
dated by a third reviewer. Summary of the results is pre-
sented in Table 1.

Table 1 Characteristics of studies for early detection of EC using ML
Title Algorithm Image Patient Country
Lou et al. 2020 U-Net 80 - China

Ghatwary et al. 2019 Faster R-CNN 
Single-Shot Multibox Detector

100 39 UK

Tang et al. 2022 multi-task classification and segmentation)MTCS( 805 255 China

Ghatwary et al. 2019 Faster R-CNN 1000 - UK

Yu et al. 2021 Multi-task learning (MTL) 1003 - Taipa

Wu et al. 2021 Faster-RCNN
Dual-Stream Network (DSN)

1051 - China

Liu et al. 2020 Convolutional Neural Networks (CNN) 1272 748 China

Groof et al. 2020 hybrid ResNet-Unet 1704 669 Netherland

Tang et al.2021 DCNN 4002 1078 China

Meng et al. 2022 YOLO v5 4447 837 China

Gong et al. 2022 “Neuro-T” version 2.3.2 5162 - Korea

Shiroma et al.2021 Single Shot MultiBox Detecto 8428 - Japan

Du et al. 2021 random weighted sampling (RWS) 20,965 4,077 China

Putten et al. 2020 U-Net 494,356 - Netherland

Gan et al. 2020 dual-stage U-shape convolution network (D-UCN) - - China

Wang et al. 2021 Cascade RCNN - 80 China

Sui et al. 2021  V-Net - 414 China

Takeuchi et al. 2021 VGG16 - 457 Japan

Ghatwary et al. 2021 3DCNN - - UK

Alharbe et al. 2022 Deep transfer learning - - Saudi Arabia

Zhao et al. 2022 Google Net V3 
TensorFlow 1.6

- 300 China

Collins et al. 2021 SVM, MLP, 3DCNN - 10 France

Zhao et al.2021 CNN - 500 China

Chen et al.2021 Faster RCNN 1520 421 China

Tsai et al.2021 Single Shot MultiBox Detector 155 - Taiwan

Tsai et al.2022 single-shot multi-box detector 1780 - China

Sali et al.2020 ResNet34 387 130 USA

Wang et al. 2021 single-shot multibox detector 498 - Taiwan

Zhang et al. 2022 Faster R-CNN
VGG16

6445 200 China

Guo et al.2020 SegNet 6473 - China

Fang et al. 2022 U-Net 75 - Taiwan
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Results
After an initial search of five databases, a total of 613 arti-
cles were identified. By screening the titles and abstracts, 
56 articles were selected for full-text review. After apply-
ing inclusion and exclusion criteria, 31 articles were ulti-
mately included in the systematic review. Based on the 
inclusion criteria, a total of 31 articles were selected and 
reviewed. The analysis showed that the majority of arti-
cles were published in the past two years, with 14 articles 
in 2021 and 8 articles in 2022. Furthermore, 7 articles 
were published in 2020 and 2 articles in 2019, while no 
eligible articles were identified in 2018 (Fig. 2). In addi-
tion, the frequency of articles by country of origin was 
also examined, with the highest number of articles being 
published by research teams from China, followed by 
England (Fig. 3).

The review synthesizes the findings from previous 
studies in the field and is organized into six sections as 
follows:

Characteristics of EC image datasets
In early detection of EC, different imaging modalities 
such as gastroscopy, white light imaging (WLI), and nar-
row-band imaging (NBI) have been used in various stud-
ies [21–23]. A review of the literature showed that WLI 
images were used in 35% of studies [13, 19, 24–35], fol-
lowed by a combination of WLI and NBI images in 10% 
[20, 25, 36, 37], computed tomography (CT) images in 

13% [38–41], NBI images in 3% [42], images of other 
modalities in 13% [43–46], and the type of imaging was 
not mentioned in 26% of studies (Fig. 4) [34, 44, 47–52]. 
It was also observed in the survey that the highest aver-
age accuracy (98%) among the types of modalities used 
is related to the algorithms that used a combination of 
WLI and NBI [20, 25, 36, 37]. Among the algorithms that 
used only one type of modality, the average accuracy was 
96.5%, which was related to NBI [42], and then 96.3% and 
84.2% were related to WLI [13, 26–30, 32, 33] and CT 
[40, 41], respectively. In one case, an average accuracy of 
98% was achieved using Optical coherence tomography 
(OCT) images (Fig. 5) [39].

