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Abstract 

Background We aimed to select and externally validate a benchmark method for emergency ambulance services 
to use to forecast the daily number of calls that result in the dispatch of one or more ambulances.

Methods The study was conducted using standard methods known to the UK’s NHS to aid implementation in prac-
tice. We selected our benchmark model from a naive benchmark and 14 standard forecasting methods. Mean abso-
lute scaled error and 80 and 95% prediction interval coverage over a 84 day horizon were evaluated using time series 
cross validation across eight time series from the South West of England. External validation was conducted by time 
series cross validation across 13 time series from London, Yorkshire and Welsh Ambulance Services.

Results A model combining a simple average of Facebook’s prophet and regression with ARIMA errors (1, 1, 3)(1, 
0, 1, 7) was selected. Benchmark MASE, 80 and 95% prediction intervals were 0.68 (95% CI 0.67 - 0.69), 0.847 (95% CI 
0.843 - 0.851), and 0.965 (95% CI 0.949 - 0.977), respectively. Performance in the validation set was within expected 
ranges for MASE, 0.73 (95% CI 0.72 - 0.74) 80% coverage (0.833; 95% CI 0.828-0.838), and 95% coverage (0.965; 95% CI 
0.963-0.967).

Conclusions We provide a robust externally validated benchmark for future ambulance demand forecasting studies 
to improve on. Our benchmark forecasting model is high quality and usable by ambulance services. We provide a sim-
ple python framework to aid its implementation in practice. The results of this study were implemented in the South 
West of England.
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Introduction
Ambulance response times can be critical to patient 
outcomes for serious clinical events such as cardiac 
arrest [1], stroke [2], and major trauma [3]. Managing 
ambulance provision efficiently is therefore critically 
important to health outcomes. Part of that management 
is having an accurate forecast of expected demand that 
can be used to plan and schedule appropriate work-
force at the regional and daily level. Forecasting stud-
ies of demand for emergency medical services (EMS) 
date back over three decades [4–12]. In this time, there 
has been some incremental improvement in methods 
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most notably in developing spatial temporal forecast-
ing methodology using neural network architectures 
[6, 11, 12]. The study by Martin et al. [12] also demon-
strated that standard time series forecasting methods 
provide comparable prediction accuracy to machine 
learning methodology. The promise shown in these 
studies is yet to transfer to wide-scale implementation 
in ambulance services. We argue that this stems from 
a number of limitations of the current evidence. A fun-
damental weakness is that studies are single site with 
no external validation of the forecasting methods cho-
sen. Of these studies few have used a scale independ-
ent measure of forecast accuracy [11, 12]. It is therefore 
difficult to robustly compare forecast accuracy across 
existing studies and settings. In effect, the current evi-
dence makes it difficult for an EMS or researcher to 
judge if their forecasting methods are on par, fall below 
or exceed a state-of-the-art benchmark. There is one 
additional subtle limitation to the evidence. Existing 
studies have tended to focus evaluation on point fore-
cast accuracy; for example, the accuracy of a prediction 
of demand next Tuesday. In a statistical perspective on 
forecasting, a point forecast is accompanied by a pre-
diction interval: a range of values that a future value 
might take with a high probability [13]. For example, 
next Tuesday’s prediction could be supplied with a 95% 
prediction interval stating that the actual value for next 
Tuesday should lie within a given range with probability 
0.95. Achieving adequate prediction interval coverage 
is difficult and an understanding of a chosen method’s 
capability is of high importance.

