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Abstract 

Background With the global spread of COVID-19, detecting high-risk countries/regions timely and dynamically 
is essential; therefore, we sought to develop automatic, quantitative and scalable analysis methods to observe 
and estimate COVID-19 spread worldwide and further generate reliable and timely decision-making support for pub-
lic health management using a comprehensive modeling method based on multiple mathematical models.

Methods We collected global COVID-19 epidemic data reported from January 23 to September 30, 2020, to observe 
and estimate its possible spread trends. Countries were divided into three outbreak levels: high, middle, and low. 
Trends analysis was performed by calculating the growth rate, and then country grouping was implemented using 
group-based trajectory modeling on the three levels. Individual countries from each group were also chosen to fur-
ther disclose the outbreak situations using two predicting models: the logistic growth model and the SEIR model.

Results All 187 observed countries’ trajectory subgroups were identified using two grouping strategies: 
with and without population consideration. By measuring epidemic trends and predicting the epidemic size 
and peak of individual countries, our study found that the logistic growth model generally estimated a smaller epi-
demic size than the SEIR model. According to SEIR modeling, confirmed cases in each country would take an average 
of 9–12 months to reach the outbreak peak from the day the first case occurred. Additionally, the average number 
of cases at the peak time will reach approximately 10–20% of the countries’ populations, and the countries with high 
trends and a high predicted size must pay special attention and implement public health interventions in a timely 
manner.
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Conclusions We demonstrated comprehensive observations and predictions of the COVID-19 outbreak in 187 
countries using a comprehensive modeling method. The methods proposed in this study can measure COVID-19 
development from multiple perspectives and are generalizable to other epidemic diseases. Furthermore, the methods 
also provide reliable and timely decision-making support for public health management.

Keywords COVID-19, Group-based trajectory model, Logistic growth model, SEIR model, Trends prediction, Decision-
making support

Background
The global spread of COVID-19 has caused a pandemic, 
with cases distributed in Asia, Europe, America, Africa, 
Oceania and other places worldwide [1]. Although gov-
ernments had implemented various measures to pro-
tect their countries/regions, such as traffic restrictions, 
quarantine requirements for travelers, and contact trac-
ing, as of September 30, 2020, with the global risk con-
tinuously increasing, more than 33,774,000 cases have 
been confirmed in more than 180 countries, and more 
than 1,010,000 people have lost their lives. Related stud-
ies have revealed that COVID-19 is a highly contagious 
human-to-human transmission disease. The transmission 
rate (reproduction number range (R0)) of COVID-19 has 
been reported to range from 2.0 to 4.9 [2–4], which is 
similar to that of SARS (R0 values between 2.0 and 5.0 
[5]) and higher than those of the influenza virus H1N1 
(R0 values between 1.2 and 3.7 [6]) and Ebola (R0 values 
between 1.34 and 3.65 [7]). Although transmission was 
expected to decrease substantially after governments 
implemented various control measures, different coun-
tries exhibited different transmission control effects, and 
epidemic development situations remain severe.

With the number of cases growing in hundreds of 
countries and regions, observing and modeling the 
transmission dynamics and estimating the COVID-19 
development globally are critical to providing decisional 
support for public health departments and healthcare 
policymakers [8]. Mathematical models were widely 
used in evaluating epidemic transmissions, forecast-
ing the trend of disease spread, and providing optimal 
intervention strategies and control measures. A consid-
erable number of recent studies have been conducted to 
estimate the scale and peak of COVID-19, and several 
mathematical models and prediction approaches have 
attempted to estimate the transmission of COVID-19 [9–
14]. Among these studies, the logistic growth model and 
the susceptible-exposed-infected-removed (SEIR) model 
were the most commonly used prediction methods. A 
number of time series-based epidemic prediction analy-
ses have used the logistic growth model, and the essence 
of the logistic model is that curve fitting and prediction 
results are heavily reliant on historical data. The SEIR 

