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Abstract 

The Chinese government relaxed the Zero-COVID policy on Dec 15, 2022, and reopened the border on Jan 8, 2023. 
Therefore, COVID prevention in China is facing new challenges. Though there are plenty of prior studies on COVID, 
none is regarding the predictions on daily confirmed cases, and medical resources needs after China reopens its 
borders. To fill this gap, this study innovates a combination of the Erdos Renyl network, modified computational 
model SEIRS , and python code instead of only mathematical formulas or computer simulations in the previous stud-
ies. The research background in this study is Shanghai, a representative city in China. Therefore, the results in this study 
also demonstrate the situation in other regions of China. According to the population distribution and migration 
characteristics, we divided Shanghai into six epidemic research areas. We built a COVID spread model of the Erodos 
Renyl network. And then, we use python code to simulate COVID spread based on modified SEIRS model. The results 
demonstrate that the second and third waves will occur in July–September and Oct-Dec, respectively. At the peak 
of the epidemic in 2023, the daily confirmed cases will be 340,000, and the cumulative death will be about 31,500. 
Moreover, 74,000 hospital beds and 3,700 Intensive Care Unit (ICU) beds will be occupied in Shanghai. Therefore, 
Shanghai faces a shortage of medical resources. In this simulation, daily confirmed cases predictions significantly 
rely on transmission, migration, and waning immunity rate. The study builds a mixed-effect model to verify fur-
ther the three parameters’ effect on the new confirmed cases. The results demonstrate that migration and waning 
immunity rates are two significant parameters in COVID spread and daily confirmed cases. This study offers theoretical 
evidence for the government to prevent COVID after China opened its borders.
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Introduction
SARS-CoV-2, a novel coronavirus that causes COVID-19, 
was discovered at the end of 2019. The local spread began 
in China at the beginning of 2020. Then the virus spread 
rapidly around the world after April 2020. Due to the 
high mortality rate and lockdown, COVID has negatively 
impacted people’s health and the global economy. Con-
sequently, scientists and researchers have done plenty of 
research regarding COVID, including nucleic acid rea-
gents and vaccine developments. Also, some research-
ers concentrate on the daily confirmed case, and medical 
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resource needs prediction. These researches provide a 
great deal of support when governments make decisions.

COVID is characterized by high variability. Hundreds 
of mutant strains and five majority strains were in the 
past three years, such as Alpha, Beta, Gamma, Delta, and 
Omicron. Up to now, the dominant strain is Omicron. 
The high transmission rate poses new challenges for epi-
demic prevention and control.

Before the Omicron spread, the original and Delta 
strain were the dominant strains. Due to the lower trans-
mission rate of these two strains, the Chinese govern-
ment relatively reached a balance between controlling 
the virus and economic development to some event. 
However, the current dominant strain is Omicron, and 
the transmission rate of Omicron is much higher than 
previous strains. The high transmission rate poses new 
challenges for epidemic prevention and control. There-
fore, it becomes impossible to reach a balance. The Zero-
COVID policy directly leads to economic recession in 
China [1, 2]. As an illustration, China GDP growth rate is 
only 0.3% in the second quarter of 2022 [3]. In addition, 
the mortality rate of Omicron is much lower than pre-
vious strains. The mortality rate of Omicron is 0.0093%. 
However, the original and Delta strains are 0.079% and 
0.054%, respectively [4]. In general, Omicron is already a 
minimal hazard to the body, but the negative impact on 
the economy is enormous if the government maintains 
the Zero-COVID policy. Hence, relaxing the COVID pol-
icy has become necessary and urgent.

Fortunately, the Chinese government relaxed the 
Zero-COVID policy on 15 December and reopened the 
borders on 8 January. Nevertheless, China has a high 
population density, lacks medical resources, and resi-
dents have low antibodies against COVID. Millions of 
people may die if the government does not prepare and 
predict before opening the borders. Therefore, predict-
ing medical resource needs and daily confirmed cases 
becomes more necessary. Although there are many prior 
studies on COVID, most concentrate on the original or 
Delta strain. The virus spreading in China is Omicron, 
which differs from the previous strains. However, no pre-
vious research predicts COVID spreading after China 
reopens the border. In this sense, the paper fills a gap. 
Since the demographics and characteristics of Shanghai 
are typical in China, it is an appropriate background to 
demonstrate the COVID situation in the whole of China.

This study merges Erdos Renyl networks, modified 
computational models SEIRS and python code to pre-
dict daily confirmed cases and medical resources needs 
in Shanghai after reopening the borders. Firstly, we build 
Erdos Renyl networks in terms of Shanghai population 
density and migration characteristics. Secondly, accord-
ing to the modified computational model SEIRS , we 

utilize python to simulate the epidemic spreading after 
determining the nine parameters. Finally, we obtain the 
results, likely daily confirmed cases, hospital bed needs, 
and ICU bed needs. Additionally, the study investigates 
which parameter of transmission, migration and wan-
ing immunity rate has the most significant impact on the 
COVID spreading. In this part, we calculate the overall 
coefficient by building a mixed-effect model. The highest 
overall coefficient represents the most significant param-
eter in COVID spreading.

The rest of the paper is structured as follows: Litera-
ture review section reviews the related literature. The 
progress of the simulation is in Methodology section. 
Mixed-effect model is presented in Impact of the param-
eters on daily confirmed cases section. Next, Discussion 
and Conclusion sections report the discussion and con-
clusion, respectively.

Literature review
SARS-CoV-2, a novel coronavirus that causes COVID-19 
emerged in China in late 2019 and was declared a pan-
demic by March 2020 [5, 6]. After that, COVID-19 spread 
throughout the world. The virus mutated into various 
strains over the past few years, causing different effects 
on human health. Due to the high variability of COVID 
cessing to analyse the severity of COVID, which is, there 
were hundreds of mutant strains in the past three years 
[7]. There are five main mutant strains since COVID-19 
transmission. Having previously been defined as Alpha, 
Beta, Gamma, and Delta, Omicron became the fifth 
"variant of concern" by the World Health Organization 
in November 2021[8, 9]. Currently, Omicron is the domi-
nant strain in the world. Researchers point out that these 
five main mutant strains differ entirely [10–12]. Under 
the studies, Omicron has more mutations than Alpha, 
Beta, Gamma, Delta, and wild-type, making it easier for 
the immune system to escape and speeding up the spread 
of the disease. However, Omicron’s hospitalization and 
mortality rate are significantly lower than previous.