This study aims to provide EMS forecasting bench-
marks for future research to incrementally improve on. 
To aid EMS workforce planning, we predict the daily 
number of calls that result in the dispatch of one or 
more ambulances [5]. Our objectives are to establish 
statistical benchmarks for point forecast accuracy and 
prediction interval coverage up to 12 weeks (84 days) 
ahead. We select the most accurate forecasting method 
from 14 established methods and present details of 
the forecast error distribution at 7 day intervals. We 
then externally test the selected method in three fur-
ther ambulance trusts (in the UK an ambulance trust 
provides services across a region). Overall we test 
the method in 21 time series. Finally, we also provide 
an easy to use MIT licensed (free and open) Python 
framework for deploying the model. Our results enable 
future replication studies or studies of new methods 
to directly compare their accuracy to our benchmark. 
EMS data science teams developing in-house forecast-
ing tools or purchasing commercial forecasting sys-
tems can also compare results and spend NHS resource 
wisely.

Methods
We build multiple time series forecasting models using 
established methods. Model selection is conducted by 
time series cross validation evaluating both point forecast 
accuracy and prediction interval coverage. All models are 
compared to a naive statistical baseline model. We then 
test the selected method in a simulated forecasting set-
ting (seven regions within a NHS Trust). The accuracy 
of the method in our test set is our benchmark. We test 
the external validation of the benchmark by applying 
the method to a further 13 regions from three different 
ambulance trusts in the United Kingdom.

Study setting
We develop our benchmark model using data from the 
South Western Ambulance Service NHS Foundation 
Trust (SWASFT). SWASFT is an NHS Trust in England 
that provides emergency medical services to a population 
of 5.6 million spread over a mixed urban/rural region of 
26,000  km2. The service receives an average 2,300 calls 
per day that require the dispatch of one or more ambu-
lances. Forecasts are rerun every week and are used to set 
the staffing rotas three months ahead. The South West 
region can be broken down into seven sub-regions / time 
series: Devon, Cornwall, Dorset, Somerset, Gloucester-
shire, Wiltshire, and ‘Bristol, North Somerset and South 
Gloucestershire (BNSSG)’.

Our external validation is comprised of data from Lon-
don Ambulance Service (LAS; 5 time series; population 
8.6m; area size 1,570km2), the Welsh Ambulance Service 
Trust (WAST; 4 time series; pop 3m, area 20,740km2) 
and the Yorkshire Ambulance Service (YAS; 6 time 
series; pop 5m; area 15,540km2). Overall the trusts serve 
a population of over 20 million people in the UK.

Outcome measures
We measure both point forecast error and prediction 
interval coverage of the forecasts. For point forecast 
error, our main outcome measure is the Mean Absolute 
Scaled Error (MASE) as this provides an easy to under-
stand relative error measure that can be compared across 
ambulance trusts. For MASE, we scale the out of sample 
mean absolute error by the equivalent one-step within-
sample error from a Seasonal Naive model [14]. We also 
report two secondary point forecast error measures. A 
second relative error measure is the symmetric Mean 
Absolute Percentage Error (sMAPE). As it has been used 
elsewhere [5], we also provide a scale-dependent meas-
ure via the Root Mean Absolute Squared Error (RMSE), 
although this can only be used in the context of the spe-
cific time series. Prediction interval coverage measures 
the proportion of out-of-sample observations that fall 
within a prediction interval with an expected probability. 
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For example, it is expected that 80% of points will fall 
within an 80% prediction interval. For cross-validation, 
we report the 80% and 95% prediction interval cover-
age. We report the full forecast distribution for the final 
benchmark model.

Data sources
The study was conducted at a daily time-series level. 
Each observation represents the daily count of emer-
gency calls that resulted in the dispatch of one or more 
emergency ambulances. Each days calls are logged by the 
ambulance provider. The data used here are a subset of 
this total that result in an ambulance dispatch. For model 
development, each sub-region in the data were broken 
into training (01/01/13 - 30/06/17; n = 1279 ), validation 
(01/07/17 - 31/01/18; n = 549 ) and test sets (01/01/2019 
- 31/12/2019; n = 365 ). All data available on record was 
used. The validation period differs from test in that it is 
used to tune and select models. Data were validated by 
combining independent screening of time series for 
anomalies and through NHS data checks before release. 
Researchers had no access to individual patient level data.

