
Glauser et al.
BMC Medical Informatics and Decision Making (2023) 23:118
https://doi.org/10.1186/s12911-023-02210-7

SOFTWARE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medical Informatics and
Decision Making

How can social robot use cases
in healthcare be pushed - with an interoperable
programming interface
Robin Glauser1* , Jürgen Holm1, Matthias Bender1 and Thomas Bürkle1

Abstract

Introduction Research into current robot middleware has revealed that most of them are either too complicated
or outdated. These facts have motivated the development of a new middleware to meet the requirements of usabil-
ity by non-experts. The proposed middleware is based on Android and is intended to be placed over existing robot
SDKs and middleware. It runs on the android tablet of the Cruzr robot. Various toolings have been developed, such
as a web component to control the robot via a webinterface, which facilitates its use.

Methods The middleware was developed using Android Java and runs on the Cruzr tablet as an app. It features
a WebSocket server that interfaces with the robot and allows control via Python or other WebSocket-compatible
languages. The speech interface utilizes Google Cloud Voice text-to-speech and speech-to-text services. The interface
was implemented in Python, allowing for easy integration with existing robotics development workflows, and a web
interface was developed for direct control of the robot via the web.

Results The new robot middleware was created and deployed on a Cruzr robot, relying on the WebSocket API
and featuring a Python implementation. It supports various robot functions, such as text-to-speech, speech-to-text,
navigation, displaying content and scanning bar codes. The system’s architecture allows for porting the interface
to other robots and platforms, showcasing its adaptability. It has been demonstrated that the middleware can be run
on a Pepper robot, although not all functions have been implemented yet. The middleware was utilized to implement
healthcare use cases and received good feedback.

Conclusion Cloud and local speech services were discussed in regard to the middleware’s needs, to run without hav-
ing to change any code on other robots. An outlook on how the programming interface can further be simplified
by using natural text to code generators has been/is given. For other researchers using the aforementioned platforms
(Cruzr, Pepper), the new middleware can be utilized for testing human-robot interaction. It can be used in a teaching
setting, as well as be adapted to other robots using the same interface and philosophy regarding simple methods.

Keywords Interface, Robotics, Healthcare, Python, Middleware, Websocket, ROS, Pepper, Cruzr, Teaching, Java,
Students, Softbanks, Ubtech, Android

*Correspondence:
Robin Glauser
robin.glauser@bfh.ch
1 Institute for Medical Informatics BFH, Berne University of Applied
Sciences, Höheweg 80, CH 2502 Biel, Switzerland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12911-023-02210-7&domain=pdf
http://orcid.org/0000-0003-0229-4375

Page 2 of 11Glauser et al. BMC Medical Informatics and Decision Making (2023) 23:118

Introduction
Topic and goal of the research
Robots are making their way into everyday life and
healthcare [1]. In medicine, robots are used for e.g. logis-
tical use cases [2] and robot-assisted surgery [3].

In addition, social robots are discussed [4] regarding
their use for patient care. Robots like Pepper or Paro are
being used in elderly care homes [5] and for social robots
use cases [6–8] e.g. for medication reminders, entertain-
ment purposes or hygiene tasks. During the Covid-19
pandemic, robots were even used for scanning patients’
temperatures in hospitals and tele-medicine services for
infected people [9–11].

Rapid adaption to new use cases is necessary for the
utilization of robots in medical environments such as
the control of patient flows during a pandemic. Typical
robotic activities such as moving around, moving robotic
arms, language understanding and language output need
to be abstracted and simplified. Thus, the implementa-
tion of new use cases should be easy and rapid, so that it
can be performed by staff in the respective medical envi-
ronment. These could be the IT workers of the institution
or technically minded healthcare staff who define and
adapt concrete use cases for their working environment.

Current robot programming solutions such as robot
operating system ROS [12] seem too complicated and
require considerable time and knowledge to master.

Therefore, the development of a robot middleware has
been started to facilitate the implementation of social
robotics use cases in a fast and simple manner, while
being relatively independent of the existing and future
robot hardware.