Most studies used locally collected datasets, and only 
three studies used known datasets in the field of clinical 
images such as MICCAI version 2015, Kvasir Dataset, 
and ImageNet [13, 36, 48]. Various ML techniques were 
employed for data recognition and classification, with 
the maximum number of images used for early detec-
tion of EC through ML algorithms being 494,356 images 
[35], and the least used image being 80 images [36, 38]. 
On average, 28,939 images were used in the field of EC 
detection.

Characteristics of ML algorithms
Our review of the literature showed that among all of the 
algorithms used in the studies, the Single-Shot Multibox 
Detector (SSD) algorithm had the largest sample size 

Fig. 2 Number of Papers Published from January 2018 to December 2022
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[20]. Furthermore, Faster R-CNN (6445 images), Seg-
Net (6473 images), Neuro_T (5162 images), and YOLO 
v5 (4447 images) were other ML algorithms that utilized 
a large sample size for training, testing, and validation 
[24, 27, 42, 49]. In addition, in studies focused on early 
detection of esophageal cancer, U-Net [33, 35, 36, 38, 39], 
Faster R-CNN [13, 26, 48, 49, 51] SSD [13, 20, 25, 30, 37] 
algorithms reported in 5 studies had the highest num-
ber of uses among all ML algorithms. VGG16 algorithm 
was also used in 3 studies [25, 28, 49]. Details of the algo-
rithms and the sample sizes used in the studies can be 
found in Figs. 6 and 7.

Our review identified variations in dataset types 
and sizes used for identifying and diagnosing esopha-
geal cancer, as well as differences in performance levels 
among various ML algorithms. The lowest dataset size 
of 100 images was associated with CT and WLI modali-
ties, utilized by the U-Net and SSD algorithms [13, 38], 
respectively (Table 2), while the largest dataset size was 
observed in the combination of WLI and NBI modalities, 
comprising 8,428 images, and utilized by the SSD algo-
rithm [20] (Fig.  8). In processing CT images, the V-Net 
algorithm achieved 65% accuracy with a dataset size of 
414 images, while the VGG16 algorithm achieved 84.2% 
accuracy with 457 images. No results were reported for 

the U-Net algorithm with a dataset size of 100 images 
[38, 40, 41].

The SSD algorithm was employed in two studies for 
processing the WLI dataset [13, 30] and the combina-
tion of WLI & NBI in three studies [20, 25, 37]. Our study 
revealed a relationship between accuracy and sample size 
for the SSD algorithm in image processing. Specifically, in 
WLI & NBI images, the value of accuracy and sample size 
are equal to respectively 84%, 90.9%, 98% and 155, 498, 
8428 and for WLI images are equal to 96.1% and 1780 .In 
another study, accuracy ranged from 96.1-1,780%[20, 25, 
37]. This relationship was also observed in other algo-
rithms with different modalities [27, 29, 33]. However, 
due to a lack of data, it was not feasible to compare the 
performance of the algorithm for a specific modality with 
varying sample sizes. The dataset size can be compared 
with corresponding accuracy, as outlined in Table 2.

Several studies have employed AI using ML or DL 
algorithms to assess their accuracy in diagnosing or clas-
sifying EC. A majority of these algorithms have utilized 
endoscopic images for detecting, diagnosing, and clas-
sifying cancer and esophageal neoplasms through auto-
matic feature selection and self-learning techniques [23]. 
Based on the methodology of the reviewed studies, they 
can be categorized into the following four groups, as pre-
sented in Figs. 9 and 10 also presents classification of the 

Fig. 3 Number of articles published based on country
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ML algorithms used for diagnosis, detection, prediction, 
and segmentation .

