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Abstract 

Deep learning models have been widely used in electroencephalogram (EEG) analysis and obtained excellent per-
formance. But the adversarial attack and defense for them should be thoroughly studied before putting them into 
safety-sensitive use. This work exposes an important safety issue in deep-learning-based brain disease diagnostic 
systems by examining the vulnerability of deep learning models for diagnosing epilepsy with brain electrical activity 
mappings (BEAMs) to white-box attacks. It proposes two methods, Gradient Perturbations of BEAMs (GPBEAM), and 
Gradient Perturbations of BEAMs with Differential Evolution (GPBEAM-DE), which generate EEG adversarial samples, 
for the first time by perturbing BEAMs densely and sparsely respectively, and find that these BEAMs-based adversarial 
samples can easily mislead deep learning models. The experiments use the EEG data from CHB-MIT dataset and two 
types of victim models each of which has four different deep neural network (DNN) architectures. It is shown that: (1) 
these BEAM-based adversarial samples produced by the proposed methods in this paper are aggressive to BEAM-
related victim models which use BEAMs as the input to internal DNN architectures, but unaggressive to EEG-related 
victim models which have raw EEG as the input to internal DNN architectures, with the top success rate of attacking 
BEAM-related models up to 0.8 while the top success rate of attacking EEG-related models only 0.01; (2) GPBEAM-DE 
outperforms GPBEAM when they are attacking the same victim model under a same distortion constraint, with the 
top attack success rate 0.8 for the former and 0.59 for the latter; (3) a simple modification to the GPBEAM/GPBEAM-DE 
will make it have aggressiveness to both BEAMs-related and EEG-related models (with top attack success rate 0.8 and 
0.64), and this capacity enhancement is done without any cost of distortion increment. The goal of this study is not 
to attack any of EEG medical diagnostic systems, but to raise concerns about the safety of deep learning models and 
hope to lead to a safer design.
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Introduction
Deep neural network (DNN), have been widely used 
for the analysis of common signals such as images and 
speech due to their excellent performance. Ullah et  al. 
proposed a densely attention mechanism-based network 
(DAM-Net) [1] and a multi-task learning based adversar-
ial semi-supervised framework [2] for COVID-19 detec-
tion in chest X-ray. In [3], researchers proposed a novel 
fully automatic technique for brain tumor regions seg-
mentation by using multiscale residual attention-UNet 
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(MRA-UNet). To help diagnose brain disorders, Hossain 
et al. [4] and Ding et al. [5] proposed the use of convo-
lutional neural networks (CNN) to extract temporal 
features from Electroencephalography (EEG) data of 
epileptic patients to understand the general structure of 
seizures. In [6], researchers used 1D CNN to detect EEG 
spectrograms of epileptic patients. Bashivan et al. [7] pro-
posed a new method for learning feature representations 
from multichannel EEG time series that preserves the 
structure of EEG data within space, time, and frequency.

However, DNN can be misled when normal sam-
ples become adversarial examples due to the addition 
of perturbations. Deep learning models have significant 
security concerns: Szegedy et  al. [8] find that adding an 
imperceptible non-random perturbation to a picture 
has the potential to arbitrarily change the model’s pre-
dictions; DNN are also vulnerable to adversarial exam-
ples in physical world scenarios [9]; normal speech with 
adversarial perturbations can be transcribed into any 
phrase the attacker wishes, and the perturbed speech 
sounds no different from normal speech [10]. The prob-
lems of adversarial attack and defense for medical and 
physiological DNN models have drawn some research-
ers’ attention [11, 12]. Finlayson et al. [12] have demon-
strated that medical deep learning systems are subject to 
adversarial attacks. Zhang et al. [13] find that adversarial 
attacks could make visual perception spelling errors or 
BCI-based wheelchairs out of the control of the person’s 
consciousness.

EEG is the most widely used clinical tool to meas-
ure electrical signals of the brain for understanding the 
physiological and psychological activities of human. 
From raw EEG signals, it is easy and convenient to detect 
amplitude features such as spikes, but not so easy to learn 
other kinds of information such as spatial and frequency 

features. That is why many studies first extract useful 
empirical features from raw EEG signals and then put 
them into deep neural network models alone or together 
with raw EEG [14, 15].

Brain electrical activity mapping (BEAMs) are topo-
graphic maps of brain EEG power of specified rhythms 
(frequency bands), which visually display the distribu-
tion of different spectra and power levels by anatomi-
cal sites in the form of brain topography. BEAM is the 
earliest and most developed technique in quantitative 
EEG studies, serving as an advanced diagnostic tool for 
the evaluation of brain disease episodes and subsequent 
treatment. It has been widely and successfully applied in 
clinical diagnosis and validated accordingly [16], and its 
most frequent application is in epilepsy research, particu-
larly as a method to localize epileptic foci and determine 
the type of epileptic syndrome [17, 18]. A clear advantage 
of BEAM over EEG is the improved diagnostic accuracy 
due to the high spatial resolution. The major advantage of 
BEAM for epileptic focus localization over other neuro-
functional conventional studies (such as functional mag-
netic resonance imaging (fMRI) or positron emission 
tomography (PET) is the high temporal resolution that 
allows for separating initiation from rapid propagation of 
epileptic activity [19, 20].

BEAM has become a very important diagnostic aid 
in neuroscience. Nevertheless, it was not developed 
as a replacement for EEG. As shown in Fig. 1, EEG and 
BEAMs are widely used together by doctors/models to 
detect the onset of brain diseases, or to analyze brain 
activities [4, 16]. However, the analysis of adversarial 
attacks on EEG and BEAM is still very lacking [11, 21, 
22], which is far from adequate for the current boom in 
brain science. Amir et  al. [23] first investigated the vul-
nerability of epilepsy detection systems and showed that 

Fig. 1 Diagnosis of epilepsy based on EEG (multi-channel waves) and BEAMs (head-shaped color frames)
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adversarial attacks can make epilepsy detection systems 
to diagnose seizures as non-epileptic. But they only 
considered SVM-based systems and no studies have yet 
examined the vulnerability of deep learning models in 
brain disease (such as epilepsy) diagnosis systems.

In this paper, the vulnerability of deep learning models 
in the diagnosis system of brain diseases is studied for the 
first time, and epilepsy diagnosis is used as an example. 
Currently, studies have been conducted to generate EEG 
adversarial samples by perturbing the raw EEG signal, 
EEG frequency and EEG spectrogram. This is the first 
study that generate EEG adversarial samples by perturb-
ing BEAMs and have done the aggressiveness analysis 
of these adversarial examples. This paper proposes two 
methods that generate EEG adversarial samples by per-
turbing BEAMs, and find that these adversarial attacks 
can easily lead to misdiagnosis of BEAMs based epilepsy 
diagnosis. The study exposes an important safety issue in 
brain disease diagnostic systems and hopefully will lead 
us to design safer systems.

To summarize, the contributions of this paper are as 
follows:

1. An EEG white-box dense adversarial attack method 
are proposed. It generates EEG adversarial samples 
by imperceptibly perturbing all elements of BEAMs 
and then converting and adding the perturbation on 
the BEAMs to raw EEG samples (GPBEAM Section).

2. An EEG white-box sparse adversarial attack method 
is proposed. It generates EEG adversarial samples 
by imperceptibly perturbing only partial elements 
of BEAMs, leaving the attack possibly sparse in 
the dimension of time slice, rhythm, and electrode 
(GPBEAM-DE Section).

3. As far as we know, for the first time, EEG adversar-
ial samples are generated by perturbing BEAMs and 
studied for the adversarial attack analysis of DNN 
models in brain disease diagnostic systems.