Analysis environment
All analysis code was written in Python 3.7.5 and R 3.6.1. 
Python forecasting libraries used were pmdarima v1.5.3 
[15], fbprophet v0.5 [16], statsmodels v0.11.1 [17], tbats 
v.1.0.10 [18], forecast-tools v0.1.5 [19] and from R we 
used Rssa v1.0.2 [20]. Data cleaning and manipulation 
were done using Pandas [21] and NumPy [22]. All charts 
were produced with MatPlotLib [23]. to enable the results 
of the benchmark study to be reproduced we followed the 
Turing Way [24]. We provide a docker image containing 

the exact software, code and data used (https:// hub. 
docker. com/r/ tommo nks01/ swast- bench mark/). Instruc-
tions to use the docker image, data and analysis code are 
available online [25] (https:// github. com/ TomMo nks/ 
swast- bench marki ng). The computational analyses were 
run on Intel i9-9900K CPU with 64GB RAM running 
the Pop!_OS 20.04 Linux. Our benchmark model has 
been released as a MIT licensed (free and open) Python 
package [26]. A cloud runnable tutorial, via BinderHub, 
is available from https:// github. com/ TomMo nks/ swast- 
forec ast- tool.

Candidate models
We evaluated 14 candidate forecasting methods, listed in 
Table 1, relative to a naive benchmark. We selected estab-
lished candidate methods (many of which are known 
to the UK National Health Service); for example, Holt-
Winters Exponential Smoothing, Autoregressive Inte-
grated Moving Average (ARIMA), Harmonic regression 
(regression with ARIMA errors using fourier series exog-
enous variables to represent seasonality), TBATS (Trigo-
nometric seasonality, Box-Cox transformation, ARMA 
errors, Trend and Seasonal components) [27], and Sin-
gular Spectrum Analysis (SSA). We also included four 
ensembles (an unweighted average) of methods: three of 
individual methods already included as well as a standard 
ensemble comb [28].

We use a modern approach to ARIMA model selec-
tion by automatic selection of the model using the Hynd-
man-Khandakar algorithm. The number of fourier terms 
in harmonic regression were selected by minimising 
Akaike Information Criterion. The most modern method 
we employ is Facebook Prophet which was designed to 

Table 1 Candidate forecasting methods

Method Description

1 Holt-Winters Exponential Smoothing

2 Automatic Autoregressive Integrated Moving Average (autoARIMA)

3 Lagged regression (autoregression) with holidays and seasonal indexes

4 Lagged regularised regression (elastic-net) with seasonal indexes

5 Regression with holidays and ARIMA errors

6 Regression with holidays, seasonal indexes and ARIMA errors

7 Harmonic Regression (fourier terms) with holidays

8 Singular Spectrum Analysis

9 Facebook Prophet

10 Trigonometric seasonality, Box-Cox transformation (TBATS)

11 Comb: Simple Exponential Smoothing, Linear Trend, damped trend

12 Ensemble of [1] and [2]

13 Ensemble of [7], [5]

14 Ensemble of [1], [9] and [5]

https://hub.docker.com/r/tommonks01/swast-benchmark/
https://hub.docker.com/r/tommonks01/swast-benchmark/
https://github.com/TomMonks/swast-benchmarking
https://github.com/TomMonks/swast-benchmarking
https://github.com/TomMonks/swast-forecast-tool
https://github.com/TomMonks/swast-forecast-tool
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handle higher frequency data that may have multiple 
periodicity. Prophet is similar to a Generalised Additive 
Model in that it is a curve fitting approach. All meth-
ods are simple for ambulance services to implement and 
available in either Python or R.

Statistical analysis
The study consisted of four stages. Table  2 summarises 
the statistical procedure and data used to select a bench-
mark method and perform an external evaluation.