The future options for using robots in medicine will
depend upon the ease of adaptation to the respective
medical use case. The middleware solution should help
to avoid that an IT professional who has experience with
robots is required each time a medical use case is being
changed.

Why is a new methodology necessary?
Several robot middleware solutions have been devised to
simplify programming of robots [12], e.g. “Robot Oper-
ating System” ROS [13]. ROS is a software invented by
the Stanford Artificial Intelligence Laboratory with the
goal to support robot manufacturers to create reusable
modules and algorithms that can be used on different
hardware. Other such technicaloriented computing mid-
dleware include programming robots are OpenRDK [14],
Yarp [15], and Orca [16].

While ROS has been adapted by many robot manufac-
turers, e.g. Cruzr, the other mentioned middleware solu-
tions are either outdated or not widely adopted. However,
most middleware solutions are still technically oriented

and focus on solving logistical issues, which makes them
difficult to use for persons with limited programming
experience. E.g. setting up robot navigation within ROS
requires first the setup of a navigation stack which com-
bines sensor streams with movements. Thus, advanced
IT and robotics skills/expertise, as well as considerable
programming skills are necessary to implement a medical
use case such as reception and guiding of a patient to a
department.

On the other hand, there are some graphical pro-
gramming interfaces such as Choregraphe Suite. Such
solutions are often supplied by a single vendor and pro-
prietary for the robots of this manufacturer. They have
been successfully employed for teaching use cases, but
they are limited in their abilities. There is also a risk that
they are outdated or insufficiently supported when new
hardware becomes available.

Therefore, it is desirable to provide a neutral mid-
dleware solution which abstracts commands specific
for one type of hardware to generic actions such as
moveTo(10,23) or say(“Hello, I am a robot”) and can be
used on different hardware.

The working environment: robots and software
This paper refers to two types of robots. The Cruzr1 robot
is based on two operating systems working together. The
head uses Android 5.1.12 to provide a touchscreen inter-
face. The base uses ROS and Ubuntu 18.04 to control the
arm motors and to provide the navigation functionality.
However, the access to this second system was not pro-
vided by the manufacturer at the time of developing the
middleware.

The other robot is a Pepper 1.8a3 running Naoqi
2.5.7.1, a Gentoo based operating system, in the head and
Android 5.1 on the attached tablet. Cruzr came with a
software SDK which is only usable with the outdated ver-
sion Android 5.1.1. For Pepper, the Choregraphe Suite4
was available but was outdated and out of support as well.

The middleware described here was initially imple-
mented for the Cruzr robot but has been extended to run
on the Pepper robot as well.

Methods
The middleware is based on an application programmer’s
interface (Fig. 1.1), an abstraction layer which translates
generic robot actions (Fig. 1.3) and one or several robot

1 https:// www. ubtro bot. com/ de/ produ cts/ cruzr? ls= en
2 https:// www. andro id. com/ intl/ de_ de/ versi ons/ lolli pop-5- 0/
3 https:// devel oper. softb ankro botics. com/ pepper- naoqi- 25
4 Choregraphe Suite 2.5.10.7 available for Linux, Windows and Mac https://
devel oper. softb ankro botics. com/ pepper- naoqi- 25- downl oads- linux

https://www.ubtrobot.com/de/products/cruzr?ls=en
https://www.android.com/intl/de_de/versions/lollipop-5-0/
https://developer.softbankrobotics.com/pepper-naoqi-25
https://developer.softbankrobotics.com/pepper-naoqi-25-downloads-linux
https://developer.softbankrobotics.com/pepper-naoqi-25-downloads-linux

Page 3 of 11Glauser et al. BMC Medical Informatics and Decision Making (2023) 23:118

interfaces (Fig. 1.4) to transmit the respective actions to
each type of robot (Fig. 1). Starting with the Cruzr robot
interface which uses Android version 5.1.1 the different
robot actions were studied and implemented in the robot
control abstraction layer using the Cruzr SDK.