4. The study shows that small perturbations on EEG or 
BEAMs may lead to misdiagnosis of epilepsy, expos-
ing a critical safety issue in the use of DNN for brain 
disease diagnosis. The proposed methods can be 
used to test the vulnerability of existing systems, and 
to help improve their defense to adversarial attacks.

Related works
EEG adversarial attack to DNN architectures
Most of the work on EEG adversarial samples attack 
models with classical machine learning architecture, such 
as support vector machine SVM [23], typical correlation 
analysis [13], and regression [24], but only a few of them 
attack models with DNN architecture [21, 22], although 

DNN architecture has been widely studied for EEG signal 
processing [7].

Jiang et al. [21] and Zhang et al. [22] attack EEG-related 
models that have raw EEG signals (two-dimensional data 
of time-channel) as input to internal CNN architectures; 
Zhang et  al. [13] attack frequency-related models that 
have the frequency (two-dimensional data of frequency-
channel) as input to typical correlation analysis. Zhang 
et  al. [22] also attack spectrogram-related models that 
have the spectrogram (three-dimensional data of time–
frequency-channel) as input to internal CNN architec-
ture. In all these works, the perturbation on raw EEG 
signals could be got by calculating the gradient over the 
whole pipeline, because all steps are differentiable.

Unlike above works, the work in this paper makes 
white-box attack to BEAM-related models that have 
BEAMs (four-dimensional data of time-rhythm-width-
height) as input to internal DNN architectures. Because 
the operation of converting EEG signals to BEAMs is 
not differentiable, this paper does some special work to 
convert and add perturbations on the BEAMs to the raw 
EEG signal. These special works include a sampling oper-
ation that select power perturbations for electrodes from 
the perturbations on BEAMs, an imposing operation that 
add power perturbations to the frequency domain rep-
resentation of raw EEG data, and an inversing operation 
that convert the perturbation-affected frequency domain 
signals to time domain signals by Inverse Fast Fourier 
Transform (IFFT) and wavelet packet transform (WPT). 
Besides CNN architectures, this paper also tests the RNN 
architecture and a hybrid architecture of CNN and RNN. 
In addition, a simple modification is proposed to make 
the method in this paper have aggressiveness to both 
BEAM-related and EEG-related models, and this capac-
ity enhancement is done without any cost of distortion 
increment. The most difference between this study and 
existing studies of EEG white-box adversarial attacks are 
summarized in Table 1.

EEG sparse adversarial samples
A sparse adversarial sample is a special adversarial sam-
ple that requires only a small number of elements per-
turbed to deceive victim models. With the constrained 
perturbation size on one element, sparse attacks which 
perturb a few elements usually have higher stealth and 
less aggressiveness compared to dense attacks which per-
turb all elements instead. However, if the information of 
the features perturbed by a sparse attack is representa-
tive of this sample, its aggressiveness could be not much 
lower than that of dense attacks [26].

The work in this paper is inspired mostly by research in 
non-EEG fields: Wei et al. [27] argue that in a video clas-
sification task, perturbations added to one frame can be 
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passed to the next frames through their time interaction, 
and therefore, not all frames need perturbation; Su et al. 
[28] find that attacking single pixels in an image using the 
Differential Evolution (DE) algorithm [29] can produce 
adversarial samples; Gao et al. [30] find that in the case of 
single-pixel attack, if the perturbation overflows, dividing 
the overflow to adjacent pixels can also produce adver-
sarial samples.

Like Wei et al. [27], this study only perturbs part of the 
time slices of a sample, resulting in a sparse adversarial 
sample. Inspired by Su et  al. [28], DE is used to select 
some time slices and electrode channels of BEAMs to 
generate perturbations. As the number of perturbed ele-
ments increases, the efficiency of DE will decrease expo-
nentially. Therefore, this paper only uses DE to perturb 
partial elements of BEAMs, and let their perturbation 
overflows to other elements just like the work of Gao 
et al. [30].

The work of Feng et al. [25] is about EEG sparse adver-
sarial attacks. Through adaptive masking, they automati-
cally select the time step and electrode channel of the 
perturbation under sparse constraints. Unlike Feng et al., 
this paper attacks BEAM-related models instead of EEG-
related models.

Extracting EEG rhythms
Extracting basic EEG rhythms, such as Delta 
(0.5 Hz-4 Hz), Theta (4 Hz-8 Hz), Alpha (8 Hz-13 Hz) and 
Beta (13 Hz-30 Hz) [31], is the key step to get BEAMs.

There is still disagreement on how to extract rhythms 
during the conversion of EEG signal to BEAMs. For 
example [32], use band-pass filtering, [33] use wave-
let transforms and [34] use WPT. Wavelet transform is 
a time–frequency analysis method created to solve the 
problem of decomposing non-stationary signals and is 
suitable for feature extraction of non-stationary signals 

such as EEG due to its multi-resolution characteristics. 
However, it only subdivides the low-frequency part and 
not the high-frequency part of the signal, so it does not 
have a high resolution for the high-frequency part. In 
contrast, WPT allows the segmented high-frequency 
part to be subdivided while retaining the advantages of 
the wavelet transform. Therefore, this paper chooses to 
use the WPT to extract EEG rhythms in this paper.

Method
This paper proposes two EEG adversarial sample gen-
eration methods: Gradient Perturbations of BEAMs 
(GPBEAM), and Gradient Perturbations of BEAMs with 
Differential Evolution (GPBEAM-DE). GPBEAM is a 
dense attack method. GPBEAM-DE is a sparse attack 
method that produces perturbations on only a small 
number of electrode points and assigns perturbations 
beyond the ǫ constrain ( ǫ used to ensure that there is lit-
tle disturbance) to other electrode points with the help of 
GPBEAM’s perturbation symbol information.

GPBEAM
GPBEAM can be divided into three parts (Fig. 2): Gener-
ating BEAMs; Generating perturbation on rhythm power 
array; Generating EEG adversarial samples. In the first 
part, WPT and FTT are used to extract the spectrum 
for each of B different rhythms from each time slice of 
the raw EEG data, obtain each rhythm power by averag-
ing the absolute value of the corresponding spectrum, 
and then construct BEAMs by mapping and interpolat-
ing these rhythm power values; In the second part, the 
adversarial perturbations on BEAMs are first obtained 
through a perturbation generation algorithm and then 
reconstructed as the adversarial perturbations on rhythm 
power array by sampling; In the third part, adversarial 
perturbations on rhythm power array are added to the 

Table 1 The difference between this study and existing studies of EEG white-box adversarial attacks. In contrast to [13, 23, 24], this 
paper focuses on the vulnerability of DNN; Compared to [22, 25], in addition to studying the vulnerability of CNNs, this paper also 
studies the vulnerability of CNN + RNN; Unlike existing studies, this paper generates EEG adversarial samples by perturbing BEAMs, as 
the input to internal architecture is BEAMs; In addition, this paper examines not only dense attacks, but also sparse attacks

Related studies Victim model type The internal architecture 
of the victim model

Inputs to internal architecture Type of attack

Zhang et al. [13] Non-DNN Canonical correlation analy-
sis; Logistic Regression

EEG, EEG frequency Dense

Aminifar [23] SVM EEG Dense

Meng et al. [24] Logistic regression EEG Dense

Zhang and Wu [22] DNN CNN EEG, EEG spectrogram Dense

Feng et al. [25] CNN EEG Sparse

This paper CNN; RNN + CNN BEAMs Dense;
Sparse
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frequency domain rhythms, resulting in adversarial sam-
ples in the frequency domain. The adversarial samples in 
the frequency domain are then reconstructed into EEG 
adversarial samples by IFFT and WPT.