Stage 1: screening
A naive baseline forecasting method was chosen. This 
was to ensure that the sophisticated methods we test in 
the study were only considered for the final benchmark 
if they provided more accurate point forecasts than the 
simplest of models. As emergency care demand data are 
seasonal we opted for the well-known Seasonal Naive 
method [13]. This method works by using the most 
recent observation for the same day and carrying it for-
ward. For example, if we are forecasting next Tuesday 
then the observation from the most recent Tuesday is 
used as the predicted value.

The large list of methods were initially screened using 
a method of time series cross-validation called rolling 
forecast origin [29]. To avoid leakage of future observa-
tions, the method incrementally moves the forecast ori-
gin forward in time and then makes a prediction. For 
each new fold we implemented a stride of seven days. We 
performed a two stage model selection procedure. In this 
first stage, we used an aggregate regional level time series 
to screen and identify the most promising candidate 
models for up to a 365 day forecast (27 folds).

Stage 2: elite screening
In the second stage, our top two ‘elite’ methods, in rela-
tion to our chosen outcomes and seasonal naive bench-
mark, were compared using seven sub-regional time 
series. For the 84 day horizon we had sufficient data to 
produce 67 validation folds for each sub-region.

Stage 3: simulated forecast setting
Our test set provided 365 observations for each of the 
seven sub-regions. This enabled us to make 41 simu-
lated forecasts of 7 to 84 days. Our benchmark there-
fore includes a range of MASE and coverage metrics that 
might be expected in practice.

Stage 4: external validation
For external validation, we repeated the simulated fore-
cast procedure within 13 test sets for London (5 01/01/10 
- 31/12/2019), Yorkshire (01/01/13 - 31/12/2019) and 
Wales (01/10/15 - 31/12/2019). We report how the 
selected model compared across MASE and coverage 
metrics observed to those expected in our benchmark 
analysis.

Results
Training data
There were no missing observations in the training data. 
Figure 1 depicts the training data time series. The median 
number of calls requiring an ambulance dispatch per day 
was 2169 (IQR 2083 - 2269). Extreme days (exceeding the 
99th percentile) are observed on the 1st January every 
year (New Year’s day) where the median number of calls 
increased to 2783 (IQR 2673 - 2930). The data displayed 
a slight upward trend over time rising from median per 
day of 2135 in 2014 to 2257 by 2018. There was variation 
in demand by month of year and day of the week (Fig. 2).

Table 2 Statistical analysis procedure

Stage TSCV methods Data used

1. Screening Seasonal naive benchmark Trust level series

10 X individual standard methods 01/01/13 - 31/12/2018

5 x combination forecasters

2. Elite screening Top 2 methods from stage 1 7 regional series

01/01/13 - 31/12/2018

3. Simulated forecast setting Selected method 7 regional series

Train: 01/01/13 - 31/12/2018

Test: 01/01/2019 - 31/12/2019

4. External evaluation Selected method 13 external series

Train: 01/01/10 - 31/12/2018

Test: 01/01/2019 - 31/12/2019
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Naive benchmark
The magnitude of the point forecasts of the seasonal 
naive method increased with the forecast horizon (see 
Table 3). On average, the naive method achieved a MASE 
of 0.94 (0.35) over 7 days. For the trust, this represents 
a sMAPE and RMSE of 3.5% and 96.9 calls respectively. 

Over an 84 day horizon MASE increased to 1.34, (a 30% 
increase). By 365 days MASE had increased to 1.49 (0.46).

Model selection
The stage one MASE, 80 and 95% prediction inter-
val coverage cross-validation results are summarised 

Fig. 1 Time series of training data. Trust level daily number of calls that require one or more ambulance dispatches. Extreme observations observed 
on new years day marked with red dot

Fig. 2 Annual and weekly seasonality. Top figure illustrates the variation in demand by month of the year. Bottom figure illustrates variation by day 
of week
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in supplementary Tables S1, S2, and S3 in the sup-
plementary online material respectively. In the first 
stage of model selection, only Prophet (model 7) and 
the Prophet-Regression with ARIMA errors ensem-
ble (model 13) had a MASE lower than 1.0 up to 84 
day horizon ( MASE84 Prophet = 0.97 (0.12); ensem-
ble = 0.99 (0.13)). In the ensemble the ARIMA model 
selected was a (1, 1, 3)(1, 0, 1, 7). The two models out 
performed seasonal naive at all horizons. All models 
had a MASE of greater than 1.0 at 365 days.