1. Diagnosis (identification and classification) (n = 9) 
[26, 28, 31, 34, 35, 41–43, 48].

2. Detection (n = 18) [13, 19, 20, 25, 27, 29, 32, 33, 37, 
40, 44–47, 49–52].

3. Prediction (n = 2) [30, 36].
4. Segmentation (n = 2) [38, 42].

Diagnosis
In this section, all studies with the exception of Putten et 
al. [35], Guo et al. [42] and Ghatwary et al. [48] investi-
gated both types of EC, including EAC and ESCC. More-
over, all studies employed a two-step process for cancer 
diagnosis, comprising of segmentation or identifying the 
areas associated with abnormality and classification. Of 
the 9 studies reviewed, 6 employed various CNN algo-
rithms for both segmentation and classification. The 
remaining 3 studies utilized other ML algorithms, includ-
ing one studies of the MTL algorithm [34], one study 
of the transfer learning [31], and one study that used 
Google Net and TensorFlow algorithms [43]. Among the 
studies, the highest accuracy was achieved by Alharbe et 

al. [31] with a value of 99.7%, utilizing the ResNet101 and 
Feed Forward Neural Networks (FFNN) algorithms for 
segmentation and classification. Conversely, the lowest 
accuracy was reported by Sui et al. [41] with a value of 
65%, using the V-Net algorithm.

Detection
This section reviews 18 studies focused on the applica-
tion of ML algorithms to detect EC. Unlike the diagnosis 
section, where separate steps were employed for pro-
cessing and obtaining results, the algorithms used in this 
section utilize object detection methods, presenting the 
results to the user in a single processing step. Of these 
studies, two focused specifically on the detection of EAC, 
with Sali et al. utilizing the 34ResNet ML algorithm with 
387 images [46] and Groof et al. employing the hybrid 
ResNet-Unet algorithm with 1704 images [33]. Three 
studies specifically investigated the detection of ESCC 
using SSD, YOLO v5, and DCNN algorithms [20, 29, 47], 
while the remaining studies utilized various CNN-type 
algorithms to investigate the detection of both EAC and 
ESCC. Only Gong et al. utilized the Neuro-T algorithm, 
achieving the highest accuracy level of 95.6% with the 

Fig. 4 Frequency of modalities used in ML methods to detection of EC
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No-code deep-learning tool “Neuro-T” algorithm [27]. 
Wang et al., on the other hand, reported the lowest accu-
racy rate of 83% using the Cascade RCNN algorithm [13, 
19, 25, 32, 37, 40, 44, 45, 49–52].

Prediction
Two studies utilized ML methods to predict EC in its 
early stages and take timely action for treatment. Tsai 
et al. applied the SSD algorithm to 1780 images and 
reported 96.1% accuracy in the early detection of EC. The 
authors emphasized that the SSD method can predict 
both types of EC in the early stages [25]. In another study, 
Fang et al. achieved an 84.72% accuracy rate using the 
U-Net algorithm with NBI images, and an 82.38% accu-
racy rate using WLI images. The authors demonstrated 
the potential of ML techniques in improving the accuracy 
of EC detection, particularly in the early stages [36].

Segmentation
Guo et al. used the SegNet algorithm with 6473 images 
for the automatic real-time segmentation of precan-
cerous lesions and ESCC to aid in EC diagnosis [42]. In 
another study, Lou et al. reported that using the U-Net 
algorithm, a subtype of NN, they were able to perform 
segmentation in both types of EC (EAC & ESCC). These 
studies showed that the results obtained in both studies 
are acceptable [38].

Regarding the processing time of DL algorithms, 
we reviewed studies that provided information on the 
required time or processing speed of the utilized algo-
rithms. Among these studies, the most frequent infor-
mation was available for the Faster R-CNN, U-Net, and 
SSD algorithms. Specifically, considering the processing 
of white light imaging (WLI) images, it was observed that 
the SSD algorithm processed the image and provided the 
result within a range of 0.1–0.2 s, while U-Net required 
approximately 46.3  s. For the R-CNN algorithm, the 
processing time ranged from 13.38 to 37.81  s, whereas 
the Fast R-CNN algorithm operated within a range of 
0.65–2.1 s. Lastly, the Faster R-CNN algorithm exhibited 
a processing time of 0.3–0.45  s [13, 33]. Further details 
regarding the processing time of the reviewed algorithms 
can be found in Table 3.

