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Abstract 

Background  Histological assessment of smooth muscle is a critical step particularly in staging malignant tumors 
in various internal organs including  the urinary bladder. Nonetheless, manual segmentation and classification of mus-
cular tissues by pathologists is often challenging. Therefore, a fully automated and reliable smooth muscle image 
segmentation system is in high demand.

Methods  To characterize muscle fibers in the urinary bladder, including muscularis mucosa (MM) and muscularis 
propria (MP), we assessed 277 histological images from surgical specimens, using two well-known deep learning 
(DL) model groups, one including VGG16, ResNet18, SqueezeNet, and MobileNetV2, considered as a patch-based 
approach, and the other including U-Net, MA-Net, DeepLabv3 + , and FPN, considered as a pixel-based approach. All 
the trained models in both the groups were evaluated at pixel-level for their performance.

Results  For segmenting MP and non-MP (including MM) regions, MobileNetV2, in the patch-based approach 
and U-Net, in the pixel-based approach outperformed their peers in the groups with mean Jaccard Index equal 
to 0.74 and 0.79, and mean Dice co-efficient equal to 0.82 and 0.88, respectively. We also demonstrated the strengths 
and weaknesses of the models in terms of speed and prediction accuracy.

Conclusions  This work not only creates a benchmark for future development of tools for the histological segmenta-
tion of smooth muscle but also provides an effective DL-based diagnostic system for accurate pathological staging 
of bladder cancer.
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Background
Smooth muscle is present in the wall of the hollow inter-
nal organs such as the blood vessel, gastrointestinal tract, 
and urinary bladder. The bladder wall is mainly composed 
of four layers, starting with the innermost epithelial lin-
ing called urothelium, lamina propria, muscularis propria 
(MP), and the outermost serosa or adventitia. Specifi-
cally, the lamina propria is the subepithelial layer which 
contains fibroblasts/myofibroblasts and capillaries/lym-
phatics, as well as muscularis mucosa (MM), fascicles of 
smooth muscle. Thus, the MM and MP are the two major 
types of smooth muscle fibers seen in the bladder. These 
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fibers typically exhibit distinctive morphological features, 
often showing discontinuous, wispy, wavy fascicles in the 
MM vs. thick muscle bundles in the MP [1].

Bladder cancer, mostly urothelial carcinoma, is one of 
the commonly diagnosed malignancies worldwide [2]. 
There are clinically two distinct types of bladder can-
cer, non-muscle-invasive and muscle-invasive diseases. 
Remarkably, conservative therapy can be offered for 
non-muscle-invasive bladder cancer (NMIBC), includ-
ing stage T1 disease showing tumor extension limited 
to the lamina propria where the MM is present, while 
more aggressive treatment options, such as systematic 
chemotherapy and radical cystectomy (RC), where the 
entire bladder is surgically removed, are often required 
for muscle-invasive bladder cancer (MIBC) with invasion 
into the MP. Thus, the distinction between MM inva-
sion (T1/NMIBC) and MP invasion (MIBC) is critical in 
determining treatment plans. In particular, RC has a sig-
nificant impact on the patient’s quality of life, leading to 
the need for a urinary diversion and permanent urinary 
‘stoma’ over the abdomen.

Histopathological diagnosis of virtually all bladder can-
cers, including MIBC, is first made in the tissues biop-
sied/resected transurethrally. However, in transurethral 
resection (TUR) specimens stained with hematoxylin & 
eosin (H&E), it is often difficult to distinguish between 
the MM, which can be hyperplastic, and the MP, which 
can be partially destroyed or splayed by infiltrating can-
cer [3, 4]. To date, there are no biomarkers that are use-
ful for objectively distinguishing the two types of muscle 
bundles in the bladder [5, 6]. It is thus often challenging 
for pathologists to differentiate between MM invasion 
and MP invasion in TUR specimens under microscope. 
Considering the critical differences in prognosis and 
treatment strategy between MM (NMIBC) and MP 
(MIBC) invasion, accurate detection of MM vs. MP mus-
cle fibers in H&E-stained bladder tissues is of high clini-
cal importance.

The enhanced use of digital pathology and advance-
ment of modern machine learning (ML) and deep 
learning (DL) techniques in the field of medical image 
processing, has proven to improve identification and 
automation of tissue structures/abnormalities in histo-
pathological images [7, 8]. These learning mechanisms 
can be categorized into supervised learning, weakly 
supervised learning, unsupervised learning, and trans-
fer learning [9]. The supervised learning techniques are 
used to (1) identify objects (such as cells, glands, nuclei) 
[10] or make image-level predictions (such as cancer or 
non-cancer) with classification models [11]; (2) localize 
the objects with regression models [12]; or (3) deline-
ate the contour of the objects with segmentation mod-
els [13]. The weakly supervised learning techniques 

exploit image-level annotations (such as cancer or non-
cancer) to infer pixel/patch-level information [14]. That 
is, each histopathological image with cancer/non-can-
cer label forms a ‘bag’ and each patch/pixel extracted 
from that image is referred to as an ‘instance’. The goal 
of weakly supervised learning is to train a classifier with 
bag-level labels to predict both bag-level and instance-
level labels. The unsupervised learning techniques aim 
to learn useful patterns of underlying data structure 
without the use of labels. Several unsupervised learn-
ing techniques are proposed including (1) autoencod-
ers that were used for modeling the stochasticity [15] 
or disentangling visual features [16]; (2) Generative 
Adversarial Networks that were used for cell and tissue 
classification [17]; (3) self-supervised learning meth-
ods that were used to classify and segment histopatho-
logical images [18]. Lastly, transfer learning is typically 
done using ImageNet pretrained models such as Goog-
leNet, Inception-V3, MobileNet to detect breast cancer 
metastasis [19, 20] or predict Gleason score of prostate 
cancers [21].

