
R E S E A R C H Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, 
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included 
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The 
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available 
in this article, unless otherwise stated in a credit line to the data.

Su et al. BMC Medical Informatics and Decision Making          (2023) 23:120 
https://doi.org/10.1186/s12911-023-02224-1

BMC Medical Informatics 
and Decision Making

*Correspondence:
Jianqian Chao
chaoseu@163.com
1Department of Epidemiology and Health Statistics, School of Public 
Health, Southeast University, No. 87 Ding Jia Qiao, Central Gate Street, 
Gulou District, Nanjing, Jiangsu, China
2Department of Medical Insurance, School of Public Health, Southeast 
University, No. 87 Ding Jia Qiao, Central Gate Street, Gulou District, 
Nanjing, Jiangsu, China

Abstract
Background To construct two prognostic models to predict survival in breast cancer patients; to compare the 
efficacy of the two models in the whole group and the advanced human epidermal growth factor receptor-2-positive 
(HER2+) subgroup of patients; to conclude whether the Hybrid Bayesian Network (HBN) model outperformed the 
logistics regression (LR) model.

Methods In this paper, breast cancer patient data were collected from the SEER database. Data processing and 
analysis were performed using Rstudio 4.2.0, including data preprocessing, model construction and validation. The 
L_DVBN algorithm in Julia0.4.7 and bnlearn package in R was used to build and evaluate the HBN model. Data with a 
diagnosis time of 2018(n = 23,384) were distributed randomly as training and testing sets in the ratio of 7:3 using the 
leave-out method for model construction and internal validation. External validation of the model was done using 
the dataset of 2019(n = 8128). Finally, the late HER2 + patients(n = 395) was selected for subgroup analysis. Accuracy, 
calibration and net benefit of clinical decision making were evaluated for both models.

Results The HBN model showed that seventeen variables were associated with survival outcome, including age, 
tumor size, site, histologic type, radiotherapy, surgery, chemotherapy, distant metastasis, subtype, clinical stage, ER 
receptor, PR receptor, clinical grade, race, marital status, tumor laterality, and lymph node. The AUCs for the internal 
validation of the LR and HBN models were 0.831 and 0.900; The AUCs for the external validation of the LR and HBN 
models on the whole population were 0.786 and 0.871; the AUCs for the external validation of the two models on the 
subgroup population were 0.601 and 0.813.

Conclusion The accuracy, net clinical benefit, and calibration of the HBN model were better than LR model. The 
predictive efficacy of both models decreased and the difference was greater in advanced HER2 + patients, which 
means the HBN model had higher robustness and more stable predictive performance in the subgroup.
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Introduction
Breast cancer is a malignant tumor that occurs in the 
glandular epithelial tissue of the breast in women [1]. 
The latest global cancer burden data released by the 
World Health Organization’s International Agency for 
Research on Cancer (IARC) for 2020 shows that there are 
2.26 million new breast cancer cases worldwide, surpass-
ing the 2.2  million lung cancer cases. Breast cancer has 
replaced lung cancer as the number one cancer world-
wide [2]. Among breast cancer patients, human epider-
mal growth factor receptor-2 (HER2)-positive patients 
account for about 15–20.0%[3, 4]. HER2 + breast cancer is 
highly aggressive and prone to adverse clinical outcomes 
with short survival and poor prognosis [5], so it is more 
critical to predict at an early stage and take therapeutic 
measures for the possible prognostic outcome of patients 
such as drug therapy such as pyrrolizumab, trastuzumab 
or neoadjuvant chemotherapy (NAC) [6, 7]. While most 
studies currently predict five-year survival in breast 
cancer, some studies have focused on developing 1-year 
survival prediction models or Comprehensive Prog-
nostic Index (CPI) for breast cancer patients with mul-
tiple comorbidities [8]. Because of the poor prognosis of 
advanced HER2 + patients, some clinical trials have used 
1-year survival as the observed outcome [9]. The follow-
up time of breast cancer data with diagnosis in 2019 in 
the SEER database is less than two years, this study also 
used 1-year survival as the study outcome, to establish a 
predictive model to identify people with better and worse 
prognosis, especially people with a poorer prognosis, 
and to assist physicians in taking the best interventional 
treatment for patients promptly.

With the continuous development of machine learning 
and data mining techniques, more and more research-
ers have tried to use machine learning models such as 
Random Forest (RF), Artificial Neural Network (ANN), 
Decision Tree (DT), and Support Vector Machine (SVM) 
to build adverse event prediction models. But most of 
them work as black boxes with a lack of interpretability. 
Bayesian Network (BN) is a probabilistic graphical model 
combining probability theory and graph theory, which 
uses directed acyclic graphs to represent the probabi-
listic dependencies between nodes [10, 11], intuitively 
illustrates the interrelationships between variables and 
can predict the ending variables when some of the nodes 
are unknown, and has been increasingly applied to vari-
ous medical fields in recent years, such as building diag-
nostic and prognostic models for tumor patients [12], 
constructing risk prediction models for adverse cardio-
vascular events [13], constructing prediction models for 
hepatic encephalopathy [14], etc. Traditional Bayesian 
networks are only used for discrete variables, but many 
continuous variables exist in practical studies. In addi-
tion to the most common equal-width discretization 