Table 4 provides a summary of the performance data of 
the reviewed studies for early detecting of EC using ML 
techniques. The studies highlighted the potential of DL 
approaches in improving segmentation accuracy, which 
is a critical step towards enhancing the accuracy of EC 
detection and ultimately improving patient outcomes.

Discussion
EC is a highly lethal malignancy, with a 5-year sur-
vival rate of less than 20%, mostly due to late diagnosis 
and treatment [53, 54]. Endoscopic ultrasound, a com-
monly used diagnostic method, has limited sensitivity 

Fig. 5 Accuracy of modalities used in ML methods to Detection of EC
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in detecting small-sized lesions, which can impact diag-
nostic accuracy [33]. In recent years, researchers have 
explored novel non-invasive imaging methods such as 
radiomics, aimed at improving the diagnosis and treat-
ment of EC. Additionally, the use of ML technology in the 
analysis and interpretation of clinical images has shown 
potential in providing valuable information for the early 
detection of EC. Therefore, this study aimed to conduct 
a systematic review of the literature to investigate the 
use of ML in the early detection of EC. By synthesizing 
the findings from previous studies in the field, this study 
aimed to address critical relevant research questions 
regarding ML methods and provide insights into their 
potential in improving the accuracy and effectiveness of 
EC early detection.

Our systematic review highlights the significance of 
imaging techniques in achieving more accurate detection 
of EC at an early stage. For instance, the accuracy of CT 
imaging was found to be lower than that of other modali-
ties, at 82.37%. Additionally, while the NBI method was 
only accurate in detecting ESCC, the WLI method, with 
a diagnostic accuracy of 96.1%, was found to be more 
effective in detecting both EAC and ESCC [30, 40, 42]. 

Despite the possibility of faults in the detection and 
estimation of cancer grading through WLI images due 
to the delicate and imperceptible mucosa and surface 
lesions of the esophagus, WLI images were among the 
top three modalities in terms of the accuracy of results 
in early detection of EC using ML [55]. Our findings sug-
gest that the choice of imaging technique is a crucial fac-
tor in improving the accuracy of early EC detection, and 
further studies could benefit from optimizing the use of 
these techniques in combination with ML algorithms.

Accuracy of EC detection using ML methods is highly 
dependent on the type of algorithms used and the qual-
ity of data used for training. In particular, DL methods, 
especially CNN-based algorithms, outperform other 
ML models such as SVM and MLP in terms of detection 
accuracy, sensitivity, specificity, and AUROC indicators. 
Furthermore, it appears that the use of combined meth-
ods and multiple steps in machine and DL algorithms 
produces better results than other approaches [33]. For 
example, Alharbe et al.(2022) developed a deep transfer 
learning-driven hybrid algorithm for the classification of 
EC, which utilized multiple algorithms, including ResNet, 
DCNN, and Gaussian filtering, for data preprocessing, 

Fig. 6 The sample size used in ML algorithms
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feature extraction, and EC detection. This approach 
achieved an accuracy of 99.7%, a sensitivity of 99.49%, 
and a specificity of 99.78%, which demonstrated a sig-
nificant improvement in detection accuracy compared 
to other algorithms [31]. Similarly, the combination of 
U-Net and transfer learning methods for the early detec-
tion of EC resulted in superior outcomes, with 87.50% 
accuracy, 92.50% sensitivity, and 82.50% specificity [35]. 
In general, adopting a set of combined approaches in 
preprocessing and detection tasks based on EC images 
may help to reduce errors in the diagnosis of EC, which 
can potentially assist clinicians in the early diagnosis of 
EC, thereby reducing the mortality rate among patients 
with EC. This finding underscores the importance of data 
quality, algorithm selection, and preprocessing methods 
in developing effective ML-based detection models for 
EC [37, 44].