Within the supervised learning techniques, two cat-
egories of classification models have been employed 
for digital pathology tasks such as cancer detection 
and classification, cancer staging, and survival predic-
tion. Models in the first category focus on patch-based 
classification for disease prediction tasks with whole-
slide-images (WSI) [22–26] using traditional convolu-
tional neural network (CNN) architectures. However, 
these WSIs will be preprocessed and converted to 
patches of defined size and assigned to a particu-
lar class before model training is initiated. Further in 
the paper, we refer these architectures as patch-based 
models. A patch-based pipeline was developed to dif-
ferentiate cancer and normal tissues using WSI from 
breast cancer tissues [27]. Models in the second cate-
gory focus on pixel-wise semantic segmentation of the 
image into regions that belong to different classes [28–
31]. As one of the most successful semantic segmenta-
tion models which we refer to as pixel-based models, 
U-Net has been applied to detect tumors in the lungs 
and brain [32]. In this category, pixel-based CNNs are 
usually applied on an image, where each pixel of the 
image is assigned to a particular class. Although both 
patch-based and pixel-based approaches are success-
ful in classifying and segmenting medical images at 
different scales, direct comparison between them is 
rare. A recent study [33] used patch-based (AlexNet) 
and pixel-based (U-Net) models to identify and clas-
sify mitosis in histopathological WSI, as a quantitative 
measure in breast cancer diagnosis. The authors used 
only one metric, accuracy, to compare both models. 
The AlexNet model was found to achieve 95% accuracy 
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whereas the U-Net reached 99% accuracy. However, a 
thorough comparison between both model categories 
requires: (1) more models from each group; and (2) 
more evaluation metrics.

In this study, we applied well-known DL models 
(patch-based and pixel-based approaches) to accu-
rately differentiate MP from all non-MP tissues, includ-
ing MM, in H&E-stained bladder specimens. For the 
patch-based approach, patches were extracted such 
that each patch was labeled as either MP or non-MP. 
Several state-of-the-art patch-based models were used 
including VGG16 [22], ResNet18 [23], SqueezeNet 
[24], and MobileNetV2 [25, 26], which were pre-trained 
by ImageNet data. By contrast, for the pixel-based 
approach, every original image and the correspond-
ing mask image were divided into an equal number of 
image patches and mask patches, with each pixel in the 
mask patch representing the label (MP or non-MP) of 
the corresponding pixel in the image patch. The state-
of-the-art pixel-based models chosen for our analysis 
were U-Net [32], MA-Net [34], DeepLabv3 + [35], and 
FPN [36].

Our contributions are summarized as follows:

•	 This is the first computational analysis of morpho-
logical features of smooth muscle in H&E-stained 
images. We apply recent and well-known DL-based 
models to the data and create a benchmark for fur-
ther research using current or related datasets.

•	 We perform an extensive comparison on speed and 
performance between patch-based models and pixel-
based models in segmenting smooth muscle tissues. 
Pros and cons of both approaches are discussed.

•	 We present an efficient computational framework to 
automatically pre-process smooth muscle images of 
bladder, which are used as an input to a suite of DL-
based models. Segmented images with highlighted 
MP regions are produced as an output.

•	 We create an end-to-end DL-based diagnostic sys-
tem that can be used in clinical applications on stag-
ing bladder cancers to reduce pathologists’ time and 
effort.

The remainder of this paper is organized as follows. 
Section  2 explains the details of proposed methodology 
including hardware specification and model architec-
tures, as well as model training and inference methods. 
Experimental results that validate the proposed meth-
odology are presented in Section 3 and discussion of our 
findings and relevant studies are given in Section 4.

Methods
Software and hardware
The proposed methodology was executed on a work-
station with hardware and software specifications as 
described in Supplementary Table  1. The workstation 
had 16 GB of RAM, 6 GB of graphical memory (GPU), i7 
6 core processor, and Windows 10 operating system. All 
programming tasks were performed in Spyder, an inte-
grated development environment from Anaconda.org, 
except the Ground Truth preparation, for which MAT-
LAB R2020b Image Labeler tool was used. In Spyder, all 
DL analyses were accomplished using PyTorch [37], a 
Python-based scientific computing package that included 
functionality to use the power of system GPUs, thereby 
utilizing available resources and leading to time-efficient 
analysis. PyTorch also incorporated automatic efficient 
differentiation libraries that were useful for implement-
ing DL neural networks. For all the numerical computa-
tions NumPy library [38] was used. For image reading/
manipulations and plots, OpenCV and Matplotlib were 
utilized, respectively. For file operations such as reading 
the file and writing results to a file, Pandas [39] library 
was used.