So far, scholars worldwide have done a lot of research 
on COVID-19. They can be divided into several cat-
egories, likely daily confirmed cases prediction, sequelae 
analysis and reason of transmission.

Some researchers investigate the effect of temperature 
on virus transmission and conclude that higher tempera-
ture may sharply decrease the transmission speed [13, 
14]. In the epidemic study, the most classic researches 
concentrate on predicting the daily confirmed cases and 
deaths. Numerous kinds of research are about these 
areas. Another study points out that the role of garbage 
in the transmission chain is more indirect in the sense 
that garbage has a complex relationship with public toi-
lets [15]. Hence, pushing the ratio of public toilets to the 
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local population in a city to its optimal level would help 
to reduce the total infection in a region.

Although various kinds of research are valuable, pre-
dicting the confirmed cases is always a typical research 
topic in infectious disease. Researchers use a mathemati-
cal model to investigate this problem. For example, [16, 17] 
are under ordinary differential equations (ODEs) to analyse 
the dynamics of local outbreaks of COVID. It predicted 
daily confirmed cases and the peak of the outbreak. The 
transmission rate is measured by varying the level of social 
distancing. Other papers also use another differential equa-
tion, such as the partial differential equation (PDE). The 
study utilizes PDE to predict the trend of COVID in Ari-
zona, USA [18]. However, ODEs and PDE are pure math-
ematical models which lack empirical research evidence. 
Hence, the accuracy of results is usually much lower than 
others. However, some researchers use classic epidemic 
models. Some previous studies use the typical epidemic 
mathematical model SIR and SIRS to predict the COVID 
situation [19–21]. These prior studies investigate the num-
ber of susceptible, infected and recovered. However, some 
people may hospitalize or die during the COVID spreading. 
Obviously, the prior studies do not cover these areas.

As the classic epidemic mathematics models have some 
disadvantages, some researches explore new research areas. 
For instance, research utilises the self-created mathematical 
model to simulate the virus outbreak and how to control the 
epidemic [22]. It uses five parameters to build the model, 
such as the mortality rate for hospitalised people. In addi-
tion, prior study modifies the famous epidemic model SIR 
[23]. In fact, COVID exhibits delay due to incubation peri-
ods and related phenomena. Hence, the study combines the 
basic model SIR with delay differential equations (DDEs) 
and PDE. The above studies rely on differential equations 
and existing epidemic mathematical models. Using DDEs 
is advantageous for COVID prediction because it shows 
an incubation period that can improve models’ accuracy. 
Additionally, DDEs and PDE mathematical models only 
need a little historical data, enhancing convenience. Nev-
ertheless, these conventional models or equations influ-
ence prediction accuracy due to the various uncertainties. 
Therefore, attempting the computational techniques based 
on historical data may perform better.

Though some classifications or algorithms are not suit-
able for predicting daily confirmed cases, some prior 
studies attempt to utilise statistical models. They inves-
tigate how many confirmed cases are there in the future 
by exponential, non-linear, linear statistical models and 
Bayesian statistical models [24–26]. Firstly, the accuracy 
indicates that the performance of the Bayesian statisti-
cal model is worse than the statistical regression model. 
Thus, these studies are under the regression model. 
These papers predict the number of confirmed cases in 

Brazil, India and Myanmar. Although it achieves accept-
able Mean Absolute Error (MAE) and Mean Squared 
Error (MSE), improving or optimising the models is diffi-
cult. Because the model always needs more independent 
variables for higher accuracy. Other studies combine the 
mathematical and statistical models, namely SEIR math-
ematical model and the logistical statistical model. But 
the study mainly relies on a logistical statistical model 
to predict the trend of the COVID spread [27, 28]. It 
uses partial historical data to train and test the statisti-
cal model, which makes researchers comprehend the 
model’s accuracy. The most significant reason is that the 
model lacks variables. That directly causes inaccuracy. 
On the whole, the regression model does not perform 
well. Consequently, the regression or statistical method 
is still not the most appropriate.

Some studies introduce how to use networks to simulate 
the virus spreading. Researchers describe that complex net-
works can utilize in infectious disease prediction, includ-
ing star-shaped, power-law, and inhomogeneous W-graph 
[29–31]. The purpose of a complex network shows the rela-
tionship between vertex. Although these complex networks 
can show the relationship between vertex, which applies to 
virus prediction, the degree of each vertex is relatively fixed 
or impractical, influencing prediction accuracy. Another 
paper predicts the virus spreading based on social networks 
[32]. However, building a social network needs particular 
data, which is difficult for a significant population predic-
tion. Hence, the social network is not suitable for this study. 
Previous study applies networks, computational language 
and programs to predict the trend of COVID [33]. It uses a 
4-regular network to simulate the virus spreading. In other 
words, the simulation supposes the number of closed con-
tacts of each person is four. However, this is different from 
reality. Fortunately, the Erdos Renyl network can modify 
the degree of each node easily, which can generally restore 
realistic scenarios. That is why this study applies the Erdos 
Renyl network.

Some research based on computational program language 
can simulate the COVID spreading arcuately. The research 
is the guideline for epidemic prediction [34]. It points out 
that a forecast that can be simulated in the most realistic 
environment is one of the most critical factors in COVID 
prediction. The computational programming simulation 
may be the best choice. Hence, this study also uses this 
method. Unfortunately, there is little research in this area.

These previous researches describe the various 
approaches studying COVID. The main results include 
the daily case prediction, factors influencing the morbid-
ity and mortality of COVID and elements in the virus 
spreading. Although the results demonstrate the daily 
confirmed cases projection, most use statistical or math-
ematical models, which do not simulate COVID in an 
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actual environment. Therefore, these studies still have 
room for improvement in prediction accuracy.

Currently, the dominant strain is B.A.7 [35]. However, 
many previous studies are based on the original strain, 
Delta or other strains. Since Omicron’s transmission, 
hospitalisation, recovery, and mortality rate are very dif-
ferent from the previous strains, the prior studies do not 
reflect the current reality.