Generating BEAMs
Figure  3 illustrates the progress of conversion from a 
time slice of EEG data to BEAMs. This paper first extract 

four fundamental rhythms from the raw EEG signal of 
each electrode using WPT and transform these four 
rhythms from time series to frequency series using FFT; 
Then calculate the average power of each rhythm; Finally, 
map the average powers of each rhythm at all electrodes 
into a two-dimensional head-shaped space and give 
each point of this space a value by interpolation. The 
matrix that stores the distribution of the power value of 

Fig. 2 Diagram of GPBEAM. T is the number of time slices; S is the number of voltage values for a single time slice; C is the number of channels, that 
is, the number of electrodes; B is the number of rhythms extracted; H and W are the length and width of a single BEAM image created from a single 
time slice of a rhythm

Fig. 3 Converting the EEG signal of a single time slice to BEAMs
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a specific rhythm in the head-shaped space is a BEAM. 
The progress will be described in detail (for the simplic-
ity of expression, the time index for the time slice of EEG 
data in the process during the process has been omitted) 
in the following.

A Extracting time-domain and frequency-domain 
rhythms

WPT [34] is used to extract specified time-domain 
rhythms, Rhybc , b = 1, 2, . . . ,B (in the paper they are sig-
nals in delta, theta, alpha, beta band respectively), from 
Ec ∈ R

S×1 which is a time slice of the EEG signal from 
the c th electrode, as follows,

where, WPT is the forward WPT which decomposes a 
time-domain signal into a set of wavelet coefficients, and 
IWPT is the inverse WPT which reconstructs a time-
domain signal from a set of wavelet coefficients. This 
paper use db1 wavelet function and #layers = 8 for the 
WPT. Function filter(Ac , b) let all wavelet coefficients in 
Ac zero but those presenting the rhythm b.

FFT is used to extract frequency-domain 
rhythms Fb

c , b = 1, 2, . . . ,B,from the time-domain 
rhythmsRhybc , b = 1, 2, . . . ,B , as follows,

B Calculating rhythm power

The power of the b th rhythm of the c th electrode, Pb
c  , 

is calculated from the frequency-domain rhythm Fb
c  as,

where S is the number of elements in Fb
c  . Note that the 

rhythm powers from C electrodes, B bands and T time 
slices compose a rhythm power array P ∈ R

C×B×T.

C Getting BEAMs

Let L3d = [l3d1 , l3d2 , . . . , l3dC ] be the 3-D locations of the 
C electrodes on a head modeled with an sphere ([35], 
r2 = x2 + y2 + z2, r = 0.095(m) ), L2d = [l2d1 , l2d2 , . . . , l2dC ] 
be the 2-D locations of the C electrodes on the 2-D flat 

(1)Ac = WPT
(
wavelet = db1, #layers = 8, signal = Ec

)
, c = 1, 2, . . . ,C

(2)Rhybc = IWPT
(
wavelet = db1, coefficients = filter(Ac , b)

)
, b = 1, 2, . . . ,B

(3)Fb
c = FFT

(
Rhybc

)

(4)Pb
c =

∑S
i

∣∣Fb
c (i)

∣∣
S

c = 1, 2, . . . ,C; b = 1, 2, . . . ,B

head mapped from the 3-D head through equidistant azi-
muthal projection which preserves the distance and 
direction from any point of the sphere to the center of 
projection, and  Pb =

[
Pb
1 ,P

b

2, . . . ,P
b
C

]
 be the C powers 

for rhythm b. The minimum bounding rectangle of the 
2-D head is meshed with equal square unit, getting a grid 
of size H ×W  . The 2-D locations of the central points of 
these squares compose a matrix as,

The power values of rhythm b at these locations com-
pose a power matrix BEAMb of size H ×W  . For each 
location (h,w) , the corresponding power value in BEAMb 
is calculated as,

where, Interpolate is any interpolate function that esti-
mate the value in location (h,w) from existing values Pb 
and their locations L2d . Here, is used the cubic spline 
interpolation [36] that satisfies the requirement of 
smoothness and minimum curvature at the nodes.

Generating perturbation on rhythm power array
In this section, from an input BEAM ∈ R

T×B×H×W  , 
the progress of getting the perturbation on BEAMs 
ηBEAM ∈ R

T×B×H×W  and the perturbation on rhythm 
power array ηP ∈ R

T×B×C will be described.

A． Getting perturbation on BEAMs

Any known adversarial sample generation algorithm 
which could deals with a tensor x ∈ R

T×B×H×W  as an 
input could be used in the method in this paper to gener-
ate the perturbation on BEAMs, so the perturbation gen-
eration algorithm of BEAM is not the focus of this paper. 
Here, the fast gradient sign algorithm (FGSM) [8] is used 
for its simplicity to generate the perturbation on BEAMs, 
as,

where ǫ is a multiplier to ensure the perturbations are 
small; sign is the sign function; θvictim are parameters of 
the victim model; ytrue is the true category of the input 
tensor BEAM ; J(θ,BEAM, ytrue) is the loss function. 
∇BEAMJ(θ,BEAM, ytrue) is the gradient of the correspond-
ing loss function.

B． Getting perturbation on rhythm power array

(5)L2dgrid =

l2d0,0 · · · l2d0,W
...

. . .
...

l2dH ,0 · · · l2dH ,W

(6)BEAMb(h,w) = Interpolate
(
l2dh,w|P

b
,L

2d
)
, b = 1, 2, . . . ,B

(7)ηBEAM = ǫsign
(
∇BEAMJ

(
θvictim,BEAM, ytrue

))
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Let ηP ∈ R
T×B×C denote the perturbation on rhythm 

power array. For each t and b, the C elements ηP(t, b, :) , could 
be sampled simply from the H ×W  image ηBEAM(t, b, :, :) , 
according to the 2-D locations of electrodesL2d , as,

where, Interpolate is any interpolate function that esti-
mate the value in location L2d(c) from existing values 
ηBEAM(t, b, :, :) and their locations L2dgrid. Here, cubic 
spline interpolation [36] is used.

Generating EEG adversarial samples
Here, the adversarial samples in frequency domain and 
time domain are generated based on ηP , the perturbation 
on rhythm power array.

A Imposing perturbation on frequency-domain 
rhythms

This paper adds the power perturbation ηP(t, b, c) on 
Ft,b
c ∈ C

S which is the raw frequency-domain data of the 
b th rhythm of the c th electrode and in the t th time slice

where, Ft,b
c,R and Ft,b

c,I  denote the real and imaginary parts 
of the original frequency-domain data of the b th rhythm 
of the c th electrode and in the t th time slice; ηP(t, b, c) 
is the power perturbation supposed to be imposed on 
the b th rhythm of the c th electrode and in the t th time 
slice. Note that the reconstruction will be done in each 
dimension of t, b, c and s and finally get a new frequency-
domain adversaria data D ∈ C

T×B×C×S.