or discretization based on expert experience, a more 
reasonable method is the minimum description length 
(MDL) principle discretization. MDL methods trade off 
goodness-of-fit against model complexity to reduce gen-
eralization error. But the MDL method suffers from low 
sensitivity to discretization edge locations and returns 
too few discretization intervals for continuous variables 
[15, 16]. Some researchers have proposed new algorithms 
based on traditional Bayesian networks, such as the Con-
ditional Gaussian Bayesian network (CGBNs) algorithm 
[17], which can achieve the simultaneous inclusion of 
continuous and discrete variables, but it requires that 
continuous variables cannot be the parent node of dis-
crete variables and continuous variables need to conform 
to Gaussian distribution. The Learning Discrete Valued 
Bayesian Networks (L_DVBN) algorithm is a principled 
Bayesian discretization method for continuous variables 
in Bayesian networks [18], which combine multi-variable 
discretization with greedy search [19, 20]. The traditional 
Bayesian structure learning algorithm needs discretiza-
tion data, while the proposed discretization algorithm 
needs to know the network structure. L_ DVBN algo-
rithm can be combined with the K2 structure learning 
algorithm to simultaneously perform Bayesian network 
structure learning and discretization of continuous vari-
ables. In short, the dataset is initially discretized, and K2 
is run to obtain an initial network structure. Then the 
affected continuous variables are rediscretized every time 
K2 adds an edge. The resulting discretization policies are 
used to update the discretized dataset, and the next step 
of the K2 algorithm is executed. This progress is repeated 
until the K2 algorithm converges. Research has shown 
that this method is better than the minimum description 
length algorithm. Therefore, this study chooses to apply 
the L_DVBN algorithm to discretize continuous vari-
ables and construct a Hybrid Bayesian Network (HBN) 
prediction model, which can broaden the application 
of Bayesian networks on continuous variables [19]. The 
HBN model is compared with the traditional LR model to 
evaluate the effectiveness comprehensively. In previous 
studies, prognostic models were found to perform poorly 
in patients with specific characteristics, such as patients 
with BRCA1-mutation [21], patients with lympho-vas-
cular invasion [22], HER2 + patients [23], young and old 
patients [24], etc. In this paper, the two prognostic mod-
els constructed were validated separately in advanced 
HER2 + patients to compare the differences in their effi-
cacy in overall patients and subgroups of patients.

This study followed the “ABCD” criteria for model vali-
dation in the comprehensive evaluation system of clini-
cal prediction models [25, 26]; and conducted a thorough 
evaluation of the efficacy of the constructed LR and HBN 
models to analyze whether the HBN model based on the 
L_DVBN algorithm was superior to the traditional LR 
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model and their performance in the whole patients and 
subgroups, which provided basic ideas for the construc-
tion, evaluation, and study of the applicable population of 
breast cancer prognostic models in the future.

Related work
Past studies commonly used Logistic Regression (LR), 
Cox regression, and the Kaplan-Meier test for survival 
prediction of tumor patients [27–29]. The development 
of big medical data and electronic medical record sys-
tems makes machine learning models applied to breast 
cancer patients’ diagnosis, recurrence, lymph node 
metastasis, and survival outcome prediction [30].

Research has built a diagnosis model for breast can-
cer using feature selection procedures to select the most 
valuable feature, 13 classification algorithms including 
Gaussian Naive Bayes and Gaussian Naive Bayes. Model 
that used logistics regression feature selection procedure 
and Multilayer Perceptron (MLP) classifier performed 
best [31]. Jose et al. [32]used decision trees based on 
control of induction by sample division method to select 
prognosis factors for different time intervals during the 
follow-up time of the patients. Then input prognostic 
factors into specific topologies of neural network systems 
to obtain good accuracy of the classification probabil-
ity of breast cancer patients. Kim et al. [33] constructed 
a prognostic model based on support vector machine 
(SVM) for predicting breast cancer recurrence within 
five years after breast cancer surgery in the Korean popu-
lation. Compared with well-known models(St. Gallen 
guidelines, NPI, and Adjuvant! Online), SVM has a high 
degree of differentiation. Gaosen et al. [34] 10 machine 
learning models, including naive Bayesian network to 
predict sentinel lymph node for evaluating the preopera-
tive diagnostic value of ultrasound signs of breast cancer 
lesions for sentinel lymph node (SLN) metastasis. The 
study also used SHapley Additive exPlanation (SHAP) to 
visualize the diagnostic process of the ML model. Wang 
et al. [35] used logistics regression and C5 Decision 
Trees(DT) based on the Synthetic minority oversampling 
technique (SMOTE) and Synthetic minority oversam-
pling technique(PSO)to predict the 5-year survival rate 
of patients with breast cancer. SMOTE algorithm was 
used to handle unbalanced data; PSO algorithm was used 
for feature selection. Durson et al. constructed ANN, 
DT, and logistics regression. They found that the DT is 
the best predictor with 93.6% accuracy on the holdout 
sample. Artificial neural networks came out to be the sec-
ond with 91.2% accuracy. They are all better than logistics 
regression(89.2% accuracy).

Considering many models, such as artificial neural 
network work as black boxes with a lack of explainabil-
ity, Some studies try to combine Bayesian network with 
these “black boxes” models. Nurduman et al. combined 

Convolutional Neural Networks and Bayesian Networks 
with IR thermal images to achieve good diagnostic accu-
racy from a dataset of images and data [36]. The accu-
racy, accuracy, sensitivity, and specificity of the model 
are all above 90%. Jong et al. developed a hybrid Bayes-
ian network model to predict breast cancer prognosis. By 
inserting the confidence value of the neural network as a 
node into the hybrid Bayesian network model, the hybrid 
Bayesian network is both highly accurate and interpre-
table. The AUC of the HBN model is 0.935, higher than 
that of the neural network and Bayesian network [37].

There are also some research innovations in data 
sources, missing value interpolation methods, and dis-
cretization when building Bayesian network. There have 
been research developed Bayesian networks to integrate 
clinical and microarray data. The results show that using 
two types of data together outperforms the indices based 
on clinical data. The AUC of the model is higher than 0.8, 
indicating that the Bayesian network model can reason-
ably predict whether the prognosis of patients is good 
or poor [38]. In addition, Some studies have used Bayes-
ian network to input missing values of discrete fields 
in combination with Tensor factorization to improve 
interpolation accuracy [39]. Friedman et al. proposed 
discretization of continuous variables based on MDL 
principle when building Bayesian network. They use the 
MDL principle to select the threshold values while learn-
ing the Bayesian network structure for discretization. 
This method balances the completeness of the disper-
sion and Goodness of fit of the structure. Friedman et al. 
proposed discretization of continuous variables based on 
MDL principle when building Bayesian network. They 
use the MDL principle to select the threshold values 
while learning the Bayesian network structure for dis-
cretization. This method balances the completeness of 
the dispersion and Goodness of fit of the structure (16).