In the second stage of model selection, we com-
pared Prophet and the ensemble at the sub region 
level. Figure 3 illustrates the change in MASE by fore-
cast horizon and sub-region. Figure  4 illustrates the 
distribution of prediction interval coverage by hori-
zon and desired coverage. The MASE for Prophet and 
the ensemble models is similar across all sub-regions. 
The median prediction interval coverage for the 

Table 3 Cross-Validation of Seasonal Naive Point Forecasts

Figures are forecast horizon (days), Mean Absolute Scaled Error (standard 
deviation), symmetric Mean Absolute Percentage Error (standard deviation) and 
Root Mean Squared Error (standard deviation) by forecast horizon ( n = 27 folds)

Horizon (days) MASE sMAPE RMSE

7 0.94 (0.35) 3.48 (1.19) 96.91 (37.11)

14 1.06 (0.39) 3.94 (1.32) 109.71 (41.88)

21 1.12 (0.41) 4.12 (1.38) 115.38 (42.94)

28 1.14 (0.40) 4.19 (1.33) 118.34 (42.92)

35 1.18 (0.40) 4.35 (1.34) 123.26 (42.33)

42 1.23 (0.40) 4.51 (1.33) 128.11 (40.34)

49 1.25 (0.39) 4.61 (1.32) 131.40 (39.79)

56 1.27 (0.39) 4.67 (1.33) 133.95 (40.20)

63 1.30 (0.40) 4.77 (1.36) 136.59 (40.30)

70 1.31 (0.37) 4.82 (1.26) 138.70 (37.25)

77 1.33 (0.34) 4.88 (1.18) 140.73 (34.49)

84 1.34 (0.35) 4.94 (1.21) 143.04 (34.07)

365 1.49 (0.46) 5.51 (1.64) 155.29 (38.64)

Fig. 3 Cross-validation variation in MASE across regions by horizon. Shaded area is 95% prediction intervals for the mean point forecast error 
of the Prophet and Ensemble models
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ensemble is more consistent than Prophet. The upper 
quartile of Prophet’s prediction interval coverage 
fails to achieve desired coverage from a horizon of 21 
days. We chose the ensemble as our forecast bench-
mark model.

Benchmark accuracy in the simulated forecast setting
Across all sub-regions and a horizon of 7 to 84 days 
the ensemble scored a benchmark MASE of 0.68 (95% 
CI 0.67 - 0.69) with 90% of the mean point forecast 
errors between 0.49 and 0.91 (an equivalent average 
error measured by sMAPE is 4.9%; 95% CI 4.7 - 5.1). 
Mean coverage for 80 and 95% prediction intervals was 
0.847 (95% CI 0.843 - 0.851) and 0.965 (95% CI 0.949 - 
0.977), respectively. Table 4 reports MASE and cover-
age for each forecast horizon. Table 5 provides detailed 
results of the average coverage for the 60th - 95th pre-
diction intervals for each region.

External validation
In the 13 external validation sets the median number of 
responses ranged from 234 (IQR 222 - 246) to 752 (IQR 
713 - 788). See supplementary Table S6 for additional 
summary measures. There were no missing data in the 
external validation set. Overall the ensemble produced a 
MASE of 0.73 (95% CI 0.72 - 0.74) with 90% of valida-
tion folds achieving a MASE between 0.64 and 0.83. The 
ensembles’ 80% and 95% prediction intervals provided 
0.833 (95% CI 0.828-0.838) and 0.965 95% CI (0.963-
0.967) coverage, respectively. Table 6 reports MASE and 
coverage by region.