Fig. 1  Summarized methodology. The annotated H & E-stained images are pre-processed and split into patches of defined size. These patches 
are extracted in two ways to create two datasets: ① patch-based: each patch is either fully MP or fully non-MP and ② pixel-based: each patch 
includes respective ground truth mask patch where white pixel corresponds MP and black pixel corresponds non-MP. Selected CNN models are 
trained on the patch-based dataset and deep learning models are trained on the pixel-based dataset. The trained models for patch-based approach 
and pixel-based approach will be used to semantically segment any given H&E-stained image into MP and non-MP regions
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DL models
The proposed methodology is summarized in Fig.  1. To 
semantically segment the H&E-stained tissues into MP 
and non-MP regions, we applied two types of DL-based 
approaches: patch-based approach and pixel-based 
approach. A detailed explanation of the above-mentioned 
approaches is described in the following subsections.

Patch‑based approach
Four state-of-the-art CNN models were used for analy-
sis, including VGG16, ResNet18, SqueezeNet, and 

MobileNetV2 (see Table  1 for their architectures). Fig-
ure 2 shows an overview of the analysis that consists of 
two steps: model training and model inference. In the 
model training step, the images from the training dataset 
were passed through stain normalization technique and 
were divided into non-overlapping patches. The patches 
were extracted such that each patch included either MP-
only or non-MP-only region and was labelled as MP or 
non-MP, respectively. Since each patch was a fully MP 
or non-MP patch, some parts of the original images that 
contained both MP and non-MP areas were unused. 

Table 1  Architecture of patch-based and pixel-based models

Patch-based models Pixel-based models

Network Depth (layers) Trainable 
parameters 
(× 106)

Training time 
(hours)

Network Encoder Trainable 
parameters 
(× 106)

Training 
time 
(hours)

VGG16 16 119.55 11.16 U-Net ResNet18 14.33 14.10

ResNet18 18 11.18 4.72 MA-Net 21.68 16.47

SqueezeNet 18 0.74 4.40 DeepLabv3 +  12.33 12.58

MobileNetV2 53 2.23 6.19 FPN 13.05 11.74

Fig. 2  Flow diagram of the patch-based approach for classification and semantic segmentation of MP and non-MP regions from bladder 
H&E-stained histopathological images. In the model training step, the annotated images are stain normalized and split into patches with labels 
as either MP or non-MP. The CNN architecture is trained on that dataset to classify each patch as MP or non-MP region. In the patch-based inference 
step, the test image is stain normalized and split into patches. Each patch is passed through the trained CNN architecture and the patch probability 
is assigned to the center pixel of the patch. All the patch probabilities are merged together to form a segmented test image. Thus, the predicted 
output image contains either white pixels (MP) or black pixels (non-MP). This output image is further post-processed to obtain a binary image 
with smooth edges and minimal noisy pixels
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Next, the dataset consisting of patches and their corre-
sponding labels (MP v/s non-MP) was passed through 
the aforementioned models that performed binary image 
classification. For all these models, instead of using 
random weight initialization, we chose to use the pre-
trained weights from the ImageNet dataset [40] through 
transfer learning [41], a common practice in ML or DL 
research to improve image classification performance 
[27, 42]. Since the ImageNet dataset comprised natural 
images and did not contain any medical-related images, 
we chose to retrain all the layers of the whole network 
and updated the pre-trained weights of all models except 
VGG16, where only the weights in the last layer of the 
VGG16 model was updated as it contained a large num-
ber of parameters. Also, in each of the four architectures, 
we changed the last layer (classifier layer) to accommo-
date for two-class image classification, in our case (i.e., 
MP or non-MP). The trained models were then used to 
perform patch-based inference as explained below.

In the inference step, our aim was to semantically seg-
ment the test images into MP and non-MP regions and 
thus, we assessed test images individually. First each 
image was stain normalized and divided into patches that 
overlapped each other. The reason was that when a patch 
was passed through the trained model, we obtained a 
probability of that patch being MP. To correctly account 
for transition between MP and non-MP regions, we 
empirically decided that patches should be 96% over-
lap (in other words we used a sliding window of size 10 
pixels). Patches were passed through the trained mod-
els one by one and the patch probability value of being 
MP was assigned to the central pixel of the patch, which 
finally resulted in a small-sized heatmap representation 
of the predicted output image with values ranging from 
0 to 1. This probability heatmap image was interpolated 
to the same size as that of the input image using nearest-
neighbour interpolation. To reduce the effect of artifacts 
(caused by upsampling), we used a simple averaging fil-
ter (low-pass filter) as a part of post-processing. Each 
value in the heatmap image corresponds to the prob-
ability that a fixed-size patch is predicted to be MP. To 
convert the probability heatmap to a binary image repre-
sentation, an optimal threshold was needed. As such, the 
threshold was determined as shown below using adaptive 
thresholding,

where Yt represented the Youden’s J statistic [43] defined 
as the difference between the true positive (TP) rate (Sen-
sitivity) and false-positive (FP) rate (i.e., 1—Specificity). 

(1)Yt = True positive rate − False positive rate

(2)t̂ = Y ,Y ∈ RT
,T = number of thresholds

The TP rate and the FP rate were determined by compar-
ing the probability heat map against the binary ground 
truth at the pixel-level. A threshold t  was determined 
such that it maximized the Youden’s J statistic. The prob-
ability heatmap representation was converted to binary 
image representation using this threshold t̂  , where each 
pixel was now labelled as either MP (pixel value: 255) or 
non-MP (pixel value: 0). Lastly, we processed the binary 
image to remove the isolated noisy pixels (i.e., single/
few positive pixels in the midst of negative pixels or 
vice versa, present due to false predictions from trained 
models) and high frequency artifacts. Hence, we used 
two types of filters. First, we used a median blur filter 
(kernel size = 155 × 155 pixels) which reduced the noise 
effectively. Next, we used a simple averaging filter (ker-
nel size = 25 × 25 pixels) to smoothen the boundary pixels 
and applied Otsu thresholding which finally resulted in 
a smoothed binary image representation. The post pro-
cessing steps to obtain the final output image is shown in 
Supplementary Figure  1. The same procedure was used 
to semantically segment all images into MP and non-MP 
regions in the test dataset.