B Reconstructing EEG time-domain signal

Here, from the new frequency-domain data D and the 
raw time-domain data E , IFFT and WPT are used to 
generate the adversarial sample in time-domain, É The 
adversarial time signal of the c th electrode in the t th 
time slice, Ét

c , are calculated as,

(8)
ηP (t, b, c) = Interpolate

(
L2d (c)|ηBEAM(t, b, :, :),L2dgrid

)
, c = 1, 2, . . . ,C

(9)

Dt,b
c (s) =

(
sign

(
Ft,b
c,R(s)

)
∗ Dt,b

c,R(s)
)
+

(
sign

(
Ft,b
c,I (s)

)
∗ Dt,b

c,I (s)
)
∗ i

Dt,b
c,R(s) = Ft,b

c,R(s)+ sign(ηP (t, b, c)) ∗ ηP (t, b, c)
2 ∗

Ft,b
c,R(s)

2

Ft,b
c,R(s)

2
+Ft,b

c,I (s)
2

Dt,b
c,I (s) = Ft,b

c,I (s)+ sign(ηP (t, b, c)) ∗ ηP (t, b, c)
2 ∗

Ft,b
c,I (s)

2

Ft,b
c,R(s)

2
+Ft,b

c,I (s)
2

s = 1, 2, . . . , S, t = 1, 2, . . . ,T , b = 1, 2, . . . ,B; c = 1, 2, . . . ,C

(10)
Ét
c = IWPT

(
wavelet = db1, coefficients = filter2(At

c , Á
t,b
c , b = [1, 2, . . . ,B])

)

KAt,b
c = WPT

(
wavelet = db1, #layers = 8, signal = IFFT(Dt,b

c )

)

At
c = WPT

(
wavelet = db1, #layers = 8, signal = Et

c

)
t = 1, 2, . . . ,T ; c = 1, 2, . . . ,C

where function filter2(At
c ,
KAt,b
c , b = [1, 2, . . . ,B]) 

replaces the wavelet coefficients presenting rhythms 
( b = 1, 2, . . . ,B ) in At

c with corresponding coefficients in 
Át
c and returns the changed At

c.

GPBEAM‑DE
GPBEAM loses some perturbation in the process of 
sampling perturbation on rhythm power array from 
perturbation on BEAMs, reducing the aggressive-
ness of final adversarial samples. The only difference 
between GPBREAM-DE and GPBEAM is in the part 
of generating perturbation on rhythm power array (see 
Fig. 4). In GPBEAM-DE, DE is used to directly perturb 
partial elements of the rhythmic power array, result-
ing in more aggressive and sparse adversarial samples. 
In order to increase the efficiency of DE and to make 
perturbation imperceptible, a perturbation over-
flow module is added, in which, when the amplitude 
of disturbance generated by DE is over a pre-defined 
level, the excess part will be distributed to other elec-
trodes with the help of the symbolic information of 
GPBEAM’s perturbation.

Generating Perturbation with DE
It is set that there are total NP individuals in the g 
th generation of population, with everyone having N 
genes. Each gene is a (2 + B)-length integer vector, 
which represents η(t, c, :) , a sparse perturbation of B 
rhythm power values on the t time slice and c elec-
trode, with first two elements as t and c and following 
B elements as perturbation of power values. The valid 
range for t is [0, T], for c is [0, C], and for perturba-
tion of power values is [−round(ǫ ∗ r), round(ǫ ∗ r)] , 
where ǫ is the same parameter as in Eq.  (7) and r is 
an amplification parameter to make round(ǫ ∗ r) a 
big integer. When performing a fitness comparison 
or finally outputting perturbation, the perturbation 
value is divided by r to get back a real number that is 
small enough. The goal in this paper is, through DE, 
to find a perturbation/individual that could success-
fully attack the victim model and keep the change as 
small as possible.

The initial population of DE is generated randomly 
and uniformly as follow,
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where, rand_int() randomly samples an integer from the 
input interval.

In each iteration of evolution, the offspring individu-
als are produced through mutation and crossover, as,

where r1 , r2 , r3 are three different indexes randomly 
selected from {1, 2, . . . ,NP} ; F ∈ [0, 2] is a scaling real 
factor; CR ∈ [0, 1] is a crossover probability; rand(0, 1) 
produces a uniformly distributed random real from [0, 1] ; 
valid_int(X) makes all elements of genes of the individ-
ual X integers by rounding, and if any integer exceeds its 
valid range, produces a valid random number to replace 
it.
Ui(g + 1) need to compete with its corresponding 

parent candidate Xi

(
g
)
 according to the fitness, and the 

winner is kept until the next iteration. The fitness meas-
ure, with Xi

(
g
)
 as input for example, is defined as,

(11)

Population(g = 1) =
{
X1

(
g
)
,X2

(
g
)
, . . . ,XNP

(
g
)}

Xi

(
g
)
=

[
gene1, gene2, . . . , geneN

]
, i = 1, 2, . . . ,NP

genen = [t, c, vn(1), vn(2), . . . , vn(B)], n = 1, 2, . . . ,N

t = rand_int(1,T )

c = rand_int(1,C)

v(b) = rand_int(−round(ǫ ∗ r), round(ǫ ∗ r)), b = 1, 2, . . .B

(12)
Xi

(
g + 1

)
=

{
Ui

(
g + 1

)
if fitness

(
Ui

(
g + 1

))
> fitness(Xi

(
g
)
)

Xi

(
g
)
otherwise

i = 1, 2, . . . ,NP

Ui,j

(
g + 1

)
=

{
Vi,j

(
g + 1

)
if rand(0, 1) ≤ CR

xi,j
(
g
)
otherwise

, j = 1, 2, . . . ,N

Vi

(
g + 1

)
= valid_int

(
Xr1

(
g
)
+ F

(
Xr2

(
g
)
− Xr3

(
g
)))

(13)

fitness
(
Xi

(
g
))

= 1− Pvictim(y = y∗|mapP→BEAM(η
′

P
+ P))

y∗ = argmaxy∈Y (Pvictim(y|mapP→BEAM(η
′

P
+ P)))

where η′

P ∈ R
T×B×C is created from Xi

(
g
)
, with all its 

elements zeros but those defined by genes of Xi

(
g
)
 ; 

mapP→BEAM

(
η
′

P + P

)
 adds the perturbation of η′

P to P 
and then converts the resulted P into BEAMs; 
Pvictim

(
y|BEAMs

)
 returns from victim model the predic-

tion probability that the input BEAMs belong to category 
y.

The iteration of DE ends, when any individual of the 
population (g + 1) matches the following formula,

Perturbation overflow
Perturbation overflow is a step in GPBEAM-DE, which 
increases the attack power of adversarial samples from 
GPBEAM-DE by decreasing the sparsity of their attacks 
in a very natural way (see Fig.  5) of distributing the 
excess perturbations on a few sparse electrodes equally 
to all other electrodes. By adding perturbation overflow 
to GPBEAM-DE, the efficiency of generating successful 
adversarial samples improves.

In order to use perturbation overflow in GPBEAM-
DE, the valid range for perturbation of power 
value should be expanded a little bit with � = C as 

(14)y∗ �= argmaxy∈Y (P(y|mapP→BEAM(η
′

P + P)))

Fig. 4 The part of generating perturbation on rhythm power array in GPBEAM-DE
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[−round(ǫ ∗ r ∗�), round(ǫ ∗ r ∗�)] . Then the only 
thing that perturbation overflow do is to replace each η′

P 
that generated from Xi

(
g
)
 in Eq. (13) with a new pertur-

bation ηP
′′ . The new perturbation is generated as,

where, clip is a crop function; 1(condition) return 1, if 
condition is True, else return 0; ηP is the perturbation 
generated by GPBEAM (see Eq. 7). sign(ηP(t, b, :)) is used 
to extract symbolic information of ηP(t, b, :) . Ultimately, 
GPBEAM-DE will have the advantages of both DE and 
GPBEAM.

Experiments and analysis
Description of experimental data
The experimental data, the CHB-MIT Scalp EEN Data-
base [37, 38], was collected from Boston Children’s 
Hospital and included EEG records of 22 children with 
recalcitrant epilepsy. Subjects were monitored for up to 
several days after discontinuation of antiepileptic drugs 
to characterize their seizures. Experiments were per-
formed using the international 10–20 standard for lay-
ing out EEG electrode positions. All EEG signals were 
sampled at a sampling rate of 256 Hz. EEG signals have 
23 channels, of which only 22 are used here. In addition, 
to facilitate the reconfiguration of the EEG into BEAMs 
[39], the channel names in the CHB-MIT scalp EEG 
database are corresponded to those of the international 
10–20 standard.