To ensure the generalizability of the results, large 
training datasets are often essential for the training, 

Table 2 The Dataset type and performance of ML algorithms
Modality Algorithm Dataset Accuracy
CT U-Net 100 -

CT V-Net 414 65%

CT VGG16 457 84.20%

WLI SSD 100 -

WLI VGG16 805 93.43%

WLI FRCNN 1051 96.29%

WLI CNN 1272 85.83%

WLI ResNet-Unet 1704 89%

WLI YOLO v5 4447 92.90%

WLI Neuro-T 5162 95.60%

WLI SSD 1780 96.10%

NBI SegNet 6473 96.50%

WLI & NBI SSD 8428 98%

WLI & NBI SSD 155 84%

WLI & NBI SSD 498 90.90%

WLI & NBI U-Net 165 84.72%

Fig. 7 The sample size used in ML algorithms
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validation, and testing of ML algorithms, particularly in 
clinical settings. ML applications are known to benefit 
from large sample sizes as they help minimize bias. How-
ever, smaller sample sizes can sometimes result in higher 
accuracy, which has been observed in the reviewed stud-
ies [28, 34]. Interestingly, studies that reported the high-
est accuracy did not provide information on the sample 
size used, which suggests that other factors such as fea-
ture processing and model parameter tuning may also 
play a crucial role [31, 39, 53]. Therefore, future stud-
ies should aim to investigate the optimal sample size for 
issues related to the clinical field, while also examining 
the characteristics of ML algorithms, including feature 
extraction, selection, and optimization, to achieve more 
accurate and reliable results. By taking a comprehen-
sive approach, we can advance our understanding of ML 
applications and improve their efficacy in medical imag-
ing and diagnosis.

Furthermore, choosing the type of dataset and modal-
ity can affect the performance of ML algorithms in medi-
cal imaging. Our study revealed that the SSD algorithm 
achieved higher accuracy in processing WLI & NBI 
images than WLI images [20, 30], while similar results 
were observed for VGG16 algorithm in processing CT 
and WLI images [28, 40]. However, these results should 

be interpreted while considering the dataset volume. 
Although a direct relationship between sample size and 
accuracy was observed, our study showed that the data-
set type is another important factor in achieving high 
performance. Therefore, future studies should examine 
ML algorithms under the same conditions of sample size 
and dataset type to obtain more reliable results. This lim-
itation of our study emphasizes the importance of using 
consistent conditions in dataset selection to evaluate the 
performance of ML algorithms accurately and reliably, 
thereby advancing our understanding of their applica-
tions in medical imaging and diagnosis.

ML relies on several components such as dataset, algo-
rithms and models, feature extraction, and training, all 
of which contribute to the performance of the models 
[54, 55]. Our systematic review revealed that the U-Net, 
Faster R-CNN, and SSD algorithms are the most fre-
quently used among the studies conducted for the early 
detection of EC The results indicated that the perfor-
mance of U-Net and Faster R-CNN algorithms was com-
parable in terms of accuracy, regardless of the number of 
samples used [13, 26, 35, 36]. However, significant differ-
ences were observed with the SSD algorithm, indicating 
its sensitivity to the number of samples [20, 25]. Hence, 
the number of samples used could introduce bias in the 

Fig. 8 The Dataset type and performance of ML algorithms
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study, and further investigations are required to address 
this issue in future studies.

The results of included studies showed a significant 
improvement in the performance of segmentation algo-
rithms, specifically U-Net, SegNet, and Transfer learn-
ing, in detecting EC with accuracies of 99.7%, 97%, 96%, 
and 98% obtained [26, 31, 34, 39]. U-Net was found be 
effective to work with limited training samples in seg-
mentation tasks. It also preserves the complete context 
of input images by performing classification on each 
pixel, generating segmentation maps directly in an end-
to-end pipeline. This approach is critical in maintaining 
complete context compared to patch-based segmenta-
tion approaches [59]. However, U-Net’s large number of 
parameters due to skip connections and additional layers 
in the expanding path may make the model more prone 
to overfitting, especially when working with small data-
sets. On the other hand, SegNet uses less memory by 
transferring only the pooling indices from the compres-
sion path to the expansion path, but may lose neighbor-
ing information when unpooling from low-resolution 
feature maps [42].