This study combines Bayesian network with L_ DVBN 
algorithm is combined to build a hybrid Bayesian net-
work. Pass L_ DVBN algorithm can better discretize the 
variables on the discretization variable Markov blanket 
and then improve the accuracy of the prediction model.

Method
Study population
The data of breast cancer patients in this article were 
obtained from the incidence data in the Surveillance, 
Epidemiology, and End Results (SEER) database: SEER 
Research Plus Data, 8 Registries, Nov 2021 Sub (1975–
2019) and SEER Research Plus Data, 12 Registries, 
Nov 2021 Sub (1992–2019), The SEER data files were 
requested through the SEER web site (http://www.seer.
cancer.gov). Access to the data in this study was obtained 
by signing the SEER data study protocol and therefore 
did not require ethics committee approval or informed 

http://www.seer.cancer.gov
http://www.seer.cancer.gov
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consent. Table 1 shows data inclusion criteria and exclu-
sion criteria.

Measurements
Referring to AJCC guidelines, CS tumor information col-
lection system, and related literature, 17 study variables 
were extracted in SEER: Age, Stage, Tumor size, Primary 
site, Race, Marital status, Grade, Histologic Type ICD-O-
3, ER Status, PR Status, Radiation, Laterality, CS lymph 
nodes, RX Summ–Surg Prim Site, Chemotherapy recode, 
EOD Mets, and Subtype, with the two variables Age and 
Tumor size being continuous variables and the rest being 
categorical variables.

The 5-year survival of breast cancer patients is an 
important indicator to evaluate the prognostic effect. 
However, the prognosis of the advanced HER2 + sub-
group is poor. The existing studies for this subgroup have 
also used 1-year survival to evaluate the prognostic effect 
of a specific treatment. In this paper, the 18-months sur-
vival of breast cancer patients is used as an outcome indi-
cator to evaluate the effect of the prediction model. The 
original variable “Survival Months” more than or equal 
to 18 months is considered as “survival”, and less than 18 
months is considered as “death”.

Features selection
Univariate analysis was conducted to identify significant 
differences between the survival and death groups using 
univariate logistics regression, chi-square test, or Fisher’s 
exact test. If variables were not significant in univariate 
analysis, other features were additionally selected based 
on expert advice and published literature. Variables that 
did not conform to normal distribution were expressed 
as median (M) and quartiles (P25, P75), and univariate 
logistics regression was used for comparison between 
groups; count data were expressed as composition ratio, 
and the chi-square test or Fisher’s exact test was used for 
comparison between groups.

Data pre-processing
Data pre-processing was performed using Rstudio 4.2.0. 
The main steps included variable recoding, visualization 

of missing data using the VIM package, interpolation of 
missing data by multiple interpolations using the mice 
package, and sample balancing using the DMwR package. 
The final sample size was 31,131.

Model development
A multivariate LR prognostic model was con-
structed using stepwise (forward-backward method) 
with α_in = 0.10 and α_out = 0.15. A hybrid Bayesian 
network(HBN) model was constructed using the Learn-
ing Discrete Valued Bayesian Networks (L_DVBN) algo-
rithm proposed by Chen et al. [19].

Model effect evaluation
The internal validation of the model was performed using 
the leave-out method, dividing the sample into the train-
ing set and testing set according to 7:3, using the train-
ing set to construct two prediction models, and using 
the testing set to internally validate the constructed 
model, selecting the incidence data from the SEER data-
base: SEER Research Plus Data, 12 Registries, Nov 2021 
Sub (1992–2019) with a diagnosis time of 2019 and in 
registries different from the internal validation data for 
external validation. The external validation sample size 
was 20,320. The pROC package was used to do the Area 
Under Curve (AUC) of the Receiver Operating Char-
acteristic Curve (ROC) to evaluate the accuracy of the 
model, the rms package was used to plot the calibration 
curve to evaluate the calibration of the model, and the 
dca function (from the website: https://www.mskcc.org/
departments/epidemiology-biostatistics/biostatistics/) 
was used to plot the DCA decision curve to evaluate the 
net benefit of the model for clinical decision making, to 
compare the efficacy of the two models comprehensively.

Subgroup analysis
Human epidermal growth factor receptor 2 (HER2)-pos-
itive breast cancer is a common subtype of breast cancer 
with a worse prognosis than HER2- patients. Therefore, 
the constructed multivariable logistic regression predic-
tion model and the HBN model were externally validated 
in the advanced HER2 + patients with a sample size of 
n = 1390, and the results of the external validation were 
compared with those of the overall patients to evaluate 
the predictive effect of the two prediction models in this 
subgroup of the patients.

Results
Basic characteristics of the research object
Based on inclusion and exclusion criteria, Data from 
SEER Research Plus Data, 8 Registries, Nov 2021 Sub 
(1975–2019) with a diagnosis time of 2018 (n = 15,053) 
were used for model construction and internal valida-
tion. Data from SEER Research Plus Data, 12 Registries, 

Table 1 Data inclusion and exclusion criteria
Inclusion criteria Exclusion criteria
• Female • Died due to 

other diseases

• Diagnosed in 2018 or 2019 • With death 
certificate only

• ICD-O-3 disease codes 
8500/8507/8520–8524/8530/8540–8543

• Lost to follow-up

• ICD-O-3 behavior codes 3 • Unknown cause 
of death

• Only one primary site

• Positive pathological diagnosis

https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/
https://www.mskcc.org/departments/epidemiology-biostatistics/biostatistics/
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Nov 2021 Sub (1992–2019) with a diagnosis time of 2019 
(n = 5871) were used for external validation of the model. 
Due to the data imbalance, the 2018 data were bal-
anced using the SMOTE algorithm of the DMwR pack-
age so that survival and death cases accounted for 50% 
of the total. The balanced data were randomly allocated 
as training set (n = 16,370) and testing set (n = 7014) with 
a ratio of 7:3. External validation was done using data 
from 2019 after sample balancing by SMOTE algorithm 
(n = 8128). Cases with T3 or T4 and positive HER2 recep-
tor (n = 395) were screened in the 2019 data for subgroup 
analysis. The datasets used were summarized in Table 2.