This paper gets a total of 7016 raw EEG samples, 
by firstly tailoring the experimental data to a series of 
5  s-length segments (2  s-overlapping for seizures and 
non-overlapping for non-seizures), and then selecting all 
seizure segments and the equal number of non-seizure 

(15)ηP(t, b, :)
′′

= clip

(∑T
t=1

∑B
b=1

∑C
c=11

(∣∣∣ηP(t,b,c)
′
∣∣∣>ǫ

)
∗
(∣∣∣ηP(t,b,c)

′
∣∣∣−ǫ

)

C ∗ sign(ηP(t, b, :))+ ηP(t, b, :)
′

,−ǫ, ǫ

)

t = 1, 2, . . . ,T ; b = 1, 2, . . . ,B

segments. The final size of the raw EEG sample or the 
EEG adversarial sample is 5(time slice) * 22 (electrodes) 
* 256 (number of samples per second). Bad data are 
deleted and data are normalized before tailoring. Of all 

the raw EEG samples, 5612 are used for training the sei-
zures detection models (victim models), and 1404 for 
generating adversarial samples. Subsequent experiments 
were conducted on this premise.

As shown in Fig. 3, one time slice of raw EEG signal can 
be reconstructed into four BEAMs, of which each repre-
sents an EEG rhythm. By setting the length of a time slice 
to be one second, a BEAMs sample of size 5 (time slice) * 
4 (rhythm) * 22 (length) * 22 (width) will be got from each 
raw EEG sample. The information of the dataset used in 
this article is summarized in Table 2.

Victim models
Two types of victim models, the BEAM-related model 
and the EEG-related model, were used. They use the 
same inputs of EEG data and similar multilayer architec-
tures (see Fig.  6). The main difference between them is 
that the first type needs to extract BEAMs features and 
then let them pass through multilayer architectures, and 
the second type directly passes EEG data through multi-
layer architectures.

Four multi-layer architectures proposed by Bashivan 
et  al. [7] are used. Maxpool and Temporal convolution 
are pure CNN architectures, LSTM and Mixed LSTM are 
CNN + RNN architectures.

The number of parameters of the fully connected layer 
and the number of LSTMs in multilayer architectures dif-
fers a little bit from those used by Pouya Bashivan et al. 

Fig. 5 In GPBEAM-DE without perturbation overflow, the perturbation added on one electrode are limited below ǫ (left). In GPBEAM-DE with 
Perturbation overflow, the perturbation added on one electrode could be a little bigger at first (middle), but then the perturbation over ǫ is 
distributed equally to all other electrodes (right)
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because the inputs used are different. The ConvNet con-
figurations of victim models is described in Table 3.

Model training is carried out by optimizing the cross-
entropy loss function. The networks are trained using 
Adam algorithm with a learning factor of 10−3 , and decay 
rate of first and second moments as 0.9 and 0.999 respec-
tively. In the experiments, only the EEG-related model 
with Mixed LSTM architecture suffered from overfitting. 
The complexity of Mixed LSTM architecture is higher 
compared to that of other architectures, which should 
be the cause of overfitting. In this paper, L2 regulariza-
tion, Dropout (dropout probability is set to 0.5, i.e., the 
network discards neurons with a probability of 0.5) and 
adjusting learning rate are used to reduce overfitting of 
this model.

In the end of training, the test accuracies of BEAM-
related models with Maxpool, Temporal convolution, 
LSTM and Mixed LSTM were 92%, 92%, 93%, and 94%. 
The training losses were all less than 10−3 and the test 
losses were 0.63, 0.55, 0.27, and 0.63, respectively.

In the end of training, the test accuracy of EEG-related 
models with Maxpool, Temporal convolution, LSTM and 
Mixed LSTM were 92%, 84%, 90%, and 88%. The training 

Table 2 Information sheet for dataset used in this paper

non‑seizures seizures

number of samples (Training set) 2806 2806

number of samples (Test set) 702 702

overlaps of time slices non-overlapping 2 s-overlapping

size of each EEG sample 5(time slice) * 22 (electrodes) * 256 (number of samples per second)

size of each BEAMs sample 5 (time slice) * 4 (rhythm) * 22 (length) * 22 (width)

Fig. 6 Different multilayer architectures and Victim models; C: ConvNet; Max: maximum pooling layer; FC: fully connected layer; SM: softmax layer; 
Conv: 2D convolutional layer; L: LSTM layer

Table 3 ConvNet configurations

victim models BEAM‑related models EEG‑related models

Input 22*22 4-channel 22*256 1-channel

Convolution + ReLU 3*3*32

Convolution + ReLU 3*3*32

Convolution + ReLU 3*3*32

Convolution + ReLU 3*3*32

Max Pooling 2*2

Convolution + ReLU 3*3*64

Convolution + ReLU 3*3*64

Max Pooling 2*2

Convolution + ReLU 3*3*128

Max Pooling 2*2
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losses were all less than 10−4 and the test losses were 
0.38, 0.79, 0.50, and 0.54, respectively. More information 
can be found in Fig. 7.

Evaluation criteria
In this paper, the performance of GPBEAM/GPEBAM-
DE are evaluated with three metrics.

a) Success rate (SR): As one of the most important 
measures for adversarial attack, it indicates the per-
centage of adversarial samples that successfully 
change their raw predicted labels. A higher SR indi-
cates that the algorithm is more capable of attacking, 
and means that the target classifier is more vulner-
able to attack.

where S is the total number of samples and R is the num-
ber of samples that succeeded in the attack.

b) Distortion level (DL): It is used to measure the dis-
tortion of adversarial samples relative to the raw 
samples. DLB and DLE are used to indicates the 
distortion of BEAMs adversarial samples and EEG 
adversarial samples respectively. They are defined as 
follows,where N  and M are the number of elements 
of a BEAMs sample and an EEG sample, respectively; 
B̂s
n and Bs

n are the nth element of the BEAMs adver-
sarial sample and BEAMs raw sample respectively; 
Ês
m and Es

m are the m th element of the EEG adver-
sarial sample and the EEG raw sample respectively.

(16)SR = R/S

(17)
DLB =

∑S
s=1

√
∑N

n=1

(
B̂sn−Bsn

)2

N

S

iii) Accuracy (Acc): It measures the probability that a 
victim model predicts correctly and is defined,where 
A is the number of samples that the model classifies 
correctly.

Experiment 1: attacking BEAM‑related models 
with GPBEAM
First, the aggression of GPBEAM to BEAM-related mod-
els with different multilayer architectures is tested. In 
this experiment, FGSM [8] is chosen as the perturbation 
generation method of GPBEAM. FGSM is less aggres-
sive than other state-of-arts methods. If GPBEAM with 
FGSM can successfully attack BEAM-related models, 
then GPBEAM with other perturbation methods can nat-
urally attack successfully.

As shown in Table  4, BEAM-related models with dif-
ferent multi-layer architectures can achieve more than 
90% accuracy when classifying clean data. However, 
after adding negligible perturbation to the clean data, the 
classification accuracy of these victim models decreases 
significantly. Compared with Gaussian noise, the attack 
effect of GPBEAM is obvious. As shown in Fig.  8, the 
accuracy of BEAM-related models with pure CNN archi-
tectures (Maxpool and Temporal convolution) decreases 
particularly significantly as DLB increases. From the 
attack success rate (SR) curves, GPBEAM attacks BEAM-
related models with pure CNN architectures have higher 
success rates than attacks on BEAM-related models with 
CNN + RNN architectures. BEAM-related models with 

(18)
DLE =

∑S
s=1

√
∑M

m=1

(
Ês
m−Es

m

)2

M

S
.