Our study also demonstrated that the use of proposed 
segmentation algorithms in the structure of transfer 
learning can increase their performance to an acceptable 
level for segmenting EC images [35]. Transfer learning is 
a ML technique that applies knowledge gained from one 
problem to another similar task or domain, and CNN 
models can be trained either from scratch or through 
transfer learning [60]. In future studies, it is suggested to 
investigate the challenges in improving transfer learning 
performance in the field of EC by using the combination 
of effective algorithms in segmentation and classification. 
Overall, our study highlights the potential benefits of seg-
mentation algorithms and transfer learning in improving 
the accuracy of EC detection.

Faster R-CNN and SSD were the most commonly used 
algorithms for object detection according to the results 
of this review. Faster R-CNN is a DL model known for 
its superior performance and efficiency in object detec-
tion, utilizing a novel region proposal network to gen-
erate region proposals quickly and accurately [56]. It 
extracts fixed-size feature maps from medical images 
[57], assigns classes, and predicts bounding boxes in a 

Fig. 9 Classification of studies based on their methodologies
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single run, making it an efficient and effective tool for 
object detection [58]. Faster R-CNN’s advantages include 
higher detection quality than other CNN-based methods, 
single-stage training, and no requirement for disk stor-
age for feature caching [59]. The SSD is a DL approach 
that employs a feed-forward CNN to produce a fixed-size 
array of bounding boxes and scores. These scores indicate 
the presence of object class instances within the respec-
tive boxes, followed by a non-maximum suppression step 
to generate the final detections [60]. The SSD approach 
stands out from other object detection algorithms as it 
can detect multiple objects present in an image in a sin-
gle shot using a multibox, thus significantly improving 
speed without sacrificing accuracy [61, 62]. By utilizing 

multiple convolutional layers, the SSD algorithm detects 
objects with higher robustness to scale changes, but it 
may miss small objects, which is a notable limitation [62].

In the early detection of esophageal cancer, only two 
studies were found in the segmentation category, despite 
its crucial role in image processing. This raises ques-
tions about the potential of segmentation compared to 
other categories for enabling early detection of EC. Can 
accuracy and precision be improved by combining and 
using more comprehensive methods? Similarly, only 
two studies utilized prediction, indicating a limitation 
in collecting longitudinal data, particularly in patients 
with esophageal cancer. The necessary prognosis does 
not occur until after the patient is infected, which may 
explain the limited use of relevant algorithms in this 
field. To overcome this challenge, further research is 
needed to explore the potential of combining segmenta-
tion and prediction methods and to collect longitudinal 
data in patients with esophageal cancer. Such efforts will 
improve the accuracy and effectiveness of early detection 
and contribute to the development of more advanced ML 
algorithms.

In terms of processing speed, the SSD algorithm out-
performed the U-Net and Faster R-CNN algorithms [63, 
64], and in terms of accuracy, the SSD algorithm demon-
strated the highest level of accuracy [20]. Thus, the choice 
of these algorithms in studies could be attributed to their 
superior performance in terms of accuracy and speed, 

Table 3 Processing time of DL algorithms
Algorithm Time Modality Type
Faster R-CNN 74 s - segmentation

Faster R-CNN 5.3 s - Detection

U-Net 4.24 s CT segmentation

CNN 113 frames/s ultrasound endoscopy Prediction

Cascade RCNN 42 frames/s ultrasound endoscopy Prediction

U-Net 46.3 s WLI Detection

R-CNN 13.38–37.81 s WLI Detection

Fast R-CNN 0.65–2.1 s WLI Detection

Faster R-CNN 0.3–0.45 s WLI Detection

SSD 0.1–0.2 s WLI Detection

SSD 1.0 s WLI&NBI Detection

Fig. 10 Classification of type ML algorithms used for Diagnosis, Detection, Prediction, and Segmentation
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Author Cancer Type Modality algorithm image patient AUROC accuracy sensitivity speci-
ficity

Lou et al. EAC &
 ESCC

CT U-Net 80 - - - - -

Ghatwary 
et al.

EAC &
ESCC

WLI Faster R-CNN 
SSD

100 39 - - 96% 92%

Tang et al. EAC &
ESCC

WLI MTCS 805 255 - 93.43% 92.82% 96.20%

Ghatwary 
et al.