Moreover, resident COVID-19 antibody strength, 
population density, and government policy determine 
the virus’s spread. The high population density is a dis-
tinctive feature of China, and Chinese residents do not 
have strong antibodies against COVID-19. The Chinese 
government implemented a strict epidemic prevention 
policy, Zero-COVID policy, until December 2022. Con-
sequently, the COVID-19 prediction in other countries 
and China’s COVID study based on data up to December 
2022 is not indicative. There are no previous studies on 
COVID predictions for China reopening its borders or 
relaxing policies, which is urgent for the academic com-
munity to comprehend the COVID situation. Thus, this 
study focuses on BA.7 and the time after the Chinese 
government relaxed policies to predict COVID transmis-
sion, which is the novelty and uniqueness. Meanwhile, 
this study utilizes computational modelling to restore a 
realistic scene as possible and maximize the accuracy, 
rather than previous studies based on derivatives.

Methodology
Mathematical basis
Refined SEIRS model
In this study, we use a modified computational model 
SEIRS to represent the epidemic spread, which means 
the susceptible individual may become infected. Then 
the infected person can recover from the virus. Finally, 
the individual will become susceptible again or die. Dead 
people will withdraw from the simulation. In order to 
recreate a scene as realistically as possible, model SEIRS 
is like a computational model rather than ODE or PDEs 
model. According to the above explanation, the following 
expression or equation demonstrates the rule.

In Eq.  (1), the first S means susceptible individuals, E 
is exposed person, I represents infected people, R indi-
cates the people who recovered from the virus and these 
people cannot infect again. The second S displays the 
recovered individuals who become susceptible again and 
people who died from the epidemic. After each simula-
tion cycle, the situation of the second S will be the begin-
ning of the first S in next simulation cycle. Since the 
sudden relaxation of covid policy, almost all residents are 
scared to be inflected. Due to the rapid infection of many 

(1)S → E → I → R → S

people in a short time, most residents worked online, all 
campuses were closed, all restaurants only supported 
takeaway service, and all shopping centers strictly limited 
the pedestrian flow. Therefore, just a few numbers of the 
exposed population do not influence the covid situation 
significantly. That is why this study does not consider the 
exposed population. However, future studies or situa-
tions may include the exposed population. Therefore, this 
also adds an exposed population for future research.

In this paper, this study uses the python code ‘random’ 
to make the random parameter for the individual in each 
simulation and compare the random parameter with the 
set parameter. As an illustration, if the random migra-
tion rate is less than the set migration rate, then this indi-
vidual will go to another group. However, if the random 
migration probability is larger or equal to the set migra-
tion rate, this individual does not move to another pop-
ulation group. According to the above explanation and 
Eq. (1), we refine it and obtain more details equations to 
demonstrate the epidemic spreading.

Equation  (2) means one node or (individual) goes to 
another population group based on migration rate ( δ ). In 
reality, the system randomly chooses a node and decides 
whether go to another population group under the 
migration rate ( δ ). If the person is susceptible, then it can 
be followed Eq. (3), which means the person may infect. 
In this case, the transmission rate ( β ) will apply.

Furthermore, the infected person has four outcomes. 
The first situation is like Eq.  (4). This equation shows 
that the infected person may recover directly under the 
recovery rate ( µ ). The second situation is like Eq.  (5). 
According to hospitalization rate ( γ ) and hospitalization 
recovery rate ( τ ), the person is hospitalized after infec-
tion and then recovers from the virus. The third one is 
that the infected person was hospitalized and admitted 
to the ICU for treatment. Afterwards, this individual also 

(2)oneagroup
δ
→ person(node)anothergroup

(3)S
β
→ I

(4)I
µ
→ R

(5)I
γ
→ H

τ
→ R

(6)I
γ
→ H

ρ
→ ICU

ϕ
→ R

(7)I
γ
→ H

ρ
→ ICU

σ
→ D

(8)R
ε
→ S
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recovers. In this case, we utilize the hospitalization rate 
( γ ), ICU hospitalization rate ( ρ ) and ICU hospitalization 
recovery rate ( ϕ ). This process is based on Eq.  (6). The 
fourth situation is considerably different to the previous 
three. As an illustration, Although the infected patient 
underwent hospitalization and ICU treatment, he died. 
Equation  (7) and mortality rate ( σ ) are applied in this 
case.

So far, Eqs. (4)-(7) are the situation in which the indi-
vidual recovers. According to the SEIRS rule, the recov-
ered person may become susceptible again. Equation (8) 
illustrates that the recovered person becomes susceptible 
again because of the waning immunity rate ( ε).

Total population
Due to the specificity of this study, which is mentioned 
in Refined SEIRS model section, only four parts in Eq. (1) 
are counted in the total population equation, namely S , 
I , R and S . According to Refined SEIRS model section, 
S , I and R represent susceptible, infected, and recovered, 
respectively. The second S means death people and the 
recovered person who may be infected again. However, 
only three states people exist at the beginning of the sim-
ulation. Consequently, the total population includes the 
number of susceptible, infected and, recovered, which 
is represented by S(t) , I(t) and R(t) , respectively. The 
population means the total number of samples. Equa-
tion  (2) demonstrates the whole population of simula-
tion. Npopulation implies the whole population of this 
simulation.

Procedure of simulation
Erdos renyl network
At the beginning of the simulation, we use the python 
library ‘networkx’ to build the Erdos Renyl network to 
represent each individual and their closed contacts. Each 
node indicates an individual, and each individual has 
a different number of close contacts. In this model, the 
Erdos Renyl network is constructed based on two param-
eters, namely the number of nodes N  and the probability 
of each possible vertex connected with other nodes pnode . 
The degree distribution of Erdos Renyl network is a Bino-
mial distribution.

However, this study simulates the virus spreading in a 
large population community. Hence, the degree distribu-
tion is a Poisson distribution.

(9)Npopulation = S(t)+ I(t)+ R(t)

(11)pk =
N − 1

k
p
k

(1− p)N−1−K

Moreover, the property of Erdos Renyl network of 
this study is subcritical regime which means that graph 
is almost always disconnected with many components. 
Equation (13) shows this property.

Furthermore, pnode is followed by Eq. (14).

For instance, if the average degree is 4 and the popula-
tion of network is 1000, then pnode is 4e-3.

In this study, our research background is Shanghai, a 
city with a population of 25 million and 18 districts. As 
shown in Fig. 1, they show that the population density in 
the districts is quite different. For instance, the popula-
tion density of all districts in the city centre is more than 
20000per/km2 . Of these, Hongkou district population 
density is 32935per/km2 . In comparison, the density of 
the most rural district is between 500− 2000per/km2 . 
Chongming district is only 539per/km2 . Thence, the pop-
ulation density in the city centre is significantly higher 
than in rural areas. It is obvious in Fig. 1 to see the differ-
ences in population density between districts.