model is a classical mathematical model for the spread 
of epidemics that subdivide the population into differ-
ent cohorts: Susceptible (all the population are likely 
infected), exposed (people are exposed), infectious (peo-
ple are infected), and removed (recovered). SEIR is one of 
the most applicable models during the early stages of epi-
demic, when no vaccine is available and the main control 
measures available are isolation of diagnosed infective 
cohort and social distancing. Several studies have utilized 
the SEIR model to estimate the transmission of COVID-
19. For example, the Institute for Health Metrics and 
Evaluation (IHME) COVID-19 Forecasting Team mod-
eled five COVID-19 scenarios for the United States using 
SEIR models [15]. Certain studies have combined the 
SEIR model with other methods to forecast the epidemic 
trends of COVID-19 in various countries, such as genetic 
algorithm [16]. Additionally, some studies have sug-
gested that modifying the SEIR model can improve the 
prediction of COVID-19 outbreaks in particular coun-
tries, such as Spain and Italy [17]. Although these stud-
ies are all based on SEIR model, different studies often 
yield not exactly the same conclusions because of differ-
ent data periods and parameter settings. Besides, despite 
the various methods and perspectives provided by previ-
ous studies on COVID-19 epidemics, the available results 
are still insufficient for quickly analyzing global epidemic 
situations and trends using a scalable framework. Addi-
tionally, in the face of a new infectious disease and its 
complicated features with many unknown factors, single-
model estimations may infer biased results.

Therefore, to achieve objective observation and esti-
mation of the COVID-19 outbreak and further generate 
reliable and timely decision-making support for public 
health management, we adopted a combination method 
based on multiple mathematical models, including the 
group-based trajectory modeling (GBTM), the logistic 
growth model and the SEIR model, to observe, analyze 
and predict the spread of the COVID-19 epidemic. Our 
comprehensive modeling methods support achieving an 
overall observation and comprehensive estimations of 
the COVID-19 outbreak in countries/regions on a large 
scale and these methods are generalizable to other epi-
demic diseases.
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Methods
Data collection
We used reported worldwide COVID-19 epidemic data 
from January 23 to September 30, 2020, to observe, per-
form parameter estimation, and measure COVID-19 
dynamics in different countries/regions. The COVID-
19 epidemic data were collected from the Coronavirus 
COVID-19 Global Cases published by the Center for Sys-
tems Science and Engineering (CSSE) of Johns Hopkins 
University [18]. One hundred eighty-seven countries’ 
data were included for analysis.

GBTM to identify country clusters
 As an epidemic outbreak follows the rule of rising, peak-
ing, and then declining, classifying hundreds of countries 
is important to effectively observe the overall outbreak 
of COVID-19 globally. GBTM method was used to clas-
sify countries by their longitudinal data. Group-based 
trajectory modeling is mainly used to analyze longitudi-
nal data and explore the heterogeneity in the time series 
objects. To compare the global outbreak situation from 
objective perspectives, two strategies to subgroup the 187 
countries were used. First, based on each country’s daily 
confirmed cases over time, the probability of belong-
ing to each potential trend group was modeled. Second, 
considering each country’s population, the probability 
of a potential trend group was modeled using the ratio 
of each country’s daily confirmed cases to the popula-
tion as longitudinal data. Using finite mixtures of suitably 
defined probability distributions, group-based trajectory 
modeling provided a flexible and easily applied method 
to identify different clusters of individual case trajecto-
ries of countries and profile the characteristics of similar 
epidemic patterns within the clusters. In our study, a Stata 
plugin, traj [19, 20], was used to fit case data and model 
longitudinal data. Specifically, we assumed that the num-
ber of cases in the 187 countries or regions is different and 
there are N potential subgroups with different develop-
ment patterns. We used Yi = (yi1, yi2, . . . , yit) to represent 
the longitudinal observation sequence value of i country 
at t time points, assuming the t components of Y_i obey 
the normal distribution. Next, we used the Gaussian mix-
ture clustering method to divide these countries/regions 
into N subgroups. We tried five schemes, n = 2,3,4,5,6, and 
determined the most reasonable number of subgroups 
according to the Bayesian information criterion (BIC) and 
average posterior probability (Avepp). According to the 
determined number of subgroups, we performed polyno-
mial fitting on these countries/regions to obtain the devel-
opment trajectory curve of each subgroup. 