Distribution of survival outcomes in populations with 
different characteristics
Univariate analyses of the relationship between baseline 
patient characteristics and survival outcomes were per-
formed. The age of patients in the survival group was 
61.0 [51.0, 70.0] years and 60.0 [51.0;66.0]years in the 
death group, and the difference in age between the two 
groups was not statistically significant, i.e., p > 0.05. 
The tumor size was 17.0 [10.0;28.0] mm in the survival 
group and 23.0 [15.0;36.0] mm in the death group, and 
the difference between the two groups was statistically 
significant, i.e., p < 0.001. The differences in the distribu-
tion of benign and malignant pulmonary nodules among 
different ages, tumor size, pathological types, radiother-
apy, surgery, chemotherapy, distant metastasis status, 
subtype, clinical stage, ER receptor, PR receptor, clinical 
grade, primary site, race, marital status, laterality, and 
lymph node metastasis status were statistically signifi-
cant(p < 0.05), as shown in Table 3.

LR model and HBN model construction and effect 
evaluation
LR model construction
A prognostic model was constructed using the training 
set with the outcome variables (0 = death, 1 = survival). 
Based on expert experience and previous studies, it was 
concluded that age also affects patient prognosis, so vari-
ables statistically significant in the univariate analysis and 
age were used as independent variables in stepwise logis-
tic regression. According to α_in = 0.10 and α_out = 0.15 
criteria, pathological type, radiotherapy, surgery, che-
motherapy, distant metastasis status, subtype, clinical 
stage, ER receptor, PR receptor, clinical grade, primary 
site, race, marital status, tumor laterality, lymph node 

metastasis was statistically significant and included in the 
final model (Table 4).

HBN model construction
Seventeen significant variables for univariate analysis 
were included in the HBN model. The L_DVBN algo-
rithm was implemented using Julia 0.4.7 software, and 
the bnlearn package in Rstudio was used for structure 
and parameter learning of the HBN model. Structure 
learning uses the forbidden search method, and param-
eter learning uses Bayesian estimation. In the BN model, 
the node from which the arrow emanates is called the 
parent node, and the node to which the arrow points 
is called the child node. When the Markov blanket of 
a node is given, i.e., the values of the parent, child, and 
child’s parent of that node are given, the node is indepen-
dent of all other nodes. Based on the above properties, 
the determination of survival of breast cancer patients is 
closely related to age, tumor size, subtype, primary site, 
surgery, radiotherapy, chemotherapy, PR receptor, ER 
receptor, pathological type, tumor grade and stage, and 
indirectly or conditionally independent of factors such 
as laterality, and there is a correlation between the fac-
tors (Fig. 1). Strength of arcs between outcome and other 
variables can be calculated by “arc.strength” function in 
“bnlearn” package.

Evaluation of the effect of LR model and HBN model
The model’s predictive performance is evaluated using 
the testing set for internal validation, and the ROC curve 
is plotted to evaluate the model’s accuracy. The AUC 
(specificity, sensitivity) of the LR model and the HBN 
model on the testing set were 0.831(0.884,0.715) and 
0.900(0.963,0.772), respectively (Supplementary Figs.  1–
2, Additional File 1), and the accuracy of the HBN model 
was slightly higher than that of the LR model. The differ-
ence is statistically significant using the Delong test for 
the two ROC curves, P < 0.001. The calibration curves 
were drawn to evaluate the calibration of the models 
The calibration curves showed that the errors between 
both model’s predicted and actual values were minor 
and had higher accuracy The calibration curve of the 
HBN model was better than that of the LR model (Sup-
plementary Figs.  3–4, Additional File 1). We performed 
external validation of the constructed models and evalu-
ated the efficacy of the models on external data by draw-
ing ROC, calibration, and DCA clinical decision curves. 
The AUC (specificity, sensitivity) of the LR model and 
HBN model on 2019 data were (0.876,0.637)0.786 and 
(0.948,0.717)0.871, respectively (Supplementary Figs.  5–
6, Additional File 1), P < 0.001, the differences between 
the two ROC curves were statistically significant, and the 
accuracy of the HBN model was still higher than that of 
the LR model. The external validation calibration curves 

Table 2 Summary of datasets
Dataset Sample Size

All(N%) Dead(N%) Survival(N%)
Original data 15,053 11,207 (74.45%) 3846 (25.55%)

External validation data 5871 3839 (65.39%) 2032 (34.61%)

Subgroup analysis data 395 276 (69.87%) 119 (30.13%)
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Characteristics Outcome p value
Survival
N = 29,230(%)

Dead
N = 29,230(%)

Age (year) 61.0 [51.0;70.0] 60.0 [51.0;66.0] <0.001***

Tumor Size (mm) 17.0 [10.0;28.0] 23.0 [15.0;36.0] 0.000***

Radiation <0.001***

Beam radiation 18,072 (61.8%) 14,449 (49.4%)

Radioactive implants 432 (1.48%) 451 (1.54%)

Others 10,726 (36.7%) 14,330 (49.0%)

Surg 0.000***

No 2119 (7.25%) 9845 (33.7%)

Yes 27,111 (92.8%) 19,385 (66.3%)

Chemotherapy 0.000***

No 18,207 (62.3%) 13,326 (45.6%)

Yes 11,023 (37.7%) 15,904 (54.4%)

Mets 0.000***

No distant metastasis 27,891 (95.4%) 18,461 (63.2%)

No evidence of distant mets 43 (0.15%) 47 (0.16%)

Distant lymph node(s) 129 (0.44%) 759 (2.60%)