Figures 2 and 3 show the population density at 10 a.m. 
and 10 p.m., respectively. We found the most densely 
populated area is in the city centre at 10 a.m. However, 
people are in the rural area at 10 p.m. That is why lots of 
red dots are gathered in the city centre in Fig. 2 and scat-
tered in rural areas in Fig.  3. These two figures demon-
strate that people work in the city centre and reside in the 
rural area. In general, this describes the characteristic of 
population migration in Shanghai.

Under the population density in the districts, the char-
acteristic of population migration, and virus transmis-
sion, we divide 18 districts into six epidemic research 
regions to analyse and predict the COVID-19 situation 
in Shanghai. At the same time, we use the python library 
‘networkx’ to create six Erodos Renyl networks to repre-
sent six epidemic research regions based on population 
density and characteristics of migration [36, 37].

In this research, we create six epidemic research 
regions to predict and analyse the spread of COVID in 
Shanghai. For creating each network, we need to deter-
mine two parameters, namely the number of nodes N  
and the probability of each possible vertex connected 
with other nodes pnode . N  implies the total population 
of the district represented by the network. To illustrate, 

(12)pk = e−<k>< k >k

k!

(13)pnode <
1

N

(14)pnode =
averagedegree

numberofnodes(N )
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the total population of Pudong district is 5.7 mil-
lion, and Network 4 represents Pudong district. Thus, 
the number of nodes in Network 4 is 5.7 million. For 
obtaining pnode , the parameter is calculated by Eq. (13). 
In this study, the average degree is equal to the num-
ber of closed contacts. Since the total population of the 
districts N  has been determined, estimating the aver-
age degree of each network is the next step. Due to the 
discrepancy in population density of the districts, the 
number of closed contacts is also diverse. Accordingly, 
the number of average degrees is not the same in net-
works. For instance, Network 2 represents the highest 
population density district. So, the average degree of 

the network is also the highest. Detailed information 
on networks describes in Table 1.

It is difficult to show a full-scale network in this paper 
because each network has millions of nodes. Consider-
ing the readability, we shrink the population of the above 
six epidemic research regions 100,000 times to make six 
schematics of Erdos Renyl networks for demonstrating 
the epidemic spreading in Shanghai. For example, Net-
work 1 has 5.4 million nodes. We only utilize 54 nodes 
in the schematics of Network 1. Figure 4 describes these 
six networks. In contrast, our simulation of the epidemic 
spreading in Shanghai is still based on the actual number 
of populations.

Fig. 1 Shanghai population distribution and density (Fig. 1 originally from paper ‘A Multi-Indicator Evaluation Method for Spatial Distribution 
of Urban Emergency Shelters’. Permission obtained)
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The numbers of degrees of each node vary in these 
six schematic Erodos Renyl networks, meaning each 
person has a different number of closed contacts. This 
is an advantage of the Erodos Renyl network because it 
reflects the reality. It is unlike other networks with con-
stant degree of nodes, such as a regular network. Regular 
networks are “regular” because each node has the same 
number of links. In general, using the Erodos Renyl net-
work has enormous advantages over the regular network 
or others. Using the Erodos Renyl network can simulate 
COVID spreading in a realistic environment.

Determining parameters
Although we build the simulation system in the previous 
part, we still need to determine and input all nine param-
eters, including migration rate ( δ ), transmission rate ( β ) 
Etc. In this research, the parameters are provided by the 
Shanghai government. The first case was detected, which 
means the new wave began on 21 Nov 2022. From that 
date, the Shanghai government updates the number of 
new cases, hospitalisations and these nine parameters 
daily. Consequently, these figures vary every day. How-
ever, due to regulation, the complete data for the nine 
parameters used in this study cannot open to the public. 

Therefore, we only demonstrate the average for each 
parameter. They are shown in Table 2.

Progress of simulation
The progress of the simulation is based on Erdos Renyl 
network, modified computational model SEIRS and 
python code. Thence, the system uses above three tech-
niques to describe the progress of simulation. Firstly, the 
system determines the initial infected. Although Shang-
hai experience a serious COVID wave and a long-time 
period of lockdown in the first half of 2022, Shanghai 
government maintain Zero-COVID policy, which has 
enabled Shanghai to maintain a consistently low growth 
in daily confirmed cases. From the end of September to 
20 November 2022, the daily confirmed case is consist-
ently at zero. However, one new case detected in Pudong 
district on 21 November 2022. This also marks the begin-
ning of a new wave of epidemics. Therefore, the initial 
infected is one. As this initial infected was detected in 
Pudong district and Network 4 represents Pudong dis-
trict, the system randomly identifies one node in Net-
work 4 and update it is in infected status.

In this research, the system uses python code to 
make a probability for the individual in each process of 

Fig. 2 Population density at 10 a.m. (I acknowledge the image from https:// www. sohu. com/a/ 23573 7015_ 691737, no copyright restrictions)

https://www.sohu.com/a/235737015_691737
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simulation. Afterwards, the system compares the ran-
dom parameter with the set parameters, such as trans-
mission rate, recovery rate, waning immunity rate, Etc. 
As an illustration, if the random recovery probability is 
less than the set recovery rate, then this individual will 
recover. Also, the individual will be infected if the ran-
dom recovery probability is larger or equal to the set 
recovery rate.

Throughout the simulation process, the first step is 
that the system randomly chooses a node to move to 
another population group which is based on migration 
rate ( δ ) and Eq. 2. For example, as shown in Fig. 4, if the 
system randomly selects node 42 in Network 1 to go to 
another network, then the system will also randomly 

select a node from another network. For instance, the 
system chooses node 49 in Network 2 by simulation. 42 
in Network 1 is infected, and node 49 in Network 2 is 
susceptible. So, after the migration, the original position 
of node 42 in Network 1 will be replaced by susceptible 
node 49 in Network 2. In contrast the original position of 
node 49 in Network 2 will be replaced by inflected node 
42 in Network 1. This example is briefly marked in Fig. 4. 
Although we only introduce the migration between node 
42 in Network 1 and node 49 in Network 2, each node 
can potentially migrate to other networks.