(19)Acc = A/S

Fig. 7 Training loss and test accuracy curves for BEAM-related models (left) and EEG-related models (right)
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CNN + RNN architecture are more robust to GPBEAM 
attacks than the BEAM-related models with CNN archi-
tecture, as seen from the above experiments. It is sus-
pected that BEAMs are richer in spatial features than 
temporal and frequency features, and GPBEAM mainly 
perturbs spatial features. This makes GPBEAM more 
aggressive to CNN architectures that mainly extract spa-
tial features and less aggressive to RNN architectures that 
mainly exploit temporal features.

Second, the aggressiveness of GPBEAM with different 
perturbation generation algorithms are tested. I-FGSM 
(Iterative-FGSM) [9], MI-FGSM (Momentum iterative- 
FGSM) [40], DII-FGSM (Diverse Input Iterative-FGSM) 
[41], PGD (Projected Gradient Descent) [42] and C&W 
(Carlini & Wagner) [43] are used here as perturbation 
generation algorithms. The BEAM-related model with a 
Mixed LSTM architecture is used as the victim model. As 
shown in Table  5, the attack performance of GPBEAM 
with these perturbation generation algorithms are obvi-
ously better than GPBEAM with FGSM (see Table  4). 
Among them, GPBEAM (C&W) is the most aggressive.

Figure  9 shows a comparison of a perturbed BEAMs 
sample (generated by GPBEAM with ǫ=0.5 and FGSM as 
perturbation generation method) and the corresponding 
raw BEAMs sample. The final perturbations of BEAMs 
do not exhibit the characteristics of random noise and 
it is almost impossible for the naked eye to immediately 
distinguish between the perturbed and raw samples.

The differences between a raw EEG data and an 
EEG adversarial sample (generated by GPBEAM with 
ǫ=0.5 and FGSM as perturbation generation method) 
are shown in Fig. 10. The EEG adversarial sample and 
raw EEG data overlap almost completely and cannot be 
distinguished by human eyes. As shown in Fig.  11, if 
the data in Fig. 10 is magnified several times, the dif-
ference between the two will show, but they are still 
extremely similar.

Experiment 2: attacking BEAM‑related models 
with GPBEAM‑DE
In this experiment, it is tested that whether the sparse 
adversarial samples generated by GPBEAM-DE can 

Table 4 GPBEAM attacks BEAM-related models of different multi-layer architectures (ε is a parameter to ensure the perturbations are 
small. In this table, the maximum value of ǫ is 0.5, which is much smaller than 50, the maximum value of elements in BEAMs. Adding 
gaussian noise (Gn) with a mean of 0 and a standard deviation of 0.5 is as the baseline attacking for comparison.)

Architecture Maxpool Temporal convolution LSTM Mixed LSTM

ǫ Acc SR DLB Acc SR DLB Acc SR DLB Acc SR DLB

0 0.92 - - 0.92 - - 0.93 - - 0.94 - -

0.1 0.42 0.50 0.10 0.34 0.57 0.10 0.68 0.24 0.11 0.72 0.21 0.10

0.3 0.17 0.75 0.30 0.15 0.77 0.21 0.56 0.36 0.32 0.62 0.31 0.31

0.5 0.12 0.80 0.50 0.09 0.82 0.51 0.53 0.39 0.53 0.58 0.35 0.52

Gn (Baseline) 0.84 0.12 0.69 0.81 0.16 0.69 0.84 0.13 0.69 0.79 0.17 0.69

Fig. 8 Acc vs DLB and SR vs DLB for BEAM-related models with four different architectures (each Acc/SR value is got with 1404 test trials)
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effectively attack the BEAM-related models and that 
whether GPBEAM-DE can achieve a higher attack suc-
cess rate with less distortion than GPBEAM.

The BEAM-related model with a Mixed LSTM archi-
tecture is used as the victim model and FGSM as the 

perturbation generation method. To test the sparse 
aggressiveness of GPBEAM-DE, the number of genes N 
in each-individual of GPBEAM-DE was set to be differ-
ent values. The experimental results are shown in Table 6. 
By comparing the results in Table 6 and that in Table 4 

Table 5 Performance of GPBEAM with different perturbation generation algorithms

I‑FGSM MI‑FGSM DII‑FGSM PGD C&W

ǫ 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Acc 0.75 0.58 0.50 0.57 0.47 0.43 0.69 0.54 0.46 0.52 0.43 0.41 0.49 0.40 0.34

SR 0.18 0.35 0.43 0.37 0.46 0.52 0.25 0.39 0.47 0.41 0.51 0.53 0.45 0.55 0.59
DLB 0.09 0.22 0.33 0.10 0.22 0.35 0.09 0.21 0.34 0.08 0.23 0.37 0.10 0.26 0.45

Fig. 9 Comparison of the perturbed BEAMs and the raw BEAMs

Fig. 10 Comparison of the EEG adversarial sample and the raw EEG data of one time slice. The  perturbed data (yellow line) overlap with and thus 
cover the raw EEG data (blue line)
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and Table  5, it is clear that GPBEAM-DE outperforms 
GPBEAM in both SR and DL when parameter N is bigger 
than 1. The likely reason for this result is that GPBEAM 
loses some perturbation in the process of sampling per-
turbation on rhythm power array from perturbation on 
BEAMs, reducing the aggressiveness of final adversarial 
samples, while GPBEAM-DE uses DE to directly pertur-
bate some elements of rhythm power array, resulting in 
more aggressive and sparser adversarial samples.

To analysis the effect of perturbation overflow, this paper 
has done ablation experiments of perturbation overflow 
and the results are shown in Table  6. The aggressiveness 
of GPBEAM-DE-5 with perturbation overflow is substan-
tially higher than that of GPBEAM-DE-5 without pertur-
bation overflow. Compared to GPBEAM-DE-5 without 
perturbation overflow, the SR of GPBEAM-DE-5 with 
perturbation overflow is improved by between 0.3 and 0.5. 
This exactly meets expectation that perturbation overflow 
is effective. But it should be noted that the improvement 
in aggressiveness is got at the expense of higher distortion 
(the DL is increased by a factor of about 5).

Experiment 3: the transferability of EEG adversarial 
samples generated by GPBEAM/GPBEAM‑DE
First, the transferability of adversarial samples generated 
by GPBEAM and GPBEAM-DE among BEAM-related 
models is tested. Specifically, the BEAM-related model 
with a Mixed LSTM architecture is used as the source 

victim model and the BEAM-related models with other 
architectures as the target victim models. This experi-
ment attacks the source model and apply the result-
ing adversarial samples to trick the target models. The 
FGSM is used as the perturbation generation method in 
GPBEAM and GPBEAM-DE.

The results are shown in Table 7. When both the source 
and target models are BEAM-related models, the trans-
ferability of adversarial samples is obvious with the SR 
values on target models being still considerable. The SR 
decreases a maximum of 0.26 when the adversarial sam-
ples generated by GPBEAM-DE are transferred, and in 
contrast, the SR decreases a maximum of 0.05 when the 
adversarial samples generated by GPBEAM are trans-
ferred, indicating that adversarial samples of GPBEAM 
have better transferability than those of GPBEAM-DE.