Pixel‑based approach
For the pixel-based methods, we used state-of-the-art 
semantic segmentation models such as U-Net, MA-Net, 
DeepLabv3 + , and FPN (see Table  1 for their architec-
tures). ResNet18 was chosen as an encoder to compare 
the performance of these four models. Figure 3 shows an 
overview of the analysis that consists of two steps: model 
training and model inference. In the model training step, 
all training images were first stain-normalized. These 
images and their corresponding binary ground truth 
images were divided into non-overlapping patches. How-
ever, unlike the patch-based approach, the patches were 
extracted such that each patch included either MP or 
non-MP region or both. The reason was that each pixel 
of the patch was labelled as either MP or non-MP. Thus, 
each extracted patch had an equal-sized binary ground 
truth mask. As a result, the entire image dataset could be 
effectively utilized for training the four semantic segmen-
tation models listed above. The input patches and the 
corresponding binary ground truth masks were fed into 
the models to perform pixel-wise binary classification.

To assess the trained model performance, we used two 
independent inference methods: patch inference and 
whole image inference. The working of the patch infer-
ence was similar to the patch-based approach described 
above. However, as we obtained the MP probability 
for each pixel in a patch, we arranged these probability 
patches to obtain a heatmap representation of the pre-
dicted output image with size equal to that of the input 
image. By contrast, for whole image inference, test images 
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were directly fed into the trained model without dividing 
the images into patches. The output image obtained was 
a probability heatmap whose size was the same as that of 
the input image and each pixel value indicated the prob-
ability that the pixel belonged to the MP class. Next, the 
optimal threshold was determined to convert the pre-
dicted probability heatmap image to an output image 
as the value that maximized the Youden’s J statistic, as 
shown in Eqs. (1) and (2). The obtained binary image was 
passed through the median blur (kernel size = 155 × 155 

pixels), averaging filter (kernel size = 25 × 25 pixels) and 
Otsu thresholding to obtain a smooth binary image, as 
shown in Supplementary Figure 1. The methods used in 
patch and whole image inference were applied individu-
ally to all the images of the test dataset to semantically 
segment each image into MP and non-MP regions.

Hyperparameter selection
To determine optimal model hyperparameters (Table 2), 
we employed trial-and-error experimentation using a 

Fig. 3  Flow diagram of the pixel-based approach for classification and semantic segmentation of MP and non-MP regions from bladder 
H&E-stained histopathological images. In the model training step, the annotated images are stain normalized. The stain normalized images 
and their corresponding ground truth masks are split into patches. The semantic segmentation architecture is trained on that dataset to classify 
each pixel as MP or non-MP region. In the patch-based inference step, the test image is stain normalized and split into patches. Each patch 
is passed through the trained semantic segmentation architecture to obtain a similar patch where each pixel of the patch is assigned a probability 
for MP and non-MP. All the predicted patches are merged together to form a segmented test image. Thus, the predicted output image contains 
either white pixels (MP) or black pixels (non-MP). This output image is further post-processed to obtain a binary image with smooth edges 
and minimal noisy pixels. In the whole image-based inference step, the test image is stain normalized and directly passed through the trained 
semantic segmentation architecture to obtain a segmented test image. The predicted output image contains either white pixels (MP) or black pixels 
(non-MP). The output image is post-processed similar to the patch-based inference step
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validation dataset. For the patch-based approach, we 
used 30 epochs and chose a batch size of 32 [44]. The 
learning rate was chosen to be 0.001 and the stochastic 
gradient descent (SGD) optimization algorithm was used 
to update the weights. In addition to the static learn-
ing rate, we experimented with a decaying learning rate 
and found that with a decaying learning rate, the train-
ing time was increased by a few hours and we got either 
the same results as with static learning rate or less than 
that (data not shown). Therefore, we decided to continue 
with a static learning rate. We used the cross-entropy loss 
function, which was generally used in image classification 
tasks. For the pixel-based approach, number of epochs 
were empirically chosen to be 30 epochs. Smaller batch 
sizes are commonly used for semantic segmentation 
tasks, and thus, we used a batch size of 4 in our analysis. 
The cross-entropy loss function was used to determine 
the loss between predicted and ground truth masks. To 
optimize the loss function and update the weights we 
used a learning rate of 0.0001 with Adam optimizer. For 
both the approaches, we used weighted cross-entropy 
loss function to ensure unbiased model training as our 
dataset contained more negative (non-MP) classes com-
pared to positive (MP) classes and weighted random 
subsampling to make sure that each batch of defined 
size encounters a proportional number of MP and non-
MP classes. The class weights for weighted cross entropy 
loss function and weighted random subsampling were 
calculated as reciprocal of the number of patches/pix-
els belonging to a particular class respectively for each 
approach.