Afterwards, the system will check each susceptible 
node and its adjacent node in six networks. According 
to Fig. 4, if node 17 in Network 6 is susceptible, then the 

Fig. 3 Population density at 10 p.m. (I acknowledge the image from https:// www. sohu. com/a/ 23573 7015_ 691737, no copyright restrictions)

Table 1 Detailed information of networks

No. network Districts represented by the network Number of nodes ( N ) 
in million

Average 
degrees

probability of each possible vertex 
connected with other nodes ( pnode)

1 Baoshan, Jiading and Qingpu 5.8 3 5.17 e-07

2 All city districts 6.8 7 1.03 e-06

3 Minhang and Fengxian 3.8 4 1.05 e-06

4 Pudong 5.7 5 8.77 e-07

5 Chongming 0.6 0.5 8.33 e-07

6 Songjiang and Jinshan 2.8 2 7.14 e-07

https://www.sohu.com/a/235737015_691737
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system will check whether its adjacent nodes are infected. 
This means the system will determine whether adjacent 
nodes 3 and 22 are infected. If its adjacent nodes are 
infected, and the random transmission rate is less than 
the transmission rate ( β ), indicating they meet Eq.  (3), 
node 17 in Network 6 will become infected. This example 
is also briefly marked in Fig. 4.

Hereafter, the system focuses on infected individual. 
This process is based on recovery rate ( µ ) and Eq. (4). If 
the node random recovery rate is less than the recovery 
rate ( µ ), then the infected individual will become recov-
ered. At the same time, the individual cannot be infected 
again if the person keeps recovered status.

Nevertheless, if the individual cannot recover, then the 
system tests whether the person will become hospital-
ized or still infected, which is based on hospitalization 
rate ( γ ) and Eq. (5). Additionally, the system also decides 

whether the hospitalized person still be hospitalized, ICU 
hospitalized or died. In detail, if the individual is hospi-
talized, then the simulation process updates the status of 
the individual is hospitalized or ICU hospitalized under 
the ICU hospitalization rate ( ρ ) and Eq. (6). In the same 
way, according to Eq. (7), if the individual’s status is ICU 
hospitalized and the random mortality rate is less than 
set mortality rate ( σ ), then the system labels the particu-
lar individual has died. Then, these dead people will with-
draw from the simulation.

Although the infected person may become hospi-
talized, ICU hospitalized or die, they still have the 
opportunity to recover, except dead person. As an 
illustration, if the hospitalized person’s random ICU 
hospitalization rate is larger than the set ICU hospi-
talized rate ( ρ ) and the random recovery rate is less 
than the set hospitalization recovery rate ( τ ), then 

Fig. 4 Schematic of Erodos Renyl network

Table 2 Parameters used in the simulation

Parameter Value Parameter Value

migration rate ( δ) 0.7 recovery rate ( µ) 0.998

transmission rate ( β) 0.818 hospitalization recovery rate ( τ) 0.84

hospitalization rate ( γ) 0.0052 ICU hospitalization recovery rate ( ϕ) 0.32

ICU hospitalization rate ( ρ) 0.00017 mortality rate ( σ) 0.000093

waning immunity rate ( ε) 0.00476
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this person is recovered. Suppose the random ICU 
hospitalization probability is larger than the ICU hos-
pitalization rate ( ρ ), but the random hospitalization 
recovery rate is larger or equal to the set hospitaliza-
tion recovery rate ( ϕ ). In that case, the individual is 
still hospitalized. Likewise, the ICU hospitalized status 
individual is similar to a hospitalized individual. The 
system concentrates on the ICU hospitalization rate 
( ρ ) and ICU hospitalization recovery rate ( ϕ).

Finally, the system focuses on recovered individual. In 
this case, the waning immunity rate ( ε ) and Eq.  (8) are 
two important indicators. The person will return to the 
susceptible state if the random waning immunity rate is 
less than the waning immunity rate ( ε ), the person will 
return to the susceptible state. Otherwise, it will keep 
recovering. Above explanations are the processes of the 
epidemic spread. It is also the simulation process for 
this system. Figure 5 shows the simulation process more 
intuitively.

Prediction performance and results
So far, we have completed building the computational 
simulation. Hereafter, we input the nine parameters 
each day and run the simulation. Finally, we compare the 
simulation results with actual data to calculate the accu-
racy for verifying the simulation effect. The actual data 
includes the number of hospitalized, ICU hospitalized 
and death from 21 Nov 2022 to 31 Jan 2023. Daily con-
firmed cases from 21 Nov 2022 to 15 Dec 2022 are also 

included. Since the Shanghai government no longer col-
lected daily confirmed cases on 15 Dec 2022, the actual 
daily case data ended by 15 Dec 2022.

After the simulation, we use Eq.  (15) to calculate the 
accuracy. In Eq.  (15), simulationi means the simula-
tion results per day, actuali represents the actual data 
per day, and n indicates the number of days predicted. 
Lastly, accuracy is derived by calculating the cumulative 
deviation.

Figures  6, 7, 8 and 9 illustrate the deviation between 
actual and simulated data in the daily case and medi-
cal resource needs. The prediction accuracies of daily 
confirmed cases, hospital bed needs, ICU bed needs, 
and cumulative deaths are 0.954, 0.962, 0.951 and 0.968, 
respectively. And the overall accuracy of the simulation is 
0.959. In general, the simulation performs quite well, and 
the result is reliable.

Since we demonstrate the accuracy of the simulation 
is outstanding, we use it to forecast the daily confirmed 
cases, hospital bed needs, ICU bed needs and death 
in the following year. In addition, we use the histori-
cal data from the Shanghai government as parameters 
used in the simulation [38] point out that although omi-
cron is highly mutable, there has never been a strain 
in the last six months that was very different from the 
previous strains. In other words, there is no significant 

(15)1−

∑n
i=1

∣∣simulationi − actuali
∣∣

n

Fig. 5 Simulation flow-process diagram
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change in the rate of transmission or pathogenicity of 
the virus. Therefore, the historical data of nine parame-
ters still applies to future outbreak projections. Through 
the projections, we make the following figures to reveal 
the COVID trend in Shanghai after China reopening its 
borders.

Figures  10, 11 and 12 demonstrate the COVID trend 
prediction in Shanghai after China reopening the 

borders, including daily confirmed cases, hospital bed 
needs, ICU bed needs and cumulative deaths. Due to 
the readability, figures only label the critical date in the 
x-axis, such as the peak, start and end date of each wave. 
Figures 10, 11 and 12 respectively illustrate the daily con-
firmed cases, hospital bed needs, ICU bed needs, and 
cumulative deaths in Shanghai after China reopening the 
borders. It is found in Figs.  10, 11 and 12, although the 

Fig. 6 Dily confirmed case prediction performance

Fig. 7 Hospital bed needs prediction performance
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first wave of the outbreak is over, the second and third 
COVID waves will outbreak in the future. Therefore, the 
government and residents should still attach importance 
to COVID prevention.