EAC - Faster R-CNN 1000 - - - - -

Yu et al. EAC &
ESCC

endoscopy 
images

MTL 1003 - - 96.96% 95.64% 97.70%

Wu et al. EAC &
ESCC

WLI Faster-RCNN
DSN

1051 - - 96.28% 90,34% 97,18%

Liu et al. EAC &
ESCC

WLI CNN 1272 748 - 85.83% 94.23% 94.67%

Groof et al. EAC WLI hybrid 
ResNet-Unet

1704 669 - 89% 90% 88%

Tang et al. ESCC - DCNN 4002 1078 95,4% 91.30% 97.9% 88.6%

Meng et al. ESCC WLI YOLO v5 4447 837 98,2% 92.9% 91.90% 94.7%

Gong et al. EAC &
ESCC

WLI No-code deep-
learning tool 
“Neuro-T” version 
2.3.2

5162 - 95% 95.6% - -

Shiroma et al. ESCC WLI &
NBI

SSD 8428 - - 98% 100% 100%

Du et al. EAC &
ESCC

- RWS
ECA-DDCNN

20,965 4,077 98.77% 90.63% - -

Putten et al. EAC endoscopy 
images

U-Net
Transfer Learning

494,356 - - 87.50% 92.50% 82.50%

Gan et al. EAC &
ESCC

OCT image D-UCN - - - 98% - -

Wang et al. EAC &
ESCC

endoscopy & 
ultrasound

Cascade RCNN - 80 - 83% - -

Sui et al. EAC &
ESCC

CT V-Net - 414 - 65% 88.80% 90.90%

Takeuchi et al. EAC &
ESCC

CT CNN- VGG16 - 457 - 84.20% 71.70% 90.00%

Ghatwary 
et al.

EAC &
ESCC

video 3DCNN - - - 91.10% - -

Alharbe et al. EAC &
ESCC

image Deep transfer 
learning

- - - 99.7% 99.49% 99.78%

Zhao et al. EAC &
ESCC

digestive 
endoscopy

Google Net V3 
TensorFlow 1.6

- 300 91% 91.00% 90.00% 92.0%

Collins et al. EAC &
ESCC

- SVM, MLP, 
3DCNN

- 10 93% - - -

Zhao et al. EAC &
ESCC

- CNN - 500 - - 98% 99,6%

Chen et al. EAC &
ESCC

- Faster RCNN 1520 421 - 92.15% - -

Tsai et al. EAC &
ESCC

WLI &
NBI

SSD
VGG-16

155
153

- - 86% 92% -

Tsai et al. EAC &
ESCC

WLI SSD 1780 - - 96.1% 81.6% -

Sali et al. EAC whole-slide 
tissue histo-
pathology 
images (WSIs)

ResNet34 387 130 - - - -

Table 4 Performance data on studies for early detection of EC using a ML
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which warrants further investigation in future studies. 
Overall, the selection of the appropriate ML components 
is crucial for the accuracy and efficiency of the models, 
and researchers should carefully consider these factors 
when designing studies for the early detection of EC 
using ML.

Time is an important factor in the early detection of EC 
during real-time imaging, such as real-time endoscopy 
surveillance. The application of ML methods in real-time 
detecting EC can support clinical experts to focus on or 
examine the suspicious area faster and avoid diagnostic 
errors. Therefore, processing speed and response can 
be critical factors in evaluating the performance of ML 
methods. Previous studies have highlighted the impor-
tance of computational speed in real-time endoscopic 
surveillance. For example, Groof et al.(2020) designed an 
algorithm for real-time early detection of EC in classifi-
cation tasks and analysis of endoscopic images, achiev-
ing a computational speed of 0.24 s, which although still 
relatively slow for DL systems, is suitable for use during 
real-time endoscopy surveillance [33]. Several studies 
have also implemented specific techniques to optimize 
the performance of CNN and RCNN methods in real-
time to improve detection accuracy and speed. Wang et 
al.(2021) investigated the performance of CNN and Cas-
cade RCNN algorithms in online cancer diagnosis and 
showed that the operation speed of the Cascade RCNN 
model improved. Such approaches have been reported 
as useful strategies to increase algorithm performance, 
where the CNN prediction speed was 113 fps and the 
Cascade RCNN model was 42 fps [19]. Similarly, the 
application of the Deep CNN (DCNN) algorithm by Tang 
et al. showed that with the correct adjustment of the 
algorithm and its parameters, the response rate of DCNN 
only needs 15 milliseconds to detect esophageal lesions 
in each image [47]. However, there is limited studies on 
the characteristics and settings of real-time detection 
systems for EC requiring future studies to investigate the 
characteristics, settings, and hardware of online systems 
for detecting EC.