Discussion
Our chosen benchmark method, based on performance, 
is an ensemble (a simple average) of Facebook’s Prophet 
and Regression with ARIMA errors. Both methods are 
flexible enough to add in special calendar events such as 

Fig. 4 Cross-validation variation in Prediction Interval Coverage across regions by horizon. The box plots illustrate the distribution of coverage 
across all six regions. Red horizontal lines represent desired coverage. Top and bottom rows represents 95% and 80% prediction intervals, 
respectively. Left and right columns represent Prophet and the Ensemble, respectively. It is desirable to achieve coverage, but not exceed 
substantially
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national holidays. In our model we chose to include New 
Year’s day as this clearly stood out in the time series. In 
our regression model, we model the error process using 
the same ARIMA model - (1, 1, 3)(1, 0, 1, 7) - for each 
sub region. Other EMS providers in different regions can 
adopt this structure, but may wish to experiment with 
alternative ARIMA error processes for fine tuning.

Our cross-validation demonstrated that performance 
of the ensemble was superior to either method on its 
own, the other candidate models and a naive bench-
mark. However, we note that Prophet is also a reasonable 
choice for ambulance trusts new to forecasting (albeit 

they should recognise the shortcomings in terms of cov-
erage). We emphasise the critical importance of a naive 
benchmark such as seasonal naive in cross-validation to 
confirm that more complex models add value. We found 
that over our forecast horizon seasonal naive outper-
formed several state-of-the-art forecasting techniques. 
We encourage forecasters in the ambulance service to 
use both point forecasts and prediction intervals. A sin-
gular focus on a point forecast is unwise; it is not possi-
ble to predict the future exactly and so forecasters should 
take account of the range of likely values. We found that 
the most accurate single method for point forecasts did 
not produce satisfactory coverage. The software we have 
developed to support forecasting in ambulance services 
reports 95% prediction intervals by default.

Turning to benchmark performance, our simulated 
forecast achieved a MASE of 0.68. We found this per-
formance declined slightly over the forecast horizon, 
and 90% of forecasts fell into range of 0.49 and 0.91. The 
latter is a reasonable approximation for practitioners to 
use as a rule of thumb for benchmarking. This is evi-
denced by our external validation of the model. Using 
data from London, Yorkshire and Wales we found fore-
cast performance within the benchmarks expected 
range (where 90% of MASE scores fell between 0.64 
and 0.83). Researchers should make use of our detailed 
breakdown of MASE to enable simple robust compari-
son across regions and studies. We emphasise that in 
‘real terms’ for an individual ambulance service our 
forecasts demonstrate a useful accuracy up to 84 days. 
For instance, the RMSE for a 84 day horizon in Corn-
wall (average calls per day = 243) and Dorset (average 
= 323) was between 16 and 18 calls. Our results are 
also complementary to Martin et  al’s [12] daily EMS 
time series predictions that achieved a mean absolute 
percentage error (MAPE) of 5.9%. Our sMAPE results 
were inline with these findings with an overall mean of 
4.9% over the 84 day forecast horizon.

Our ensemble method achieved desired coverage, but 
we acknowledge that it is conservative at the 80% level. 

Table 4 Benchmark results by forecast horizon

Mean (95% CI) MASE and 80, 95% prediction interval coverage. Figures pool 
all simulated forecasts from all seven sub-regions ( n = 287 ; 41 folds per sub-
region)

Horizon (days) MASE Coverage 80% Coverage 95%

7 0.66 (0.64 - 0.69) 0.846 (0.829 - 
0.864)

0.961 (0.952 - 
0.970)

14 0.67 (0.65 - 0.69) 0.847 (0.835 - 
0.860)

0.964 (0.958 - 
0.970)