Impact of the parameters on daily confirmed cases
Building and optimizing statistical model
Through the previous predictions, the results demon-
strate that Shanghai will experience the second and third 

Fig. 8 ICU bed needs prediction performance

Fig. 9 Cumulative death prediction performance
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waves in 2023. If COVID leads to too many people being 
infected, it hurts the economy deeply [39]. Thence, it is 
necessary for the government to minimise the number 
of daily confirmed cases in each wave of the epidemic 
as few as possible. Therefore, identifying the important 

factors that can influence the number of daily confirmed 
cases is the crucial section. This can make the govern-
ment provide more scientific guidance to citizens for self-
prevention, which decreases the negative impact on the 
economy and protect people’s health.

Fig. 10 Daily confirmed cases prediction

Fig. 11 Hospital and ICU bed needs prediction
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In the simulation, three parameters can influence the 
daily case: transmission rate, migration rate and wan-
ing immunity rate. Thus, we use historical data from the 
Shanghai Government relating to these three parameters 
and the parameter ‘recovery rate’ to build the statistical 
model. We need to add the variable ‘recovery rate’ in the 
statistical model because adding the variable ‘recovery 
rate’ makes the simulation complete and more realis-
tic. Since hospitalized and dead people only count a few 
portions of the whole population, it does not affect the 
result of the statistical model. Thus, the statistical model 
does not include the variables for hospitalization death, 
such as variable ‘hospitalization rate’, ‘mortality rate’ and 
so forth. In general, the dependent variable is the daily 
confirmed case. The independent variables include trans-
mission rate, migration rate, waning immunity rate and 
recovery rate. After building and optimizing the statis-
tical model, we calculate the overall coefficient of each 
parameter. The highest overall coefficient means the 
maximum influence of daily confirmed cases.

Linear and multiple polynomial model
Our first step utilizes multiple linear regression with 
homogeneous variance. The classical linear model (LM):

Y = Xβ + ε, ε ∼ N (0, σ 2I)

Implies that outcomes Yi are independent and normally 
distributed:

where µi = XT
i β . Note that all Yi have the same variance, 

namely σ 2 . Hence, the simple linear regression model is

Then we use R code ‘lm’ to make a LM. However, we 
found the residual is too large and we notice each variable 
residual plot has quadratic pattern. Therefore, we use quad-
ratic, cubic and other powers to increase the fitted model 
accuracy until hypothesis test’s p-value is greater than 0.05 
which means we accept null hypothesis. Finally, the best fit-
ted model has shown in below:

Yi ∼ N
(
µi, σ

2
)
, i = 1, . . . , n

(16)

casei = β0 + β1infectiousRate + β2recoveredRate

+ β3immuniteRate + β4immigrateRate + εi

(17)

casei = β0 + β1infectiousRate + β2infectiousRate
2

+ β3infectiousRate
3
+ β4infectiousRate

4

+ β5recoveredRate + β6recoveredRate
2

+ β7recoveredRate
3
+ β8immunityRate

+ β9immunityRate2 + β10immunityRate3

+ β11immigrateRate + β12immigrateRate2

+ β12immigrateRate3 + εi

Fig. 12 Cumulative deaths prediction
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Mixed‑effect model
The above machine learning algorithm (linear or multiple 
regression) apply constant variance var[Yi] = σ 2 . How-
ever, the heterogeneous variances are more appropriate in 
reality, rather than homogeneous variance (constant vari-
ance). We now relax the constant variance assumption and 
assumption that var[Yi] = σ 2

i  . Therefore, a LM with het-
erogeneous variance can be formulated as:

with εi ∼ N (0, σ 2
i ) and the εi are independent. Or, in 

matrix notation,

where R is a diagonal matrix.
The simplest way to introduce heteroscedasticity and, 

at the same time, to reduce the number of variance 
parameters, is to assume that the variance of εi is equal 
to a known proportion of one (unknow) parameter σ 2 . 
More specifically, we may associate with every observa-
tion i a known constant wi > 0 and assume that

For instance, if Yi is the average of ni observations (all 
with the same covariates) and the original observations 
were homogeneous. We can consider the transformed 
model:

Then var
[
w

1
2
i εi

]
= σ 2--- we are back at a homogene-

ous LM. This motivates estimates / estimators of β via a 
weighted sum of squares:

whereW = diag(w1,w2, . . . ,wn ) is a diagonal matrix 
which leads to

A more general and flexible way to introduce variance het-
erogeneity is by means of a variance function g(.). The vari-
ance of the residual errors var[εi] , is expressed as follows:

Yi = xTi β + εi, i = 1, . . . , n

Y = Xβ + ε, ε ∼ N (0, σ 2R)

var[εi] = var[Yi] =
σ 2

wi

w
1/2
i yi = β0w

1/2
i 1+ β1w

1/2
i xi1 + · · · + βpw

1
2
i xip + w

1
2
i εi, i = 1, . . . , n

m∑

i=1

wi(yi − xTi β)
2
= (y− Xβ)TW (y− Xβ)

β̂WLS = (XTWX)
−1

XTWy

σ̂ 2
WLS =

1

n− p− 1
(y− X β̂WLS)

T
W (y− X β̂WLS)

where µi = E[Yi] = xTi β , σ is a scale parameter, vi is a 
vector of (known) covariates defining the variance func-
tion for observation i , while the vector δ contains a small 
set of variance parameters, common to all observations. 
Note that, because function g(.) involves µi , it in fact 
depends on β , too. It is worth underscoring here that the 
parameter σ 2 in general should be interpreted as a scale 
parameter. This is the classical LM with homogeneous 
variance in which σ 2 can be interpreted as residual error 
standard deviation. Note that, g(.) should, strictly speak-
ing, be referred to as a function modelling standard devi-
ation, not variance. However, the term variance function 
is commonly used when referring to g(.).

In this study, we use two variance functions, namely 
different variances per stratum (varIdent) and power of a 
covariate (varPower).