Trends analysis of individual countries
Because countries within a cluster have similar charac-
teristics of epidemic trends, one country from each group 
was randomly chosen to further disclose the growth 
curve and trends. Regarding the generated subgroups 
belonging to different levels, we randomly selected one 
country from each subgroup for trends analysis.

For each selected country, the average daily growth and 
the average daily percentage growth of confirmed cases 
were calculated to compare epidemic development 
trends in different periods. The average daily growth is 
calculated using the formula (B− A)/n , when the cumu-
lative number of confirmed cases increases from A to B 
after n days. A represents the number of confirmed 
patients on the initial day of statistics, B represents the 
number of confirmed patients on the end day of statis-
tics, and n represents the number of days between the 
initial and end days of statistics. The average daily per-
centage growth is calculated using the formula  n B

A − 1 , 
when the cumulative number of confirmed cases 
increases from A to B after n days. 

Logistic growth model to predict the epidemic 
development of individual countries
First, we used a logistic growth model to observe the 
curves and predict the outbreaks on the individual coun-
try level. Mathematically, the logistic model describes the 
dynamic evolution of infected individuals controlled by 
the growth rate and population capacity. According to 
the following ordinary differential Eq.  (1), we obtain the 
logistic function (2). The model describes the dynamic 
evolution of the reported number of confirmed cases P 
controlled by the growth rate r, and the initial value of  P0 
is the confirmed number of cases when T = 0. The maxi-
mum case volume in the environment is K, which is the 
limit that can be reached by increasing to the final value 
of P(t) , and r is the growth rate. We used the least squares 
method to fit the logistic growth function and predict 
the number of future confirmed cases. Because the case 
numbers reported at very early stages are usually inac-
curate or missing, the initial date of the model was set 
as the day since the 100th confirmed case was reached. 
We fit the logistic curve for early predictions of the peak 
number and growth rate of each country.

(1)
dP

dt
= rP(1−

P

K
)

(2)P(t) =
KP0e

rt

K + P0(ert − 1)
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SEIR model to estimate infection spread in individual 
countries
Based on the epidemiological characteristics of COVID-
19 infection, the SEIR model is adopted because it is com-
monly used to study the dynamics of infectious diseases. 
SEIR is a deterministic metapopulation transmission 
model that simulates each individual in the population as 
a separate compartment, assuming that each individual 
in the same compartment has the same characteristics. 
By plugging in different settings of parameters, the mod-
els yield different results. In our study, we compared their 
results to observe patterns of COVID-19 spread.

In the SEIR model, the population is divided into four 
classes: susceptible (S), exposed (E), infectious (I), and 
removed (R), as shown in Fig. 1. The essence of the SEIR 
model is a system of ordinary differential equations 
over time. The disease trend it predicts only depends on 
parameters and the start time. The model is measured 
by Eqs (3), (4), (5) and (6) [21], and the entire population 
was initially susceptible, assuming that all people have 
no immunity against COVID-19. The initial number of 
cases was collected from the reported data. To evaluate 
the SEIR model’s ability to predict COVID-19 infection, 
the data since the day that the 100th confirmed case was 
reached were chosen for observation, and the initial date 
of the model was set as the day since the 100th confirmed 
case was reached for each country, indicating different 
initial dates of the observed countries.

where S is the number of individuals in the suscepti-
ble population, E is the number of those in the exposed 
population, I is the number of those in the infected 
population, R is the number of recoveries or deaths, 
N = S+ E+ I+ R, is the number of those in the whole 
population, and β = k ∗ b is the product of the people 
exposed to the infected population k and the probability 
of transmission b . γ = 1/D is the average rate of recov-
ery or death in infected populations, where D is the aver-
age duration of the infection, and σ is the rate at which 
exposed individuals develop into those with infections.