Evaluation metrics
As described in both patch-based and pixel-based 
approaches, the final output was the post-processed 
predicted binary image with MP and non-MP regions 
highlighted in different colors. To assess the model per-
formance, commonly used pixel-level evaluation met-
rics were used, particularly for medical images, such as 
mean Jaccard index, mean Dice coefficient, pixel-wise 
accuracy, precision, recall, specificity, and F1 score. The 
basic components describing these metrics involved: TP 

representing the total number of MP pixels in ground 
truth correctly predicted as MP; true negative (TN) rep-
resenting the total number of non-MP pixels in ground 
truth correctly predicted as non-MP; FP representing the 
total number of non-MP pixels in ground truth incor-
rectly predicted as MP; and false negative (FN) repre-
senting the total number of MP pixels in ground truth 
incorrectly predicted as non-MP.

Jaccard Index, also known as Intersection Over Union, 
is the ratio of the area of overlap to the area of union 
between the predicted image and the ground truth 
image. We determined the mean Jaccard Index by taking 
an average of class specific Jaccard Indices, each for MP 
and non-MP using the Eq. (3).

Dice coefficient is a statistical measure to determine the 
similarity between the predicted image and the ground 
truth image. It emphasizes only the positive class similar-
ity and does not account for the negative class. Thus, we 
determined the full image Dice coefficient (MP and non-
MP regions) by computing the average of class-specific 
Dice coefficients, each for MP and non-MP using Eq. (4).

Global pixel-wise accuracy indicates the fraction of 
correctly predicted pixels to the total number of pixels, 
and it is represented in Eq. (5).

The precision or the positive predicted value is the 
measure of correctness. It evaluates how “precisely” a 
model predicts a given pixel to the positive class, in our 
case, the MP class. The precision value was determined 
as shown in Eq. (6).

(3)Jaccard Index =
TP

TP + FP + FN

(4)Dice coefficient =
2 ∗ TP

2 ∗ TP + FP + FN

(5)Pixel Accuracy =
TP + TN

TP + TN + FP + FN

(6)Precision =
TP

TP + FP

Table 2  Hyper-parameters of patch-based and pixel-based models

Hyper-parameters Patch-based models Pixel-based models

Batch size 32 4

Epochs 30 50

Optimization algorithm Stochastic Gradient Descent Adam (beta1 = 0.9, beta2 = 0.999)

Learning rate 0.001 0.0001

Criterion/ Loss function Cross-Entropy Cross-Entropy
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Recall or sensitivity or the TP rate corresponds to the 
accuracy of positive cases. It was defined as the ratio of 
TPs to the total number of predicted positives, as repre-
sented in Eq. (7).

Specificity or TN rate determines the non-MP class 
accuracy. As shown in Eq.  (8), specificity was calculated 
as a ratio of total TNs to the total number of predicted 
negatives.

F1 score is a metric defined as the harmonic mean of 
precision and recall, as presented in Eq.  (9). The higher 
value of the F1 score signifies how well the model pre-
dicts the positive class.

Results
Histopathological images
Upon approval from the Institutional Review Board at 
the University of Rochester Medical Center (URMC), a 
total of 303 images of H&E-stained bladder tissues from 
RC (8 patients—237 images of size 1920 × 1440 pixels) 
and TUR (8 patients—66 images of size 2448 × 1920 pix-
els) were collected from the Department of Pathology 
and Laboratory Medicine at URMC. The images were 
captured under 100X total magnification using an Olym-
pus BX43 microscope attached with a high-resolution 
camera (DP27). In these images, MP and non-MP regions 
were manually segmented by board-certified patholo-
gists (YW and HM). Twenty-six out of 303 images were 
excluded due to the presence of both MM and MP in the 
same image (n = 12), leading to no patch extraction, or 
difficulty for the pathologists in morphologically distin-
guishing between MM and MP (n = 14). As a result, 277 
(= 303—26) images, including 214 from RC and 63 from 
TUR, were used to train and test the proposed models.

Ground truth preparation and data pre‑processing
The images annotated by the pathologists were used to 
prepare ground truth labels. The procedure used to gen-
erate labels for all histopathological images in our dataset 
is shown in Supplementary Figure 2. In short, a freehand 
drawing tool based on the GrabCut segmentation algo-
rithm [45] in MATLAB was used to manually mark the 
region of interest. The output from the tool was a bi-level 

(7)Recall =
TP

TP + FN

(8)Specificity =
TN

TN + FP

(9)F1 score =
2 ∗ Precision ∗ Recall

(Precision+ Recall)

mask which was then converted to a binary image. The 
MP and non-MP tissues were represented as white and 
black regions corresponding to pixel values of 255 and 0, 
respectively.

All TUR images and their corresponding binary ground 
truth images were resized to 1920 × 1440 pixels using 
bilinear and nearest-neighbor interpolation, respectively, 
to maintain uniformity across all images. We observed 
considerable variability in the staining intensity among 
the images, especially between those from RC versus 
TUR. To alleviate these staining intensity differences, 
we applied Reinhard stain normalization [46], a stand-
ard color transferring technique that could impart the 
color of a chosen reference image to all. This normaliza-
tion resulted in a dataset with uniform stain consistency 
among all images (Fig. 4). These stain-normalized images 
were used as input for our analysis. Since the proposed 
methods aimed to segment TUR images into MP and 
non-MP regions, we trained and tested models using 
ninefold cross validation technique, to ensure equal dis-
tribution of images in each fold. The 63 TUR images were 
divided into 9 sets, each with 7 images. In each fold, the 
model was trained using 214 RC images + 56 TUR images 
(except holdout set) and the holdout set (7 images) was 
tested using the respective trained model. The train-
ing images with dimensions of 1920 × 1440 pixels were 
divided into non-overlapping patches of 240 × 240 pixels. 
The patches were extracted in the size of 240 × 240 pixels 
because both the dimensions of the original image were 
divisible by the defined patch size, resulting in complete 
utilization of the input image without the need for trun-
cation or padding. The training patches were further 
divided into 80% training set and 20% validation set using 
a stratified sampling technique [47], which ensured equal 
distribution of the classes in both training and validation 
datasets. The validation set was used as an indicator to 
prevent overfitting of the data during model training.