Others 1167 (3.99%) 9963 (34.1%)

Subtype 0.000***

HR-/HER2- 2856 (9.77%) 5186 (17.7%)

HR-/HER2+ 1119 (3.83%) 1575 (5.39%)

HR+/HER2- 22,302 (76.3%) 17,406 (59.5%)

HR+/HER2+ 2953 (10.1%) 5063 (17.3%)

Stage 0.000***

1 A 16,899 (57.8%) 10,961 (37.5%)

1B 4841 (16.6%) 3438 (11.8%)

2 A 2849 (9.75%) 1962 (6.71%)

2B 1446 (4.95%) 1012 (3.46%)

3 A 792 (2.71%) 448 (1.53%)

3B 727 (2.49%) 436 (1.49%)

3 C 380 (1.30%) 291 (1.00%)

4 1296 (4.43%) 10,682 (36.5%)

ER <0.001***

Negative 4283 (14.7%) 7759 (26.5%)

Positive 24,947 (85.3%) 21,471 (73.5%)

PR <0.001***

Negative 7288 (24.9%) 10,934 (37.4%)

Positive 21,942 (75.1%) 18,296 (62.6%)

Histologic 0.000***

8500 24,910 (85.2%) 20,488 (70.1%)

8507 97 (0.33%) 370 (1.27%)

8520 or 8521 2992 (10.2%) 4080 (14.0%)

8522 1041 (3.56%) 2777 (9.50%)

8523 or 8524 135 (0.46%) 219 (0.75%)

8530 31 (0.11%) 1238 (4.24%)

Others 24 (0.08%) 58 (0.20%)

Grade 0.000***

1 6392 (21.9%) 4349 (14.9%)

2 10,701 (36.6%) 7738 (26.5%)

3 5282 (18.1%) 4281 (14.6%)

4 6855 (23.5%) 12,862 (44.0%)

Site 0.000***

C501 1309 (4.48%) 1727 (5.91%)

Table 3 Distribution of survival outcomes in populations with different features
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(Supplementary Figs. 7–8, Additional File 1) were plotted 
The survival of confirmed patients in 2019 predicted by 
the model can be obtained from the graphs with a high 
agreement with the actual observed values. The external 
validation DCA curves of both models are shown in Sup-
plementary Figs. 9–10, Additional File 1, which show that 
the net benefit of clinical decision-making according to 
the prediction model is higher than that of all-treatment 
or no-treatment, indicating that the model has a higher 
practical use in clinical decision making and can also 
produce a better net clinical benefit if applied to other 
breast cancer populations. The net benefit of the HBN 

model was higher than that of the LR model. A compari-
son of the ROC, calibration, and DCA decision curves for 
the internal and external validation of the two models is 
shown in Figs. 2 and 3. The accuracy, sensitivity, specific-
ity, net clinical benefit, and calibration of the internal val-
idation of the HBN model were all the better than those 
of the logistic regression model, except for the calibration 
of the external validation, which was slightly lower than 
that of the logistic regression model. The HBN model 
performed better.

Characteristics Outcome p value
Survival
N = 29,230(%)

Dead
N = 29,230(%)

C502 3985 (13.6%) 2916 (9.98%)

C503 1629 (5.57%) 1226 (4.19%)

C504 10,291 (35.2%) 10,142 (34.7%)

C505 2398 (8.20%) 1420 (4.86%)

C508 6938 (23.7%) 6190 (21.2%)

C509 2680 (9.17%) 5609 (19.2%)

Race 0.000***

White 22,030 (75.4%) 17,832 (61.0%)

Black 2719 (9.30%) 6324 (21.6%)

Others 4481 (15.3%) 5074 (17.4%)

Marital 0.000***

Married 18,114 (62.0%) 14,102 (48.2%)

Divorced 3115 (10.7%) 3195 (10.9%)

Separated 209 (0.72%) 664 (2.27%)

Single 4428 (15.1%) 8093 (27.7%)

Unmarried or Domestic Partner 302 (1.03%) 340 (1.16%)

Widowed 3062 (10.5%) 2836 (9.70%)

Laterality <0.001***

Left - origin of primary 14,886 (50.9%) 13,596 (46.5%)

Right - origin of primary 14,344 (49.1%) 15,634 (53.5%)

Node < 0.001***

0 6995 (23.9%) 5838 (20.0%)

1 13,616 (46.6%) 8923 (30.5%)

2 1056 (3.6%) 710 (2.4%)

3 1967 (6.7%) 5946 (20.3%)

4 4418 (15.1) 4123 (14.1%)

5 204 (0.7%) 119 (0.4%)

6 112 (0.4%) 136 (0.5%)

7 199 (0.7%) 921 (3.2%)

8 14 (0.0%) 30 (0.1%)

9 160 (0.5%) 174 (0.6%)

10 162 (0.6%) 757 (2.6%)

11 156 (0.5%) 1083 (3.7%)

12 171 (0.6%) 470 (1.6%)
*means P ≤  0.05; **means P ≤  0.01; ***means P ≤  0.001

Surg, Primary Site Surgery; Nodes, Lymph Node; Mets, Distant Metastasis; ER, Estrogen Receptor; PR, Progesterone Receptor; Histologic, Histologic Type; Site, 
Primary Site

Table 3 (continued) 
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Characteristics β s−
x Waldχ2 OR [95%CI] p value