Second, the transferability of the adversarial samples 
generated by GPBEAM and GPBEAM-DE from BEAM-
related models to EEG-related models is tested. Here, 
the source and target models use the same multilayer 
architecture. The results are shown in Table  8. When 
the target model is EEG-related models, the adversarial 
sample generated by GPBEAM and GPBEAM-DE have 
almost no aggressiveness. The likely reason is that the 
process of converting each time slice of EEG to BEAM 
loses nearly all in-slice information that is very important 
to those EEG-related models. In addition, GPBEAM-DE 
is worse than GPBEAM in transferability, and this paper 

Fig. 11 EEG adversarial sample and raw EEG data on Fcz electrode

Table 6 GPBEAM-DE attacking BEAM-related models. GPBEAM-DE-N denote the GPBEAM-DE with N genes in each individual. 
GPBEAM-DE-5* indicates GPBEAM-DE-5 without perturbation overflow

Attack Method GPBEAM‑DE‑5* GPBEAM‑DE‑5 GPBEAM‑DE‑3 GPBEAM‑DE‑1

ǫ 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

Acc 0.93 0.73 0.66 0.64 0.25 0.15 0.81 0.37 0.21 0.89 0.73 0.65

SR 0.02 0.23 0.30 0.31 0.70 0.80 0.23 0.59 0.74 0.05 0.23 0.31

DLB 0.01 0.04 0.07 0.06 0.18 0.29 0.04 0.12 0.19 0.02 0.05 0.07
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suspect that is due to the sparse perturbation nature of 
GPBEAM-DE.

In addition, this paper uses the EEG adversarial sam-
ples generated by GPBEAM/GPBEAM-DE to attack the 
frequency-related models (these models are trained by 
feeding frequency domain representation of EEG signals 
to multi-layer architectures. FFT is used here for extract-
ing frequency domain representation) and the time–fre-
quency related models [44] (these models are trained 
by feeding time–frequency domain presentation of EEG 
data to multi-layer architectures. Wigner-Ville method, 
one of the methods mentioned in [44] is used here for 
extracting time–frequency representation). However, 
the results of both experiments were not satisfactory (the 
attack success rate is about the same as Gaussian noise).

EEG adversarial samples generated by GPBEAM/
GPBEAM-DE cannot attack EEG-related models, fre-
quency-related models and time–frequency-related 
models just for the same key reason. That is GPBEAM/
GPBEAM-DE are white-box methods, for which 
good performance must be with the right kind of vic-
tim models. Because GPBEAM/GPBEAM-DE focus 
on BEAM-related victim models, their attacks are 

almost non-aggressive to victim models that is not 
BEAM-related.

Fortunately, has been found a way (just a simple modi-
fication to the methods in this paper) to make it possi-
ble that GPBEAM/GPBEAM-DE could also attack victim 
models that are not BEAM-related. The key idea is that 
fusing the information of the adversarial sample for 
attacking BEAM-related models and information of the 
adversarial samples for attacking other kind of victim 
models may make the final adversarial sample be aggres-
sive to all these victim models. The details of this modifi-
cation are in Experiment 4: attacking both BEAM-related 
and EEG-related models with modified GPBEAM and 
modified GPBEAM-DE. It should be noted that in the 
similar way as in experiment 4, the modified GPBEAM/
GPBEAM-DE may also attack frequency-related models 
and other kind of models.

Experiment 4: attacking both BEAM‑related 
and EEG‑related models with modified GPBEAM 
and modified GPBEAM‑DE
The future epilepsy diagnosis models may detect fea-
tures from raw EEG, BEAMs, or both, considering that 

Table 7 Transferability of adversarial samples when both the source model (with Mixed LSTM architecture) and target models (with 
other architectures) are BEAM-related models. The N of GPBEAM-DE is 5. Since the adversarial samples are all obtained from the source 
model, the values of DLB or DLE are the same for all architectures, and so only the DLB and DLE of Mixed LSTM (source) are shown here

Architecture Maxpool Temporal convolution LSTM Mixed LSTM (source)

ǫ Evaluation Criteria Acc SR Acc SR Acc SR Acc SR DLB DLE

- - 0.92 - 0.92 - 0.93 - 0.94 - - -

0.1 GPBEAM 0.80 0.15 0.79 0.14 0.80 0.15 0.73 0.20 0.11 0.024

GPBEAM-DE 0.83 0.13 0.76 0.18 075 0.19 0.64 0.31 0.06 0.021

0.3 GPBEAM 0.67 0.27 0.66 0.28 0.65 0.29 0.61 0.32 0.32 0.030

GPBEAM-DE 0.46 0.48 0.39 0.52 0.44 0.49 0.25 0.70 0.18 0.026

0.5 GPBEAM 0.62 0.32 0.60 0.33 0.61 0.32 0.56 0.37 0.53 0.036

GPBEAM-DE 0.36 0.60 0.32 0.66 0.35 0.62 0.15 0.80 0.29 0.030

Table 8 Transferability of the adversarial samples when the source model is BEAM-related model and the target model is EEG-related 
models. The N of GPBEAM-DE is 5

Architecture Maxpool Temporal convolution LSTM Mixed LSTM

DLE ǫ Evaluation Criteria Acc SR Acc SR Acc SR Acc SR

0 - - 0.92 - 0.84 - 0.90 - 0.88 -

0.024 0.1 GPBEAM 0.92 0.01 0.84 0.01 0.90 0.01 0.88 0.01

0.021 0.1 GPBEAM-DE 0.92 0.01 0.84 0.01 0.90 0.01 0.88 0.01

0.030 0.3 GPBEAM 0.92 0.01 0.84 0.02 0.90 0.01 0.88 0.01

0.026 0.3 GPBEAM-DE 0.92 0.01 0.84 0.01 0.90 0.01 0.88 0.01

0.036 0.5 GPBEAM 0.91 0.02 0.84 0.03 0.90 0.01 0.88 0.02
0.030 0.5 GPBEAM-DE 0.92 0.01 0.84 0.01 0.90 0.01 0.88 0.01
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the diagnosis of epilepsy requires human doctors to ana-
lyze both the raw EEG and BEAMs signals. Therefore, 
it should be an advantage that the adversarial samples 
could attack both EEG-related models and the BEAM-
related models.

This paper makes a simple modification to the 
GPBEAM/GPBEAM-DE to make it aggressive to both 
BEAM-related and EEG-related models. In the new 
method (Fig. 12), another adversarial sample Eadv , which 
is aggressive to EEG-related models and could be gener-
ated with any existing method, is used to modify the per-
turbation of rhythm power array ηP and then to help the 
generation of final EEG adversarial sample É by replacing 
information from the raw E.

In the experiment, FGSM is used to generate Eadv from 
EEG-related models and GPBEAM/GPBEAM-DE(N = 5) 
is used to generate perturbation of rhythm power array 
ηP from BEAM-related models. Here, ǫE denotes the 
parameter ǫ of FGSM when it is used for Eadv and ǫB 
denotes the parameter ǫ of FGSM when it is used for ηP 
in GPBEAM/GPBEAM-DE.

To keep the adversarial samples imperceptible and 
to make it easy to compare the aggressive performance 
of the methods in this paper before and after the modi-
fication, this experiment keep the DL of the adversarial 
samples produced by the methods in this paper before 
and after the modification unchanged. That is, this 
experiment first use GPBEAM/GPBEAM-DE to gen-
erate adversarial samples and get their DL value, then 
run modified GPBEAM/GPBEAM-DE to generate new 

adversarial samples that have the same DL value by 
adjusting the ǫE parameter.

Table  8 shows the performance of the GPBEAM/
GPBEAM-DE (without the addition of Eadv ). Table  9 
shows the performance of the modified GPBEAM/
GPBEAM-DE (with the addition of Eadv ). It is clear that 
by the modification, GPBEAM/GPBEAM-DE obtained 
the new ability of attacking EEG-related models, with 
the top attack success rate changed from 0.03 to 0.64 
and the minimum attack success rate changed from 0.01 
to 0.11. The modification does not change the power of 
GPBEAM/GPBEAM-DE for attacking BEAM-related 
model. It should be noted that the capacity enhance-
ment of the modified GPBEAM/GPBEAM-DE mainly 
attribute to the adding of the adversarial sample Eadv , 
and this paper just propose a way to fuse the informa-
tion of the added adversarial sample for attacking EEG-
related models and information of the adversarial sample 
for attacking BEAM-related models in the framework of 
GPBEAM/GPBEAM-DE. Furthermore, the improvement 
would have been better if a more aggressive perturbation 
generation algorithm had been used to generate Eadv.