Model training and inference of patch‑based approach
For patch-based approach, the total number of patches 
extracted varied in each fold depending on the training 
images in a range between 8,718 and 8,813 patches. With 
predefined hyperparameters (Table 2), we trained all four 
CNN-based models using ninefold cross validation. The 
performance of four patch-based models was evaluated 
by a suite of metrics (Supplementary Table 2). We found 
that MobileNetV2 performed the best. Except for speci-
ficity, all the other metrics of MobileNetV2 were higher 
in comparison with those in other models. In addition, 
SqueezeNet provided stiff competition to MobileNetV2 
with all evaluation metrics being very close to those of 
MobileNetV2. For ResNet18 and VGG16, their evalu-
ation metrics were the least. Among different metrics, 
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the mean Jaccard index and mean Dice coefficient were 
considered as best metrics to decide on the superior-
ity of the model in the segmentation tasks. We observed 
that MobileNetV2/SqueezeNet had higher mean Jaccard 
(0.74/0.73) and Dice coefficient (0.85/0.84), compared to 
ResNet18/VGG16 (0.72/0.71 and 0.83/0.82, respectively).

Precision-Recall (PR) curves (Fig.  5A-D) and Receiver 
Operator Characteristic (ROC) curves (Fig.  6A-D) were 
plotted for all the models. The PR Area under Curve 
(AUC) scores and ROC AUC scores were provided in 
the plots. Consistently, the MobileNetV2/SqueezeNet 
models had high mean PR AUC (0.87/0.85) and mean 
ROC AUC (0.93/0.92) values in comparison with the 

Fig. 4  Effect of Reinhard stain normalization on H&E-stained histopathological images. Images are taken from radical cystectomy (A) and TUR 
specimens (B) at 100 × total magnification

Fig. 5  Precision-Recall (PR) curve for classification of MP and non-MP regions by VGG16 (A), ResNet18 (B), SqueezeNet (C), MobileNetV2 (D), 
U-Net (E), MA-Net (F), DeepLabv3 + (G) and FPN (H). Both patch-based models (A-D) and pixel-based models (E–H) were trained and tested using 
ninefold cross-validation. Seven TUR images were evaluated for each fold to calculate PR curves and corresponding PR-AUC values are indicated 
in the caption. The mean PR curve (blue) and standard deviation (grey shaded region) are provided for the models
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ResNet18/VGG16 models showing mean PR AUC of 
0.84/0.81 and mean ROC AUC of 0.92/0.90. Hence, 
based on the evaluation metrics, we concluded that the 
MobileNetV2 and SqueezeNet models were the best per-
forming patch-based models, with ResNet18 and VGG16 
models providing stiff competition.

Model training and inference of the pixel‑based approach
For pixel-based models, the total number of patches 
extracted in each fold were 12,960 patches, which were 
higher than patches extracted for the patch-based 
approach. This was because each pixel of a patch was 
labelled and a patch could contain pixels with different 
labels (see Methods). With predefined hyperparameters 
(Table  2), we trained all four pixel-based models using 
ninefold cross validation. The model performance was 
evaluated by two inference approaches: patch inference 
and whole image inference (see below).

Patch inference
Patch inference is an approach similar to that of the infer-
ence for the patch-based approach, where overlapping 
patches are extracted from test images. Supplementary 
Table  3 shows the evaluation metrics for all the pixel-
based models. We found that the U-Net performed the 
best in all metrics. The U-Net model outperformed all 
the other models with the mean Jaccard index being 
0.78. The next best performing models were MA-Net 
and DeepLabv3 + , where all metrics except the mean Jac-
card index were equal to that of U-Net. The FPN model 

underperformed as the evaluation metrics were the least 
among the rest of the models. Overall, the performance 
of all four pixel-based models was very similar.

The PR and ROC curves for the pixel-based models 
were plotted (Supplementary Fig. 3). The mean PR AUC 
and mean ROC AUC scores followed a similar trend as 
the evaluation metrics (Supplementary Table  3). The 
U-Net, MA-Net, and DeepLabv3 + models showed the 
same PR AUC and PRC AUC values of 0.88/0.94, slightly 
higher than that of the FPN model (0.86/0.94). Hence, 
based on the evaluation metrics, we concluded that, 
for patch inference, the U-Net, MA-Net, and Deep-
Labv3 + models were the best performing models.