Age -0.006 0.001 -5.540 0.994 [0.992, 0.996] < 0.001***

Tumor Size (mm) 0.001 0.001 1.665 1.001 [1.000, 1.003] < 0.001***

Radiation

Beam radiation 1.000

Radioactive implants 0.639 0.097 6.565 1.895 [1.565,2.292] < 0.001***

Others 0.105 0.026 4.078 1.110 [1.056,1.168] < 0.001***

Surg

No 1.000

Yes -0.881 0.039 -22.842 0.414 [0.384, 0.447] < 0.001***

Chemotherapy

No 1.000

Yes 0.207 0.030 6.974 1.230 [1.161, 1.304] < 0.001***

Nodes

0 1.000

1 -0.127 0.032 -3.901 0.881 [0.827, 0.939] < 0.001***

2 0.059 0.072 0.818 1.061 [0.920, 1.221] 0.414

3 0.371 0.048 7.735 1.449 [1.319, 1.592] < 0.001***

4 0.296 0.042 7.047 1.345 [1.239, 1.461] < 0.001***

5 -0.238 0.164 -1.452 0.788 [0.569, 1.082] 0.146

6 0.790 0.183 4.327 2.203 [1.539, 3.151] < 0.001***

7 1.025 0.113 9.050 2.787 [2.238, 3.490] < 0.001***

8 -0.424 0.482 -0.880 0.655 [0.257, 1.707] 0.379

9 0.001 0.180 0.003 1.001 [0.703, 1.425] 0.997

10 0.771 0.125 6.183 2.161 [1.698, 2.769] < 0.001***

11 1.240 0.118 10.552 3.457 [2.756, 4.371] < 0.001***

12 0.573 0.135 4.237 1.773 [1.363, 2.316] < 0.001***

Mets

No distant metastasis 1.000

No evidence of distant mets 0.618 0.268 2.309 1.855 [1.094, 3.137] 0.021*

Distant lymph node(s) 1.144 0.130 8.818 3.139 [2.447, 4.071] < 0.001***

Others 1.413 0.044 31.957 4.110 [3.770, 4.484] < 0.001***

Subtype

HR-/HER2- 1.000

 h-/HER2+ -0.244 0.064 -3.804 0.783 [0.690, 0.888] < 0.001***

HR+/HER2- -0.428 0.048 -8.895 0.652 [0.593, 0.716] < 0.001***

HR+/HER2+ -0.003 0.056 -0.050 0.997 [0.893, 1.114] 0.96

Stage

1 A 1.000

1B -0.323 0.039 -8.227 0.724 [0.670, 0.782] < 0.001***

2 A -0.497 0.049 -10.203 0.608 [0.553, 0.669] < 0.001***

2B -0.698 0.065 -10.786 0.497 [0.438, 0.565] < 0.001***

3 A -0.941 0.087 -10.851 0.390 [0.329, 0.462] < 0.001***

3B -1.139 0.091 -12.552 0.320 [0.268, 0.382] < 0.001***

3 C -1.292 0.116 -11.121 0.275 [0.218, 0.345] < 0.001***

4 1.192 0.046 25.926 3.294 [3.012, 3.606] < 0.001***

ER

Negative 1.000

Positive -0.395 0.042 -9.476 0.674 [0.621, 0.731] < 0.001***

PR

Negative 1.000

Positive -0.258 0.032 -8.147 0.773 [0.726, 0.822] < 0.001***

Histologic

8500 1.000

Table 4 LR model for predicting survival outcomes
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Subgroup analysis of advanced HER2 + patients
The LR model and the HBN model were externally 
validated in advanced HER2 + patients to compare the 
predictive effect of the two prognostic models in this 
subgroup of patients. In addition, to compare whether 
there is a difference in the predictive efficacy between 
the overall breast cancer patients and the subgroup of 
patients defined in this study. The results of the sub-
group analysis are shown in Figs. 4 and 5. the AUC (sen-
sitivity, specificity) of the LR model and HBN model 
validated in the overall patients and subgroup were 
0.786(0.876,0.637), 0.871(0.948,0.717), 0.601(0.663,0.630), 
0.813 (0.855,0.669). Besides, the differentiation index 
of the two models in overall and subgroup patients is 
summarized in Table 5. The results found that the HBN 
model was significantly more effective than the logistic 

regression prediction model in this subgroup of the pop-
ulation in terms of accuracy, calibration, and net clinical 
benefit. However, the predictive efficacy of either model 
decreased in advanced HER2 + patients, i.e., accuracy, 
calibration, and net clinical decision benefit WAS inferior 
to survival prediction in the overall breast cancer patient 
population. However, comparing Figs.  2, 3 and 4, it can 
be observed that the difference in the efficacy of the two 
models is more significant when predicting advanced 
HER2 + patients than overall breast cancer patients. 
Therefore, the HBN model has a higher robustness and 
a more stable predictive performance in the subgroup 
population.