Conclusion
This paper examines the vulnerability of deep learning 
models for diagnosing epilepsy to white-box attacks. It 
proposes two methods, GPBEAM and GPBEAM-DE, 
which generate EEG adversarial samples by perturbing 
BEAMs densely and sparsely respectively. Unlike exist-
ing studies that generate EEG adversarial samples by 

Fig. 12 Modified GPBEAM /GPBEAM-DE. The dotted line indicates the modified part
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perturbing raw EEG signal、EEG frequency and EEG 
spectrograms, this paper generates EEG adversarial sam-
ples by perturbing BEAMs for the first time. This study 
exposes an important safety issue for brain disease diag-
nostic systems with experiments using EEG data from 
the CHB-MIT dataset and two types of victim models 
each of which has four different DNN architectures.

The experimental results show that: (1) GPBEAM/
GPBEAM-DE can successfully attack all BEAM-
related models with either pure CNN architectures or 
CNN + RNN architectures, showing their strong aggres-
siveness; (2) The aggressiveness of GPBEAM is sensitive 
to the effectiveness of the perturbation generation part 
which can theoretically be any white-box attack. It shows 
another merit of GPBEAM that its performance could 
be further improved by introducing new state-of-arts 
perturbation generation method other than any of those 
methods (FGSM, I-FGSM, MI-FGSM, DII-FGSM, PGD 
and C&W) having tested in this paper; (3) The sparse 
attack method GPBEAM-DE outperforms the dense 
attack method GPBEAM in both SR and DL in most 
cases. That is because of the novel work, the combination 
of GPBEAM, DE and perturbation overflow in GPBEAM-
DE. DE is used to directly perturb some elements of the 
rhythmic power array. With the help of the sign infor-
mation of the perturbation generated by GPBEAM, 
when the magnitude of the perturbation generated by 
DE exceeds a predefined level, the excess is allocated to 
other electrodes by perturbation overflow; (4) By using 

perturbation overflow, at the expense of a certain degree 
of distortion, the attack power of GPBEAM-DE can be 
increased significantly; (5) Among four BEAM-related 
models with different neural network architecture, the 
adversarial samples generated by GPBEAM/GPBEAM-
DE have obvious transferability.

There are some limitations that must be considered, 
before using the proposed methods to accomplish 
attacking tasks. Currently, the proposed methods could 
only work in the digital-domain. They could have the 
chance to perturb EEG data and deceive models only 
if (1) there are time lags between the finish of captur-
ing EEG data and that the victim deep-learning models 
start processing those data, (2) these EEG data could 
be stolen by hacking, and (3) these victim models are 
white-boxes to attackers (means that attackers have 
copies of these models and could use them to calcu-
late perturbations). Using them in physical-domain 
will face some other limitations as mentioned by Don-
grui Wu et al. [11]. They are (1) Trial-specificity, i.e., the 
attacker needs to generate different adversarial pertur-
bations for different EEG trials; (2) Channel-specificity, 
i.e., the attacker needs to generate different adversarial 
perturbations for different EEG channels; (3) Non-cau-
sality, i.e., the complete EEG trial needs to be known 
in advance to compute the corresponding adversarial 
perturbation; (4) Synchronization, i.e., the exact start-
ing time of the EEG trial needs to be known for the best 
attack performance.

Table 9 Performance of the modified methods in the case of maintaining the same DLE as Table 5. The parameter N for the modified 
GPBEAM-DE is set to be 5

Architecture Maxpool Temporal 
convolution

LSTM Mixed LSTM

DLE ǫB ǫE Evaluation Criteria Acc SR Acc SR Acc SR Acc SR

EEG-related models

 0 - - - 0.92 - 0.84 - 0.90 - 0.88 -

 0.024 0.1 0.023 modified GPBEAM 0.42 0.49 0.28 0.55 0.71 0.18 0.75 0.14

 0.021 0.1 0.020 modified GPBEAM-DE 0.47 0.41 0.34 0.50 0.77 0.15 0.77 0.11

 0.030 0.3 0.029 modified GPBEAM 0.36 0.55 0.23 0.61 0.68 0.21 0.73 0.16

 0.026 0.3 0.025 modified GPBEAM-DE 0.40 0.51 0.26 0.58 0.70 0.20 0.75 0.14

 0.036 0.5 0.035 modified GPBEAM 0.34 0.58 0.19 0.64 0.67 0.23 0.69 0.19

 0.030 0.5 0.029 modified GPBEAM-DE 0.36 0.55 0.23 0.61 0.68 0.21 0.71 0.17

BEAM-related models

 0 - - - 0.92 - 0.92 - 0.93 - 0.94 -

 0.024 0.1 0.023 modified GPBEAM 0.43 0.50 0.37 0.55 0.76 0.18 0.73 0.20

 0.021 0.1 0.020 modified GPBEAM-DE 0.61 0.29 0.51 0.41 0.58 0.37 0.64 0.31

 0.030 0.3 0.029 modified GPBEAM 0.18 0.75 0.17 0.75 0.61 0.33 0.61 0.32

 0.026 0.3 0.025 modified GPBEAM-DE 0.28 0.67 0.25 0.71 0.26 0.70 0.25 0.70

 0.036 0.5 0.035 modified GPBEAM 0.12 0.75 0.12 0.80 0.58 0.36 0.56 0.37

 0.030 0.5 0.029 modified GPBEAM-DE 0.14 0.78 0.13 0.80 0.17 0.79 0.15 0.80
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Although GPBEAM-DE obtains better performance 
than GPBEAM in most attacking cases, it has some 
limitations should be noted. First of all, GPBEAM-DE 
needs feedback on whether the attack is successful dur-
ing the execution of the evolutionary algorithm, which 
requires getting the labeled EEG data in advance. Sec-
ondly, the evolutionary algorithm itself requires much 
time to converge. Furthermore, unlike GPBEAM, which 
could easily create universal adversarial perturbations by 
using a universal perturbation generation algorithm as 
its part, GPBEAM-DE could not create universal adver-
sarial perturbations easily. At last, GPBEAM-DE is a bit 
worse than GPBEAM in transferability. The adversarial 
samples generated by the methods in this paper show 
almost no aggressiveness to the four EEG-related models 
in the experiments, indicating a poor transferability from 
BEAM-related models to EEG-related models; At last, a 
simple modification to the GPBEAM/GPBEAM-DE will 
make it have aggressiveness to both BEAM-related and 
EEG-related models, and this capacity enhancement is 
done without any cost of distortion increment.

There are many further works which could be done 
in the future, such as: (1) The perturbation generation 
algorithms used for GPBEAM/GPBEAM-DE could theo-
retically be replaced by any of other state-of-art ones for 
pursuing better performance or new features; (2) Instead 
of white-box scenario, the black-box scenario, which is of 
greater significance to the security of BCI in real world, 
should be considered; (3) Although the proposed attacks 
do not be affected by EEG-to-BEAM transformation, 
whether they still be effective after commonly-used EEG 
preprocessing which is an important part of BCI pipeline, 
is worth studying; (4) More aggressive and imperceptible 
attacks could be produced by making them sparse in all 
time, rhythm, and electrode dimensions.

It should be claimed that the goal of this study is not to 
attack any of the EEG medical diagnostic systems, but to 
raise concerns about the safety of deep learning models 
and hope to lead us to a safer design.
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