For varIdent, this class represents a variance model 
with different variances for each level of a stratification 
variable s, taking values in the set {1,2, …, S},

This variance model uses S + 1 parameters to represent 
S variances and, therefore, is not identifiable. To achieve 
identifiability, some restriction needs to be imposed 
on the variance parameters δ . δi = 1 is used, so that δI , 
I = 2, . . . , S , represent to ratio between the standard 
deviations of the /th stratum and the first stratum. By 

definition, δI > 0 , I = 2, . . . , S.
For varPower, the variance model represented by this 

class is

These main arguments to varPower are value and form, 
which specify, respectively, an initial value for δ , when 
this is allowed to vary in the optimization, and a one-
sided formula with the variance covariate. Note that, 
when vi = 0 and δ > 0 , the variance function is 0 and the 
variance weight is undefined. Therefore, this class of vari-
ance functions should not be used with variance covari-
ates that may assume the value 0.

Afterward, we use R code ‘glm’ to build the mixed-
effect model based on the Eq. 16. We apply varIdent and 
varPower variance function. Thus, we get the two mixed-
effect statistical model. The first model with varIdent rep-
resents as follow.

var[εi] = σ 2g2(δ,µi; vi)

var[εi] = σ 2δ2sicorrespondingtog
(
si,δ

)
= δsi

var[εi] = σ 2|vi|
2δcorrespondingtog(si, δ) = |vi|

δ
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The first model with varPower illustrates as follow.

Multiple polynomial model vs mixed‑effect model
So far, we have built three statistical models: one multiple-
polynomial model and two mixed-effect models. There-
fore, our next step is determining whether the mixed-effect 
model is better than multiple polynomial model.

Firstly, multiple polynomial model is better or the 
mixed-effect model with varIdent. R code ‘ANOVA’ is be 
used in this test. This command tests:

Test statistic (likelihood-ratio test) has asymptotically 
a X2

3 distribution, i.e., a X2 distribution with 3 degrees of 
freedom. Also, the p-value is < 0.001. Hence, we believe that 
alternative hypothesis ( H1 ) is our preferred. In other words, 
mixed-effect model is a more appropriate model. Secondly, 
we still use R code ‘ANOVA’ to test whether varIdent is bet-
ter than model with varPower. This command tests:

(18)

caseit = β0t + β1infectiousRatei + β2t infectiousRate
2
i + β3t infectiousRate

3
i

+β4t infectiousRate
4
i + β5t recoveredRatei + β6t recoveredRate

2
i

+β7t recoveredRate
3
i + β8t immunityRatei + β9t immunityRate2i

+β10t immunityRate3i + β11t immigrateRatei + β12t immigrateRate2i
+β13t immigrateRate3i + εit

σit = σgit = σg(
�
δ1,δ2,δ3,δ4

�
; dayit

=






σ(dayit)
δ1 forinfectiousrate

σ(dayit)
δ2 forrecoveredrate

σ(dayit)
δ3 forimmunityrate

σ(dayit)
4forimmigraterate

(19)

caseit = β0t + β1infectiousRatei + β2t infectiousRate
2
i + β3t infectiousRate

3
i

+β4t infectiousRate
4
i + β5t recoveredRatei + β6t recoveredRate

2
i

+β7t recoveredRate
3
i + β8t immunityRatei + β9t immunityRate2i

+β10t immunityRate3i + β11t immigrateRatei + β12t immigrateRate2i
+β13t immigrateRate3i + εit

σit = σgit = σg(δ,µit) = σ(µit)
δ

H0 : σ
2
1 = σ 2

2 = σ 2
3 = σ 2

4 VSH1 : atleasttwoσ
2
t differ

H0 : δ1 = δ2VSH1 : δ1 �= δ2

Test statistic (likelihood-ratio test) has asymptotically 
a X2

1 distribution, i.e., a X2 distribution with 1 degree of 
freedom. Additionally, the p-value is < 0.001. Hence, we 
believe that alternative hypothesis ( H1 ) is our preferred. 
In other words, mixed-effect model with varPower is 
the best model. We also use Akaike information cri-
terion (AIC) to test the performance of the statistical 

Table 3 Details of AIC test result

Statistical model DF AIC

Multiple-polynomial model 6 4016.19

Mixed-effect model with varIdent 10 2559.81

Mixed-effect model with varPower 11 1934.23

Table 4 Coefficient of mixed-effect model

Variable Coefficient P-value Variable Coefficient P-value

intercept 917.15 2e-16 recovRate3 -209.69 2e-16

infecRate 290.441 2e-16 immuniRate 716.049 2e-16

infecRate2 1877.73 2e-16 immuniRate2 582.49 2e-16

infecRate3 3495.39 2e-16 immuniRate3 -140.03 2e-16

infecRate4 -1612.44 2e-16 immigraRate 735.614 2e-16

recovRate -910.72 2e-16 immigraRate2 616.65 2e-16

recovRate2 1113.47 2e-16 immigraRate3 -157.74 2e-16

Table 5 The overall coefficients of parameters

Parameter Overall 
coefficient

Transmission rate 3.096

Waning immunity rate 7.219

Migrate rate 7.418
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models. Table 3 represents the details of AIC test result 
and degree of freedom (DF).

According to the above result, the Mixed-effect model 
with varPower is the best statistical model because of 
minimum AIC and relatively lower DF.

Result of statistical model
After the analysis, ANOVA test points out the mixed-
effect model with varPower is the most appropriate sta-
tistical model. The coefficient of final model shows in 
Table 4.

Since the overall coefficient of the parameter represents 
their influence on COVID spread and daily confirmed 
cases, we input 0.01 to calculate the overall coefficient as 
an example. The following calculation illustrates how to 
calculate the overall coefficient of immigration rate.

After calculation, the overall coefficient of the immigra-
tion rate is 7.418. However, 7.418 does not mean about 7 
more individuals will be infected if the immigration rate 
increases by 0.01 (1%). As a result, the overall coefficient, 
7.418, only represents a quantitative increase in daily 
confirmed cases. Afterwards, we use the same approach 
as above to calculate the overall coefficient of the other 
two parameters, including transmission and waning 
immunity rate. The overall coefficients show in Table 5.

According to Table 5, results show that both the wan-
ing immunity and migration rate are more important 
than the transmission rate because of higher overall 
coefficients.