Characteristics β s−
x Waldχ2 OR [95%CI] p value

8507 1.725 0.152 11.381 5.614 [4.195, 7.607] < 0.001***

8520 or 8521 0.644 0.038 17.015 1.904 [1.768, 2.051] < 0.001***

8522 1.110 0.053 21.113 3.036 [2.739, 3.366] < 0.001***

8523 or 8524 1.050 0.147 7.131 2.858 [2.143, 3.820] < 0.001***

8530 2.872 0.218 13.148 17.675 [11.795, 27.880] < 0.001***

Others 1.186 0.303 3.916 3.273 [1.833, 6.047] < 0.001***

Grade

1 1.000

2 -0.094 0.036 -2.581 0.911 [0.848, 0.978] 0.01

3 -0.043 0.045 -0.957 0.957 [0.876, 1.047] 0.339

4 -0.028 0.043 -0.659 0.972 [0.894, 1.057] 0.51

Site

C501 1.000

C502 -0.379 0.064 -5.905 0.685 [0.604, 0.776] < 0.001***

C503 -0.349 0.077 -4.561 0.705 [0.607, 0.819] < 0.001***

C504 -0.217 0.057 -3.785 0.805 [0.719, 0.901] < 0.001***

C505 -0.572 0.072 -7.898 0.564 [0.489, 0.650] < 0.001***

C508 -0.309 0.059 -5.208 0.734 [0.653, 0.825] < 0.001***

C509 0.101 0.064 1.591 1.107 [0.977, 1.254] 0.112

Race

White 1.000

Black 0.620 0.036 17.003 1.859 [1.731, 1.997] < 0.001***

Others 0.246 0.033 7.368 1.279 [1.198, 1.365] < 0.001***

Marital

Married 1.000

Divorced 0.166 0.040 4.169 1.181 [1.092, 1.276] < 0.001***

Separated 0.685 0.113 6.053 1.985 [1.592, 2.483] < 0.001***

Single 0.427 0.032 13.327 1.532 [1.439, 1.631] < 0.001***

Unmarried or Domestic Partner 0.203 0.119 1.704 1.224 [0.969, 1.545] 0.088

Widowed 0.042 0.044 0.942 1.043 [0.956, 1.137] 0.346

Laterality

Left - origin of primary 1.000

Right - origin of primary 0.089 0.024 3.674 1.094 [1.043, 1.147] < 0.001***

* means P ≤  0.05; ** means P ≤  0.01; *** means P ≤  0.001

Surg, Primary Site Surgery; Nodes, Lymph Node; Mets, Distant Metastasis; ER, Estrogen Receptor; PR, Progesterone Receptor; Histologic, Histologic Type; Site, 
Primary Site

Table 4 (continued) 
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Discussion
In this study, we combined information on the demo-
graphic characteristics of breast cancer patients, stage 
and grade of disease, and treatment history to con-
struct the LR model and HBN model to predict the 
18-month survival rate of breast cancer patients and 
HBN + advanced patients. There were 18 nodes in the 
model related to survival status (Age, Stage, Tumor size, 
Primary site, Race, Marital status, Grade, Histologic Type 
ICD-O-3, ER Status, PR Status, Radiation Laterality, CS 
lymph nodes, RX Primary Site, Chemotherapy, EOD 
Mets, Subtype). The HBN model had better predictive 
accuracy, calibration, and net benefit of clinical deci-
sion than the multivariable LR model in both the over-
all and subgroup, with better predictive performance. As 
in previous studies, factors such as race, stage, subtype, 
ER receptor, PR receptor, and lymph node metastasis 
affect long-term survival [40–42] These relationships are 

reflected in the Bayesian network model in the form of an 
arc between two nodes.

Clinical decision analysis can reflect the net benefits 
of making decisions based on the model results. The 
decision curves of the two models constructed in this 
study are superior to those of “treat all” and “treat none”. 
Regardless of the ratio between the benefits of success-
fully identifying survival patients (true positive) and the 
losses of incorrectly identifying survival patients (false 
positive), using predictive results to determine whether 
to intervene always brings net benefits. Therefore, 
appropriate interventions can be selected based on the 
patient’s predicted results. For example, active individu-
alized treatment should be implemented for patients with 
a high likelihood of 18-month survival based on their 
disease status; For patients with a low probability of sur-
vival, if they have not received surgery, radiotherapy, or 
chemotherapy, timely intervention should also be taken; 

Fig. 1 Structure of HBN model
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If the patient has already intervened in treatment, they 
can choose palliative treatment or tranquilization ther-
apy, which can avoid not only unnecessary pain caused 
by treatment, but also avoid excessive medical treat-
ment and waste of medical resources. In practice, it is 
more important to identify as many patients with poorer 
prognoses as possible and intervene in their treatment 
on time. In this study, The specificity of the model is 
relatively high, so it can accurately identify patients with 
poor prognoses.

As in previous studies, factors such as race, stage, 
subtype, ER receptor, PR receptor, and lymph node 
metastasis affect long-term survival [38–40], and these 
relationships are reflected in the Bayesian network 
model in the form of an arc between two nodes. Com-
pared with the traditional logistics model, the Bayes-
ian network has several advantages. First, there is an 
association between risk factors, clinical characteristics, 
and disease. In logistic regression, the variables must be 
independent, and a linear relationship between the inde-
pendent and dependent variables is required [43], which 

sometimes differs from the actual situation. Nevertheless 
Bayesian networks have no strict requirements for statis-
tical assumptions and can reveal multifactorial and mul-
tilevel interactions. Secondly, Bayesian networks show 
these relationships graphically, which is more concise 
and clear than correlation coefficients, multivariate cor-
relation line graphs, etc. Traditional Bayesian networks 
are only applicable to discrete variables; if there are con-
tinuous variables, the common practice is to discretize 
them before modeling based on medical reference values 
or algorithms, which makes model construction simpler 
but does not take into account the interplay between 
discretization and modeling processes, and the original 
information is easily lost. The hybrid Bayesian network 
based on the L_DVBN algorithm combines the discreti-
zation process of continuous variables with the Bayes-
ian network learning process to incorporate continuous 
variables, making full use of the original data and ensur-
ing the rationality of discretization [19]. In this study, 
the HBN model exhibited higher model efficacy than 
the traditional logistic model, similar to the results of 

Fig. 2 Comparison of ROC curves and calibration curves of LR model and HBN model
a ROC curve for internal validation of LR model and HBN model, b calibration curve for internal validation of LR model and HBN model, c ROC curve for 
external validation of LR model and HBN model, d calibration curve for external validation of LR model and HBN model
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some previous studies. In addition, when the constructed 
model was applied to the subgroup population for pre-
diction, the difference between the accuracy and the net 
clinical benefit of the two models widened, and the HBN 
model showed better robustness.