(3)dS/dt = −βSI/N

(4)dE/dt = βSI/N − σE

(5)dI/dt = σE− γ I

(6)dR/dt = γ I

Results
Epidemic trajectory country groups
The trajectory groups of all the observed countries were 
generated to help disclose the global trends and clusters 
of countries. All the observed countries are listed in the 
Additional file 1: Table A.

GBTM results by reported daily cases
According to the reported daily cases, we initially 
grouped the countries into three outbreak levels during 
the observed period. We classified the three outbreak 
levels as the high outbreak level group, middle outbreak 
level group, and low outbreak level group and then per-
formed GBTM for each group. The output of a group-
based trajectory model included group membership, 
estimated trajectory curves over time, and the distribu-
tion proportion for each group. As shown in Fig. 2, seven 
subgroups were identified from the three groups.

In high-outbreak-level countries, the daily case num-
bers were dramatically high, and the highest case number 
was beyond 60,000 in a single day during all the observa-
tion periods. One consistent trajectory group was identi-
fied by group modeling (Fig. 2a High).

Among middle-outbreak-level countries, 40 countries 
with the highest daily cases between 1000 and 30,000 
were included, and three groups were identified by group 
modeling (Fig.  2b) Middle). Additionally, the country 
distribution proportions were displayed to compare the 
epidemic situations of these 40 countries. The results 
suggested that 10.3% of these counties (M2) had a spike 
above 10,000 daily cases during September 2020: 79.5% 
of these countries (M1) had daily cases under 2000, but 
some continued to show a rise; 10.3% of these countries 
(M3) had a slow rise in cases, with a small peak around 
June 2020 and then a decline thereafter. Thus, the virus 
spread in these countries had been effectively controlled 
in time.

With the inclusion criterion of a daily number of cases 
less than 1000, 144 countries were of low-outbreak-level. 
These countries were classified into three groups (Fig. 2c 
Low). These 144 countries had a relatively low transmis-
sion level of COVID-19, and 11.4% of them (L2) had a 
spike above 500 daily cases around September 2020 that 
continued to rise. Additionally, 18.0% of these countries 
(L3) have less than 300 daily cases, which had a slow 
rise in cases, with a small peak around June 2020 and a 
decline thereafter. However, the number of daily cases 
decreased after that and started to rise again after May 

Fig. 1 Illustration of the SEIR model and its four compartments



Page 5 of 12Zhou et al. BMC Medical Informatics and Decision Making          (2021) 21:384  

2020. The reason was likely that a series of prevention 
and control measures were implemented effectively but 
the government eased the control policies early. Further-
more, 70.6% of these countries (L1) had a stable daily 
number of cases that less than 100, indicating the virus 
spread had been contained effectively and did not evolve 
widely in these counties.

GBTM results by ratio of reported daily cases to population
To consider the difference in the population size, accord-
ing to the ratio of daily cases to the total population of 
each country and using the GBTM method, 187 coun-
tries were divided into three outbreak levels as follows: 5 
high-level countries, 16 middle-level countries, and 166 

low-level countries. We then grouped the countries in 
each outbreak level by GBTM, and five subgroups of the 
three outbreak levels were identified, as shown in Fig. 3.

In the 5 high-outbreak-level countries and 16 middle-
outbreak-level countries, the incidence rate per capita 
with an epidemic development timeline was quite simi-
lar. One consistent trajectory group was identified within 
each level group by group modeling (Fig.  3a High and 
Fig. 3b) Middle).