Whole image inference
In whole image inference, test images were not divided 
into patches. Instead, full images were passed through 
the trained models and the predictions were obtained. 
Supplementary Table 4 shows the evaluation metrics for 
all the semantic segmentation-based models using whole 
image inference. We found that the U-Net model outper-
formed all the other models across all different evaluation 
metrics except for recall. The next best performing model 
was the MA-Net that was followed by FPN. The Deep-
Labv3 + provided the least results as their evaluation 
metrics were minimal when compared to all other mod-
els except for specificity. We observed that the U-Net/
MA-Net had mean Jaccard of 0.79/0.78 and mean Dice 
coefficient of 0.88/0.87, while the FPN/DeepLabv3 + had 

Fig. 6  Receiver Operating Characteristic (ROC) curve for VGG16 (A), ResNet18 (B), SqueezeNet (C), MobileNetV2 (D), U-Net (E), MA-Net (F), 
DeepLabv3 + (G) and FPN (H). Both patch-to-label models (A-D) and pixel-to-label models (E–H) were trained and tested using ninefold 
cross-validation. Seven TUR images were evaluated for each fold to calculate ROC curves and corresponding ROC-AUC are indicated in the caption. 
The mean ROC curve (blue) and standard deviation (grey shaded region) are provided for the models
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mean Jaccard of 0.77/0.76 and mean Dice coefficient of 
0.86/0.86.

We also plotted the PR curves (Fig.  5E-H) and ROC 
curves (Fig. 6E-H) for all the models in the whole image 
inference. The PR AUC and ROC AUC followed a similar 
trend as the evaluation metrics (Supplementary Table 4). 
The U-Net model resulted in higher PR AUC/ROC AUC 
values of 0.92/0.96 in comparison with other models. 
U-Net was followed by MA-Net, DeepLabv3 + and FPN. 
Hence, based on the evaluation metrics, we concluded 
that, for whole image-based inference, the U-Net was the 
best performing model. For both patch-based inference 
and whole-image-based inference, U-Net consistently 
outperformed other models.

Comparison of patch‑based and pixel‑based approach
To compare the performance of four patch-based and 
four pixel-based models using whole image-based infer-
ence as groups, we made plots for different evaluation 
metrics, including mean Jaccard index (Fig.  7A), mean 
Dice coefficient (Fig.  7B), pixelwise accuracy (Fig.  7C), 
precision (Fig. 7D), recall (Fig. 7E), specificity (Fig. 7F), 
and F1 score (Fig.  7G). Clearly, for each evaluation 
metric, the average value of pixel-based approach as a 
group was higher than that of patch-based approach, 
which was consistent with the findings in the previous 
study [33]. Compared to the patch-based models, the 

outperformance of the pixel-based models was not sur-
prising because this approach was tailor-made for the 
semantic segmentation task. However, the patch-based 
approach still provided stiff competition to the pixel-
based approach in all evaluation metrics. Supplemen-
tary Figure 4 shows the performance comparison results 
for the four patch-based models and four pixel-based 
models using patch-based inference.

Notably, pixel-based models, on average, had a higher 
number of parameters than patch-based models. Particu-
larly, pixel-based models had 12 to 21 million parameters 
whereas patch-based models (except VGG16) had 0.74 to 
11 million parameters. As a result, the training time for 
pixel-based models (12–17  h) was longer than that for 
patch-based models (< 5 h) (Table 1).

Visualization of segmentation results
To further compare the performance of proposed mod-
els, we visualized the segmentation results of several 
test TUR images obtained from the patch-based models 
(Fig.  8) and the pixel-based models with whole image 
inference (Fig.  9). Supplementary Figure  5 shows the 
results for the pixel-based models with patch inference. 
In all cases, the predicted MP regions from the mod-
els were compared with the ground truths in which MP 
regions were marked by pathologists (Column 1 in Figs. 8 
and 9). Overall, all models provided predictions similar 

Fig. 7  Comparison of patch-based (blue) and pixel-based (orange) models with whole image-based inference in Mean Jaccard Index (A), Mean 
Dice Coefficient (B), Pixelwise Accuracy (C), Precision (D), Recall (E), Specificity (F), and F1 Score (G). The models were evaluated by ninefold 
cross-validation and the seven TUR images in each fold were used to calculate the evaluation metrics. For patch-based or pixel-based models 
respectively, the group means are indicated by black dashed lines
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to the ground truths. In some cases, MobileNetV2 gave 
a better prediction than other patch-based models (for 
example last row in Fig.  8), consistent with our data 
showing that MobileNetV2 outperformed other mod-
els in the evaluation metrics (Supplementary Table  2). 

Similarly, in some cases, U-Net presented a better pre-
diction than other pixel-based models (for example last 
row in Fig.  9), consistent with our data showing that 
U-Net was the best performer (Supplementary Table 4). 
After comparing the model performances in both the 

Fig. 8  Segmentation results of test TUR images using patch-based models (VGG16, ResNet18, SqueezeNet, and MobileNetV2). The first column 
represents the ground truth marked by the expert pathologists. The subsequent columns indicate the segmentation results from corresponding 
models
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approaches, we were curious to see model MP predic-
tions for special case input images such as images con-
taining both MP and MM muscle fibers. Thus, these 
images were passed through the best models in both the 

approaches, i.e., MobileNetV2 for patch-based approach 
and U-Net for pixel-based approach (both patch-based 
and whole image-based inferences), and the visualiza-
tions are represented in Supplementary Figure  6. Thus, 
MobileNetV2 and U-Net (for both patch-based and 

Fig. 9  Segmentation results of test TUR images using pixel-based models (U-Net, MA-Net, DeepLabv3 + , and FPN) with whole image-based 
inference. The first column represents the ground truth marked by the expert pathologists. The subsequent columns indicate the segmentation 
results from corresponding models



Page 14 of 16Subramanya et al. BMC Medical Informatics and Decision Making          (2023) 23:122 

whole image-based inferences) correctly predicted MP 
regions and non-MP regions even when the image con-
tains both MP and MM muscle fibers.