The most common nonparametric method for esti-
mating the survival distribution is the Kaplan-Meier 
(K-M) estimate [44, 45]. Using the Kaplan Meier esti-
mate to plot survival curves and the Log Rank test to 

evaluate survival differences between two groups is a 
commonly used univariate analysis method for survival 
data. For example, the study have compared the survival 
rate between patients with adenocarcinoma of the lung 
to receive either oral uracil tetrafur for two years or no 
treatment using the Kaplan Meier method and Log Rank 
test. This study found that the difference in overall sur-
vival between the two groups was statistically significant 

Fig. 5 DCA for external validation of LR and HBN model in subgroup
The abscissa is the threshold probability, and the ordinate is the net ben-
efit rate. None: overall death occurred in no patients, with a net benefit of 
zero; All: all patients will have overall death at a specific threshold prob-
ability; logistics: the net benefit when using the LR model as a basis for 
decision; HBN: the net benefit when using the HBN model as a basis for 
decision

 

Fig. 4 ROC curve and DCA for external validation of LR and HBN model in subgroup
a HBN in sub: ROC curve for HBN model in the subgroup patients; LR in sub: ROC curve for LR model in the subgroup patients; LR in all: ROC curve for LR 
model in the overall patients; HBN in all: ROC curve for HBN model in the overall patients, b Calibration curve for external validation of LR and HBN model 
in subgroup

 

Fig. 3 DCA for external validation of LR model and HBN model
The abscissa is the threshold probability, and the ordinate is the net ben-
efit rate. None: overall death occurred in no patients, with a net benefit of 
zero; All: all patients will have overall death at a specific threshold probabil-
ity; HBN: the net benefit when using the HBN model as a basis for decision; 
logistics: the net benefit when using the LR model as a basis for decision
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in favor of the uracil-tegafur group [46]. The K-M curve 
and Log Rank test can only be used for univariate anal-
ysis, but the Cox portational hazards(Cox) model can 
simultaneously analyze the impact of multivariate analy-
sis on outcome events. In addition, Cox regression can 
also predict survival probability, which is the same as the 
role of the logistic regression prediction model in this 
regard [28]. Although we uses survival data, we focus 
on whether the patient will survive after 18 months, so 
we choose the logistic regression and Bayesian network 
prediction model. In previous studies on predictive mod-
els for subgroup analysis, most models were constructed 
using the whole population and validated and evaluated 
in both the whole and subgroup populations [47], and 
few models were constructed and validated using sub-
group populations [48]. The model was constructed from 
the overall population and validated in both the overall 
population and subgroups to determine the ideal popu-
lation for the model. xuezhi et al. used multiparametric 
magnetic resonance imaging (MRI) radiological signals 
to predict lymph node status after neoadjuvant therapy. 
They applied the prediction model to the T1-2 and T3-4 
populations, respectively. The results showed that the 
overall population’ negative predictive value (NPV) was 
93.7%. The NPVs of the T1-2 and T3-4 subgroups were 
100 and 87.8%, respectively, which were generally con-
sistent with the results of this study. That is, the pre-
dictive models constructed using the overall patients 
showed different model performances when validated 
in different subgroups, with lower predictive perfor-
mance for advanced or high-risk patients and higher 
predictive performance for early-stage patients. Predic-
tive efficiency was higher in early-stage patients. Previ-
ous studies have also concluded that prognostic models 
perform well in training cohorts but are less accurate 
in high-risk patients, younger or older patients [49]. 
Possible reasons are that factors such as demographic 
characteristics and disease characteristics are not suf-
ficient to predict survival very accurately in advanced 
HER2 + patients and that the treatment modality taken 
by the patient is also an important influencing factor, for 
example, treatment with one or more drugs such as pyr-
rolizidine, docetaxel, trastuzumab, or drug combination 

with neoadjuvant therapy can effectively improve the 
prognosis of HER2 + patients [7]. Since HER2 + patients 
are relatively few, accounting for only 15–20% of breast 
cancer patients [4], deviations in their survival estimates 
may not affect the model’s overall accuracy. Nevertheless, 
from an individual perspective, overestimation or under-
estimation of survival may alter the treatment modalities 
and treatments adopted by patients and physicians, with 
serious consequences [50, 51].

From the network structure and arc strength (Supple-
mentary Tables 1, Additional File 1), it can be seen that 17 
variables have a direct impact on survival outcomes. The 
most influential factors are stage and distance metasta-
sis status, severity, PR receiver, ER receiver, lymph node, 
tumor size, historical type, and grade. Other variables 
have less impact on the outcome. The HBN model has 
high sensitivity and specificity, especially its specificity.

There are also some limitations in this study. First, the 
data used in this study for both internal and external 
validation were from the SEER database. However, exter-
nal validation in real-world data would have been more 
indicative of the extrapolation of the model. Secondly, 
the data follow-up time was short and only predicted the 
survival rate of breast cancer patients at one year, and it 
might be more meaningful to add the prediction results 
at three and five years. Again, there were fewer continu-
ous variables, only age and tumor size, which could not 
fully reflect the advantages of the hybrid Bayesian net-
work. Finally, in the SEER data, “none” and “unknown” 
are combined into one category in variables such as che-
motherapy and radiotherapy, so we cannot ignore the 
omission.

Conclusion
In conclusion, the hybrid Bayesian network model for 
breast cancer represents the interaction between disease 
and factors in a graphical form intuitively and reasonably 
and has high predictive accuracy, which can assist clinical 
decision-making and improve the net benefit of disease 
treatment.

List of abbreviations
HBN  Hybrid Bayesian Network
LR  Logistics Regression

Table 5 Differentiation index of LR and HBN model
Model ACC TPR TNR PPV NPV

Internal Validation LR 0.80 0.71 0.88 0.87 0.75

HBN 0.87 0.77 0.96 0.95 0.81

External Validation LR 0.76 0.64 0.88 0.84 0.71

HBN 0.83 0.72 0.95 0.93 0.77

Subgroup Analysis LR 0.65 0.63 0.66 0.65 0.64

HBN 0.76 0.86 0.67 0.82 0.72
LR, Logistic regression; HBN, Hybrid bayesian network; ACC, Accuracy; TPR, True positive rate; TNR, True negative rate; PPV, Positive predictive value; NPV, Negative 
predictive value
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HER2  Human Epidermal Growth Factor Receptor-2
RF  Random Forest
ANN  Artificial Neural Network
DT  Decision Tree
SVM  Support Vector Machine
BN  Bayesian Network
SEER  The Surveillance, Epidemiology, and End Results
CGBNs  The Conditional Gaussian Bayesian network
L_DVBN  The Learning Discrete Valued Bayesian Networks
AUC  Area Under Curve
ROC  Receiver Operating Characteristic
DCA  Decision Curve Analysis
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