Three subgroups were identified by group modeling 
among the 166 low-outbreak-level countries (Fig.  3c 
Low). Additionally, the country distribution proportions 
were displayed to compare the epidemic situations of 
these 166 countries. The findings were as follows: 14.2% 
of the countries (L1) had a spike in the incidence rate per 

Fig. 2 The 7 identified trajectory subgroups of the 187 observed countries by GBTM (Based on the reported number of daily cases)
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capita around July 2020, followed by a decline; in 30.9% of 
the countries (L2), the incidence rate per capita increased 
to a small peak around April 2020, declined after that, 
and then increased again after August 2020; 54.8% of the 
countries (L1) had a low incidence rate per capita, and 
then their situation stabilized.

Trends analysis of individual countries
According to two subgrouping results by GBTM, we ran-
domly selected one country from each subgroup. For the 
identified 7 subgroups based on the reported number of 
daily cases, the average daily growth and the average daily 
percentage growth of confirmed cases in different peri-
ods (every quarter) are shown in Tables 1 and 2.

Fig. 3 The 5 identified trajectory subgroups of the 187 observed countries by GBTM (Based on the ratio of the reported number of daily cases 
to population)

Table 1 Average daily growth of confirmed cases in different 
periods in selected 7 countries

Levels Countries The day of the 
first case—Mar 
31

Apr 1—Jun 30 Jul 1—Sep 30

High India 32.21 6622.45 62,724.65

Middle Iran 1133.12 2006.79 2494.59

Colombia 40.92 1109.27 7996.37

Peru 50.85 3155.54 5750.45

Low Zambia 2.43 17.54 144.25

Poland 91.18 354.08 623.51

Ghana 10.67 197.13 313.10
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Significant differences were observed in the average 
daily growth of countries in different groups, confirm-
ing the rationality of our grouping (Table  1). For the 
middle and low groups, the average daily growth of 
the three countries in different quarters has different 
trends; thus, they are divided into different subgroups. 
Because of the increase in the base number of con-
firmed patients, the average daily percentage of growth 
usually decreases gradually (Table  2). Some countries, 
such as Zambia, maintained a relatively high average 
daily percentage growth in the third quarter, although 
the average daily growth was not high. Public health 
policymakers should focus on countries with an out-
break risk in the following phases.

For the identified 5 subgroups based on the ratio of the 
reported number of daily cases to population, the aver-
age daily growth and average daily percentage growth in 
different periods (every quarter) are shown in Tables 3 
and 4. Because the case data in Table 3 are not divided 
by the country’s population, the average daily growth in 
these countries is not consistent with the grouping. The 
US is in the middle group, and the average daily growth 
was high in the third quarter; thus, the outbreak risk in 
the fourth quarter is high. Mauritania is assigned to the 
low group, and the average daily growth was low, so the 
risk of future outbreaks is not high.

Prediction results of individual countries
When comparing the results from the two prediction 
models—the logistic and SEIR models—we achieved dif-
ferent results for COVID-19 development predictions 
(Tables 5 and 6). Because different models were built on 
different theories and assumptions, their output meas-
urements varied. The parameter settings and evaluation 
outputs were also different. For example, the cumulative 
number was used for the logistic model and the active 
number was measured by SEIR models. The results dis-
closed differences in these two mathematical models, 
but both provided an overall observation of COVID-19 
development and predicted the outbreaks of representa-
tive countries from each group. In the logistic growth 
model, r is the growth rate, which measures the change 
speed of the curve, and Max is the predicted peak num-
ber of confirmed cases. In the SEIR model, four curves 
concerning the population of susceptible (S), exposed (E), 
infectious (I), and removed (R) are displayed.