Discussion
We have performed the first computational analysis of 
smooth muscle in H&E images using two groups of DL 
model approaches – patch-based approach and pixel-
based approach and compared their performances 
numerically as well as visually. We used four representa-
tive models from each group and evaluated them by 
seven metrics. Both groups of the models successfully 
identified and segmented MP regions in histopathologi-
cal images obtained from H&E-stained bladder speci-
mens, with pixelwise accuracy ranging from 0.85–0.87 
(patch-based models) to 0.88–0.90 (pixel-based models). 
We further showed that MobileNetV2 and U-Net out-
perform their peers in the patch-based and pixel-based 
model groups, respectively. We found that the pixel-
based models, on average, have better performance in all 
evaluation metrics than the patch-based models. How-
ever, the pixel-based models have more training param-
eters, which leads to  longer training time and requires 
more  computational resources. Our data suggested that 
both types of approaches are able to help pathologists 
as a computer-aided diagnostic system. That is, given 
an image of the tissue region that appears  unclear to a 
pathologist, our trained models can  provide a conveni-
ent way to differentiate MP from non-MP tissues. This 
information will help the pathologist make an accurate 
diagnosis.

Our work on smooth muscle segmentation is different 
from the published work on skeletal muscle segmentation 
[35–41]. This is because smooth muscle is morphologi-
cally distinct from skeletal muscle. First, smooth muscle 
is non-striated whereas skeletal muscle has transverse 
streaks. Second, each smooth muscle cell has one central 
nucleus whereas a skeletal muscle cell often has multiple 
nuclei. These microscopically distinctive features suggest 
that a new system is required for smooth muscle segmen-
tation. Our work represents the first step towards this 
goal, laying the groundwork for further development of 
computational models to characterize smooth muscles.

Conclusions
In this study, we made a comprehensive comparison 
between two types of classification models – patch-
based and pixel-based approaches, for segmenting the 
MP and non-MP (including MM) regions in bladder tis-
sues obtained by TUR or RC. Various metrics were used 
for model performance evaluation. We found that the 
pixel-based models, in general, outperformed the patch-
based models in almost all metrics. In particular, U-Net 

was the best pixel-based model whereas MobileNetV2 
was the best patch-based model. Our work provides the 
first computer-aided diagnostic system that reliably distin-
guishes between MP (MIBC) vs. non-MP (NMIBC) inva-
sion in surgical specimens, which has a significant clinical 
impact on pathological staging of bladder cancer and deci-
sion making in the patient management. This system can 
be further improved by utilizing traditional ML techniques 
such as Random Forest, Support Vector Machine or 
K-Nearest Neighbor on top of the DL architecture to clas-
sify MP vs. non-MP, given the relatively small sample size. 
In addition, instead of using the deep networks pretrained 
by ImageNet, other networks such as KimiaNet may need 
to be tested, which is a DenseNet121 architecture Ima-
genet-pretrained CNN model fine-tuned on over 250,000 
histopathology images.
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output-images. Supplementary Figure 2. Illustration of generating 
labels (ground truth) from pathologists’ annotated images using MATLAB® 
image labeler tool. The ground truth is a binary image representing the 
MP region as white pixels and the non-MP region as black pixels. Supple‑
mentary Figure 3. PR curves (left) and ROC curves (right) for classification 
of MP and non-MP regions by U-Net (A), MA-Net (B), DeepLabv3+ (C) 
and FPN (D) models. The models were trained and tested using 9-fold 
cross-validation. Seven TUR images were evaluated for each fold and 
corresponding PR-AUC and ROC-AUC values are indicated in the caption. 
The mean PR curve (blue) and standard deviation (grey shaded region) are 
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provided for the models. Supplementary Figure 4. Comparison of patch-
based (blue) and pixel-based (orange) models with patch-based inference 
in Mean Jaccard Index (A), Mean Dice Coefficient (B), Pixelwise Accuracy 
(C), Precision (D), Recall (E), Specificity (F), and F1 Score (G). The models 
were evaluated by 9-fold cross-validation and the seven TUR images in 
each fold were used to calculate the evaluation metrics. For patch-based 
or pixel-based models, the group means are indicated by dashed lines. 
Supplementary Figure 5. Segmentation results of test TUR images using 
pixel-based models (U-Net, MA-Net, DeepLabv3+, and FPN) with patch-
based inference. The first column represents the ground truth marked by 
the expert pathologists. The subsequent columns indicate the segmen-
tation results from corresponding models. Supplementary Figure 6. 
Segmentation results of special case images using best models in both 
the approaches, i.e., MobileNetV2 for patch-based approach and U-Net 
for pixel-based approach (both patch-based and whole image-based 
inferences). The first column represents the ground truth marked by the 
expert pathologists. The subsequent columns indicate the segmentation 
results from corresponding models. Supplementary Table 1. Summary of 
machine specifications. Supplementary Table 2. Performance of patch-
based models (best performers shown in bold). Supplementary Table 3. 
Performance of pixel-based models (patch-based inference with the 
best performers shown in bold). Supplementary Table 4. Performance 
of pixel-based models (whole image inference with the best performers 
shown in bold).
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