21 0.67 (0.65 - 0.68) 0.850 (0.839 - 
0.860)

0.964 (0.959 - 
0.970)

28 0.67 (0.66 - 0.69) 0.849 (0.840 - 
0.858)

0.965 (0.961 - 
0.969)

35 0.67 (0.66 - 0.69) 0.849 (0.841 - 
0.858)

0.965 (0.961 - 
0.969)

42 0.68 (0.66 - 0.69) 0.847 (0.839 - 
0.855)

0.965 (0.962 - 
0.969)

49 0.68 (0.67 - 0.69) 0.847 (0.839 - 
0.855)

0.965 (0.962 - 
0.969)

56 0.68 (0.67 - 0.70) 0.847 (0.839 - 
0.854)

0.966 (0.963 - 
0.969)

63 0.69 (0.68 - 0.70) 0.846 (0.839 - 
0.854)

0.966 (0.964 - 
0.969)

70 0.69 (0.68 - 0.70) 0.845 (0.838 - 
0.853)

0.967 (0.964 - 
0.969)

77 0.70 (0.68 - 0.71) 0.844 (0.837 - 
0.852)

0.967 (0.964 - 
0.969)

84 0.70 (0.69 - 0.71) 0.843 (0.835 - 
0.851)

0.966 (0.963 - 
0.969)

Table 5 Prediction interval coverage by sub-region

Mean (95% CI) prediction interval coverage. Figures relate to 41 folds of 7-84 days in the test set

Region 60% 70% 80% 90% 95%

BNSSG 0.639 (0.634 - 0.644) 0.746 (0.739 - 0.753) 0.844 (0.839 - 0.850) 0.922 (0.918 - 0.926) 0.959 (0.954 - 0.963)

Cornwall 0.637 (0.634 - 0.639) 0.762 (0.760 - 0.764) 0.856 (0.855 - 0.857) 0.921 (0.921 - 0.922) 0.974 (0.974 - 0.975)

Devon 0.691 (0.684 - 0.699) 0.793 (0.789 - 0.797) 0.857 (0.856 - 0.859) 0.939 (0.935 - 0.942) 0.974 (0.972 - 0.977)

Dorset 0.712 (0.708 - 0.715) 0.803 (0.800 - 0.805) 0.873 (0.871 - 0.876) 0.940 (0.938 - 0.941) 0.975 (0.974 - 0.976)

Glouc 0.626 (0.621 - 0.632) 0.730 (0.728 - 0.733) 0.835 (0.833 - 0.837) 0.936 (0.934 - 0.937) 0.963 (0.962 - 0.964)

Somerset 0.629 (0.625 - 0.633) 0.723 (0.718 - 0.728) 0.809 (0.805 - 0.813) 0.901 (0.899 - 0.903) 0.950 (0.948 - 0.951)

Wiltshire 0.665 (0.662 - 0.668) 0.762 (0.760 - 0.765) 0.853 (0.847 - 0.859) 0.928 (0.925 - 0.932) 0.961 (0.960 - 0.963)
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We found that coverage varied by sub-region and advise 
practitioners to investigate their own time series. A 
benchmark coverage for 84% and 96% was achieved for 
the 80 and 95% prediction intervals, respectively. We pro-
vide a more detailed breakdown of coverage in Table 4 for 
future scientific forecasting studies. Our detailed results 
are also relevant to studies that aim to building forecast-
ing into decision support systems [30]. Further work may 
wish to explore other methods for measuring prediction 
interval uncertainty, such as the Winkler score [31], rela-
tive to our measure of empirical coverage.

Practical implications
The ensemble model has been implemented by the 
ambulance service covering the South West of England. 
The EMS data science team have also adapted the model 
to predict the daily count of calls received by their clinical 
call centre in order to support staffing decisions.