Table  5 lists the detailed results of the prediction tra-
jectories of the countries selected from 7 subgroups 
based on our first grouping strategy (Fig.  2). Similar to 
the results of logistic growth modeling, India with a high 
outbreak level is in its rapidly rising stages but has not yet 
reached its peak and declining stages. Among all the pre-
dicted countries, the number of confirmed cases and the 
predicted peak of India are the largest. Among selected 
countries in the middle group, Iran (M1) is in a stage of 
high COVID-19 spread, and Colombia (M2) and Peru 
(M3) are both in a stage of a continuous rise in cases; 
Peru, with a higher growth rate (r), has a higher spread 
risk than Colombia. Furthermore, Zambia (L1), Poland 
(L2), and Greece (L3) are typical countries from three 
trajectory groups in the low outbreak level; these coun-
tries have a lower spread risk than other countries. From 
SEIR modeling, India was predicted to reach the highest 
peak number of cases of 360 million under the current 
rising trends. In the middle-outbreak-level countries, 
L1, L2, and L3 countries have a similar predicted peak 
size of approximately 300 thousand, and Poland (L2) 
had the highest outbreak prediction result, with a peak 

Table 2 Average daily percentage growth of confirmed cases in 
different periods in selected 7 countries (unit: %)

Levels Countries The day of the 
first case—Mar 
31

Apr 1—Jun 30 Jul 1—Sep 30

High India 13.04 6.48 2.61

Middle Iran 27.12 1.75 0.76

Colombia 30.75 5.14 2.33

Peru 31.84 6.10 1.14

Low Zambia 22.93 4.28 2.45

Poland 32.34 2.91 1.07

Ghana 26.10 5.11 1.04

Table 3 Average daily growth of confirmed cases in different 
periods in selected 5 countries

Levels Countries The day of the 
first case—Mar 
31

Apr 1—Jun 30 Jul 1—Sep 30

High Brazil 195.29 15845.24 36947.05

Middle US 3024.01 27092.11 49999.23

Low Iran 1133.12 2006.79 2494.59

Syria 0.90 3.11 42.93

Mauritania 0.28 49.08 33.30

Table 4 Average daily percentage growth of confirmed cases in 
different periods in selected 5 countries (unit: %)

Levels Countries The day of the 
first case— Mar 
31

Apr 1—Jun 30 Jul 1—Sep 30

High Brazil 28.70 6.06 1.33

Middle US 18.61 2.80 1.10

Low Iran 27.12 1.75 0.76

Syria 25.89 3.78 2.97

Mauritania 10.47 7.54 0.57
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Table 5 Prediction results of the logistic growth model and SEIR model (Based on subgrouping results without considering 
population)
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Table 6 Prediction results by the logistic growth model and SEIR model (Based on subgrouping results considering population)
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of approximately 250 thousand. Thus, SEIR modeling 
showed that the confirmed cases would take an average 
of 9–12 months to reach the outbreak peak from the day 
of the first case. Additionally, the active number of cases 
at the peak time will reach approximately 10–20% of 
these countries’ populations, thus overloading the health-
care system, which is the worst possible outcome.

By analyzing the predicted results of 5 selected coun-
tries (Table  6) based on our second grouping strategy 
(Fig. 3), we found that the number of cases in Brazil was 
growing rapidly and listed it in the high-level group and 
regarded as high risk. For this situation, control measures 
must be implemented in time. As the country’s total pop-
ulation makes a critical contribution to the incidence rate 
per capita, considering population or not may generate 
different predicting results. For example, Iran was identi-
fied as the low-level group country based on subgroup-
ing results when considering population (Table  6) but 
was identified as the middle-level group country based 
on subgrouping results without considering population 
(Table 5).

Discussion
According to the reported global COVID-19 data, the 
development and spread of COVID-19 has been meas-
ured and predicted in our study. We compared the trends 
of different countries/regions using a step-by-step com-
prehensive method. First, GBTM was used to investi-
gate epidemic trend differences of countries during the 
developmental courses of COVID-19, representing a 
novel attempt to apply GBTM to infectious development 
trajectories. Next, the growth index of trends was evalu-
ated, and the logistic growth model and SEIR model were 
used to predict epidemic trends of selected individual 
countries from each subgroup. The grouping results of 
COVID-19 classified global countries into three outbreak 
levels and multiple trajectories subgroups, and individual 
countries were randomly selected for prediction mod-
eling. Although only a small number of distinct coun-
tries were chosen for prediction after GBTM analysis, 
they were chosen from each subgroup and shared simi-
lar trajectory trends, making them highly representative 
and the comprehensive method proposed in this study 
allowing for being generalized and implemented in other 
countries/regions and other infectious diseases. There-
fore, our results could reflect quantitatively an overall 
global situation. Using this comprehensive and step-by-
step modeling method, this study measured COVID-19 
development from a global perspective.