Advanced ML, particularly DL, is a rapidly evolving 
technology that is becoming increasingly widespread 
in various fields. Compared to traditional ML, which 
relies on experience to improve system performance, 

data-driven ML utilizes large datasets to identify pat-
terns and predict future outcomes. While large datas-
ets are often considered necessary for successful deep 
learning applications, techniques such as transfer learn-
ing can enable deep learning even with limited data sets 
[65]. Recent studies have demonstrated the potential 
of advanced ML techniques in the field of EC diagno-
sis, including the use of artificial images and generative 
adversarial network (GAN) and variable autoencoder 
(VAE) models to improve image quality and DL perfor-
mance [66]. The use of autoencoders and long short-term 
memory (LSTM) networks has also shown promise in 
detecting esophageal abnormalities and improving classi-
fication performance [45, 67, 68]. Future research should 
continue to explore novel applications of advanced ML 
techniques and focus on combined pre-processing and 
classification systems to enhance accuracy and effective-
ness in EC diagnosis.

Conclusion
Early detection of EC is crucial for improving the prog-
nosis and survival rate of patients. Unfortunately, tradi-
tional diagnostic methods are often not able to detect the 
disease in its early stages. ML has emerged as a power-
ful tool for improving the accuracy of medical diagnosis. 
Our systematic review highlights the potential of ML 
techniques in the early detection of EC using non-inva-
sive imaging methods such as CT scans and endoscopic 
images. The performance of DL algorithms, especially 
CNN based methods, has shown to be superior to other 
ML models such as Support Vector Machine (SVM) and 
Multilayer Perceptron (MLP). Moreover, the selection of 
appropriate algorithms, data sets, feature extraction, and 
training are crucial components that affect the perfor-
mance of ML models. The use of combined approaches 
and multiple steps in ML and DL algorithms have shown 
better results in detecting EC. Furthermore, the pro-
cessing speed and response time of ML models can be 
critical factors in real-time endoscopy surveillance. In 
conclusion, the application of ML techniques in the early 
detection of EC holds great promise in improving patient 
outcomes. Future studies should focus on optimizing the 
performance of ML models, investigating the character-
istics and settings of real-time diagnostic systems for EC, 

Author Cancer Type Modality algorithm image patient AUROC accuracy sensitivity speci-
ficity

Wang et al. EAC &
ESCC

WLI &
NBI

SSD 498
438

- - 90.90% 96.20% 70.40%

Zhang et al. EAC &
ESCC

- Faster R-CNN
VGG16

6445 200 - 90.3% 92.5% 88.70%

Guo et al. ESCC NBI SegNet 6473 - - - 98.04% 95.03%

Fang et al. EAC &
ESCC

WLI  &
NBI

U-Net 75
91

- - 84.72% - -

Table 4 (continued) 
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and exploring the use of non-invasive imaging methods 
for early detection.

List of abbreviations
CT  Computed Tomography
CAD  Computer-Aided Diagnosis
CNN  Convolutional Neural Networks
DCNN  Deep CNN
DL  Deep Learning
D-UCN  Dual-Stage U-shape Convolution Network
DSN  Dual-Stream Network
EAC  Esophageal Adenocarcinoma
EC  Esophageal Cancer
ESCC  Esophageal Squamous Cell Carcinoma
ML  Machine Learning
MLP  Multilayer Perceptron
MTCS  Multi-Task Classification and Segmentation
MTL  Multi-Task Learning
NBI  Narrow-Band Imaging
NN  Neural Networks
OCT  Optical Coherence Tomography
RWS  Random Weighted Sampling
R-CNN  Region-Based CNN
SSD  Single-Shot Multibox Detector
SVM  Support Vector Machine
WLI  White Light Imaging
WSTHI  Whole-Slide Tissue Histopathology Images
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