Strengths of the study
There are several strengths to our study relative to 
existing studies. First, our model selection focused on 
well-known forecasting methods including a recog-
nised and relevant naive benchmark. We excluded novel 
methods development from our study as we wished 
our method to be widely available and easily imple-
mented in a health service - particularly the UK’s NHS 
where the study setting is based. Indeed the methods 
in our ensemble are recognised by NHS Improvement 
for forecasting [32]. Our method is implemented and 
available in Python and can easily be implemented in 
R. Second, we based our benchmark accuracy on the 
performance of the ensemble on seven time series from 

regions in South West of England. The results were 
replicated in 13 regions from London, Wales and York-
shire. This evidence provides a robust estimate of what 
can be expected in practice and a strong comparator for 
future studies attempting to improve on our ensemble. 
Third, we include prediction interval coverage as a pri-
mary outcome in addition to point forecast accuracy. 
Both our external validation and assessment of predic-
tion coverage is a substantial step up from existing high 
quality studies [5, 8].

Limitations
Our study also has several limitations. Our geographic 
regions are limited in number and within England and 
Wales only. Other geographic regions of the UK and 
other nations may have differing seasonal patterns. We 
argue that two elements of our study mitigate this limi-
tation to some extent. First our approach makes use of 
automatic modelling procedures that enable deploy-
ment at scale and manage some issues with differ-
ences in seasonality. Second, our primary objective is 
clear benchmark performance. Other regions can eas-
ily compare their outcomes to our own. Our data run 
until January 2020 and takes place prior to the COVID-
19 pandemic. In this time period emergency services 
around the world will have seen dramatic shifts in their 
demand and a potential increase in the importance of 
weather. Assuming demand returns to similar patterns 
post-pandemic our ensemble should be viable with 
some minor modification. For instance, both Prophet 
and Regression with ARIMA errors can be modified to 
include binary ‘intervention‘ variables that can repre-
sent different phases of the pandemic. Prophet’s flexible 
modelling of trend also allows for manual correction 
at critical time points (e.g. the start and end of lock-
downs). A further limitation is that our methods do not 
make use of other features that may aid short term pre-
diction such as weather forecasts.

Conclusions
The primary contribution of our study is the bench-
mark performance for predicting the number of calls 
that result in the dispatch of one or more ambulances. 
We provide externally validated estimates up to 84 
days in advance. Future studies and novel methodolo-
gies should now aim to exceed these benchmarks. A 
potential future direction is to compare the neural net-
work architectures successfully applied in related stud-
ies [6, 11, 12] to our benchmark. We encourage future 
research that aims to predict the daily number EMS 
calls that result in the dispatch of one or more ambu-
lances to consider our results as a reliable benchmark 
for their methods.

Table 6 External validation: Point forecast and coverage 
performance by region

Mean (SD). Figures calculated from 41 folds of 7-84 days in test sets

Trust Region MASE Coverage 80 Coverage 95

London North Central 0.76 (0.11) 0.84 (0.06) 0.94 (0.04)

North East 0.74 (0.08) 0.87 (0.06) 0.97 (0.03)

North West 0.75 (0.11) 0.86 (0.07) 0.97 (0.03)

South East 0.70 (0.10) 0.85 (0.06) 0.98 (0.03)

South West 0.68 (0.10) 0.86 (0.06) 0.97 (0.04)

Wales Central and West 0.69 (0.12) 0.82 (0.09) 0.96 (0.04)

North 0.73 (0.14) 0.79 (0.10) 0.97 (0.04)

South East 0.64 (0.10) 0.87 (0.06) 0.98 (0.04)

Yorkshire ABL 0.67 (0.11) 0.86 (0.05) 0.98 (0.02)

CKW 0.74 (0.09) 0.82 (0.07) 0.96 (0.03)

Humb and ER 0.77 (0.11) 0.79 (0.08) 0.94 (0.04)

North Yorks 0.83 (0.15) 0.77 (0.09) 0.94 (0.06)

South 0.76 (0.11) 0.81 (0.08) 0.96 (0.04)
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