Regarding the mathematical models chosen for integra-
tion, GBTM is designed to identify clusters of individu-
als that follow similar trajectories of a single indicator 
of interest, it has been widely used in longitudinal data 

analysis, especially for epidemiological research [22]. 
Daily cases of each country were used as a single indica-
tor to generate country clusters with similar COVID-19 
outbreak trajectories. This modeling is effective to quickly 
and generally profiling typical trends of countries/regions 
on a large scale. The SEIR model is designed for infec-
tious disease estimation; however, the logistic growth 
model is designed to fit the development of the curves. It 
has often been used in the prediction of epidemic dynam-
ics in previous studies [9, 23]. The logistic model may fit 
the existing data better than the SEIR model, compar-
ing studies using similar time window data, our logistic 
model shows consistent results with other studies [24]. 
However, it cannot be accurately evaluated and incorpo-
rates infectious characteristics. Therefore, we believe that 
the logistic growth model is better suited for near-term 
forecasts, but are incapable of characterizing long-term 
dynamics [25]. Instead, the SEIR model introduces more 
variables and factors by considering the interaction and 
association among multiple groups of people, and it is 
more reasonable than the logistic model because it fol-
lows the rules of infectious disease development. How-
ever, the prediction results vary greatly for different 
interventions and settings. Considering that each country 
has different cultures and healthcare situations leading to 
the implementation of the policies and control measures 
at different levels [26], estimating the intervention effects 
accurately is difficult. Therefore, our SEIR modeling was 
based on a macroscale perspective and provided a long-
term prediction as compensation for the logistic growth 
model. In general, with slightly adjusting to considering 
new factors and different settings, our method could be 
used for COVID-19 or other general infectious diseases.

The study has some limitations. The mathemati-
cal models allow for the quick incorporation of mul-
tiple inputs to yield prediction results. However, this 
process involves making assumptions about uncertain 
factors. Similar to our observed results, the shape of the 
curve will probably change because of exogenous effects, 
such as the implementation of control measures and 
public behaviors. For example, it is difficult to determine 
the exact extent to which people follow the local govern-
ment’s quarantine policies or measures and engage in 
behaviors such as washing hands, using masks, and social 
distancing. Furthermore, undetected transmission cases 
may have occurred in some countries, and sometimes 
the official number of cases is incomplete. When work-
ing with incomplete data, a small error in one factor can 
have an outsize effect. The evolution of the epidemic is 
complicated, and our study has only considered reported 
case data to implement the automatic analysis. Although 
we adopted an integrated method to demonstrate objec-
tive results, our model only considered the situation at 
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the time of data collection. However, there is mounting 
evidence that COVID-19 development is complex and 
affected by multiple dynamic factors, including social 
activity, public health interventions, and any new situa-
tion changes; for example, with the successful develop-
ment of vaccines or antiviral therapies, reduced factors 
need to be involved into SEIR model to keep an updated 
modeling solution. In the future, we will incorporate 
data, such as the intervention extent, intervention time, 
economic situation, and geographical location, by col-
lecting, simulating, and performing automatic derivation 
of multidimensional data.

Conclusions
Observation and prediction are becoming essential to 
infectious disease outbreak response decision-making 
processes. Our methods support detecting high-risk 
countries/regions quickly, providing reliable decision-
making support for public health management dynami-
cally, and with the ability to implement intervention 
policies timely for these high-risk countries, our method 
could help public health practitioners make early predic-
tions, avoid healthcare systems overloading, and improve 
epidemic management.
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