Discussion
Most previous studies concentrate on the original or 
Delta strain, and none investigates the Omicron strain 
after China reopens its borders. Hence, this research uti-
lizes the Erdos Renyl network, optimized computational 
model SEIRS , and python code to predict the COVID 
trend. Figures 6, 7, 8 and 9 illustrate the forecast of daily 
confirmed cases, hospital bed needs, ICU bed needs and 
cumulative deaths. The overall accuracy of the simulation 
is 0.959, which shows that the simulation is appropriate 
and the result is credible. Afterwards, the research uses 
historical data from the Shanghai government to deter-
mine the nine parameters and predict the COVID trend. 
Figures  10, 11 and 12 demonstrate the detailed results. 
As shown in Fig. 10, Shanghai will experience two waves 
of COVID after the first wave. Their peaks will occur in 
mid-August and mid-December. The maximum daily 
confirmed cases will be around 88,000 and 340,000, 
respectively. Figure 11 demonstrates that during the sec-
ond wave, the hospital bed needs will drop from a peak 
of 24,000 in mid-August to 8,000 in September. Similarly, 

0.01× 735.614 + 0.01
2 × 616.65+ 0.01

3 × (−157.74) = 7.418

the peak of ICU bed demand is also in mid-August, and 
the maximum demand for ICU bed is 1200. Finally, its 
needs will decrease to a minimum of 400 in September. 
However, the third wave is more severe than the second 
wave. During this time, there will be 74,000 hospital beds 
and 3,700 ICU beds for COVID patients, which will hap-
pen by the end of December or early January. Figure 12 
illustrates the cumulative deaths of about 31,500 in the 
three waves. The second and third waves caused fewer 
deaths overall, with 4,000 and 10,500 deaths, respectively.

In general, according to Figs.  7, 8 and 9, among the 
three waves of COVID in 2023, the first wave is the most 
severe. The remaining outbreaks were far less severe 
than the first wave. While the second wave of COVID is 
not expected to result in a medical resources shortage, 
a more severe medical resources shortage is expected in 
the third wave. So far, there are 141,000 hospital beds and 
1497 ICU beds in Shanghai. Therefore, ICU bed will be in 
short supply in mid-November due to the third wave of 
COVID. Fortunately, existing hospital beds are sufficient 
for the COVID outbreak the following year. According 
to Fig. 10, with China opening its borders, 31,500 people 
will die from COVID in Shanghai during the three waves.

According to the above results, they demonstrate that 
the second and third will occur in 2023. Finding fac-
tors that reduce COVID cases daily is crucial to mini-
mise economic and health risks. This research utilises 
the historical data from the Shanghai government to 
build the statistical model to investigate the impact of 
transmission, migration and waning immunity rate on 
COVID spread and daily confirmed cases increasing. 
The hypothesis test and p-value demonstrate which sta-
tistical model is the most appropriate in this part. Firstly, 
we determine which variance is more suitable for these 
data, such as homogeneous and heterogeneous variance. 
The p-value rejects the null hypothesis. Consequently, 
the mixed-effect model with heterogeneous variance 
can demonstrate valuable results. Secondly, the system 
applies another hypothesis test to decide whether the 
mixed-effect model is under variances per stratum (var-
Ident) or power of a covariance (varPower). Since the 
relatively lower degree of freedom (DF) and lower AIC 
is our preferred, the mixed-effect model with varPower 
is the best statical model. After the calculation, the over-
all coefficient of the transmission, waning immunity, and 
migration rate are 3.096, 7.219, and 7.418, respectively. 
Therefore, waning immunity and migration rate are 
two essential parameters in COVID spread. Decreasing 
these two parameters can significantly reduce the num-
ber of daily confirmed cases, especially migration rate. 
It is crucial for the government to compile the COVID 
self-prevention guide for residents after China opened its 
borders.
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Conclusion
After describing the prior studies, this research utilizes a 
modified computational model SEIRS and python code 
to predict the COVID spreading trend, and the medical 
resources needs after China reopening the border. More-
over, the research also builds statistical models to investi-
gate which parameter significantly impacts COVID daily 
new cases among transmission, migration, and waning 
immunity rate. These findings provide a strong basis 
for the government to prepare medical resources and 
develop guidelines for citizen self-prevention after China 
reopens the border.

Implication
The simulation results indicate that the second and third 
waves will happen in May–June 2023 and Oct-Dec 2023, 
respectively. This shows that the outbreak is far from 
over. Therefore, the government should remind the pub-
lic not to ignore COVID. For example, people maintain 
a safe distance from others as far as possible in pub-
lic places. In the meantime, wearing a mask in crowded 
places is also a practical approach to self-protection.

Moreover, the government also prepare more medical 
resource, such as ICU bed. Although the number of hos-
pital beds and ICU beds available is enough for the sec-
ond wave, there is a shortfall of nearly 2,200 ICU beds in 
the third wave. Fortunately, the number of hospital beds 
is sufficient. There are 160,000 hospital beds in Shanghai. 
The peak of hospital demand is about 81,000. Conse-
quently, preparing more ICU beds before the third wave 
is the priority for the government.

In this study, we choose Shanghai as the research back-
ground because it is representative in China. Hence, the 
result of this study can demonstrate the situation in China 
after reopening the border. According to the above result, 
Shanghai is facing a shortage of medical resources, includ-
ing ICU beds. Since the number of ICU beds per 100,000 
people in Shanghai is 5.99, much higher than the average 
level in China, 4.6 ICU beds per 100,000 [40]. Therefore, 
the shortage of ICU beds in the other regions of China will 
be even more serious. Therefore, the government should 
prepare more ICU beds before the peak of the third wave.

According to the mixed-effect model built in this study, 
the result demonstrates that the waning immunity and 
migration rate are two essential parameters in COVID 
spreading. Therefore, the government should attach 
importance to residences’ immunity against COVID 
because decreasing immunity strength will cause higher 
infection probability and inflection. Also, before the 
second wave of the epidemic comes, the government 
can encourage people to work at home and limit the 
time of going out to decrease the migration rate, reduc-
ing the number of daily confirmed cases. Furthermore, 

the government should compile and update the COVID 
self-prevention guide for residents to illustrate which 
approach is the most appropriate to achieve the most 
effective self-prevention.

Limitation
Although we build six networks based on population 
density and migration characteristics, we do not contain 
community scenarios like campuses, parks, and super-
markets. The population density of these places is usually 
high, which may lead to higher transmission rates and 
more infections. Hence, creating more scenarios in fur-
ther simulation is an upgrading area of future studies.

Furthermore, the hospitalization, ICU, and mortal-
ity rates vary by age group. To illustrate, hospitalization 
rates for older people are always higher than for younger 
people. Hence, considering age structure will further 
improve the accuracy of the simulation, which is another 
further study.
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