The different robot actions were then made accessible
over a WebSocket interface. For the application program-
mer’s interface, it was decided to use Python, as it is a
widely used language, as well as often used in robotics
development [17]. In the end, the new solution should be
compared to the existing solutions.

The middleware was implemented as an Android Java
app, which runs on the Cruzr tablet. The app provides a
WebSocket server with an interface with which the robot
can be controlled.

The speech interface was implemented using the
Google Cloud Voice text-to-speech and speech-to-text
services.5. A German vosk language model (vosk-model-
small-de-0.15) was utilized for the background “hot word
listener”.6

A Python implementation was created for this inter-
face, as Python is a language which is easy to pick up.

Other languages, which have WebSocket support, can
also be used.

Furthermore, a web interface was created to try out the
interface, enabling direct control of the robot. This kind
of interface can also be run on other robots that include
an Android device in their architecture.

The interface can be reimplemented for other plat-
forms, enabling the use of the tooling created for the
interface.

The app was created to enable the WebSocket interface
on the robot, which included a basic awareness mod-
ule for demonstrations. A simple web application, uti-
lizing jQuery, was implemented to test the WebSocket
interface.

Documentation for the interface was written with
Mkdocs with the Material theme7 in Markdown, with
examples included to facilitate use of the interface, allow-
ing user to focus on implementation of healthcare use
cases.

Implementations of the basic functions were created
with the WebSocket interface, using the Python language.

Fig. 1 The Abstract Architecture Diagram shows the different layers enabling the new middleware. At the top layer is the user interface (1.1)
with which the robot can be programmed. It accesses the Robot Control Abstraction Layer (1.3) via the API Interface (1.2). The Robot Control
Abstraction Layer (1.3) enables the use of the different robot SDK’s (1.4) so one use case can be run on multiple robots. The SDK’s can then use
their subsystems (1.5) to carry out the task. Depending on which robot the middleware is run, it dispatches the functions to the relevant SDK
(1.4) or general implementations (1.7). This architecture enables an emulated robot (1.6) on a normal tablet to test code without using a robot,
by implementing dummy functions on an emulator robot SDK. It’s possible to reuse general implementations (1.7) across multiple robots,
for example for showing emotions on a tablet (1.10), (1.8). If a robot implements general features like showing emotions (1.9), the robot’s function
can be used instead of the general implementation (1.10)

5 https:// cloud. google. com/ text- to- speech? hl= de
6 https:// alpha cephei. com/ vosk/ models 7 https:// squid funk. github. io/ mkdocs- mater ial/

https://cloud.google.com/text-to-speech?hl=de
https://alphacephei.com/vosk/models
https://squidfunk.github.io/mkdocs-material/

Page 4 of 11Glauser et al. BMC Medical Informatics and Decision Making (2023) 23:118

Results
The new middleware is depicted in (Fig. 2). It is based on
multiple components:

The main component and heart of the middleware is
the RobotControl component (Fig. 2.1). It contains the
WebSocket server, the implementation of the functions,
and provides an interface to interact with and to control
the robot it is run on.

The BackgroundVoice (Fig. 2.2) component is an
additional component that provides a way to listen for
keywords and trigger actions when the robot hears a
keyword.

The SpeechService (Fig. 2.3) component is needed for
the Cruzr robot, implements the language services for
text-to-speech and speech-to-text for the Cruzr robot.

The Cruzr SDK (Fig. 2.4) is used to control the cruzr
robot. It was provided by Ubtech, the manufacturer of
the Cruzr robot.

The RobotControlAPI (Fig. 2.5) is the WebSocket client
implementation in Python to remotely control the robot.

The RobotWebControl (Fig. 2.6) is a web interface to
access the WebSocket server and remotely control the
robot.

In the next sections, an examination of the middleware
components is undertaken in detail.

RobotControl (2.1)
The interface was implemented to run as an app on
Android and provided an API for other programming
languages to connect to over the network over a Web-
Socket interface. This makes it trivial to install on the
users’ laptops, as they only need to install Python and the
RobotControlAPI library (Fig. 2).

As the underlying technology, HTTP was used in the
first prototype and then extended with a WebSocket8
interface, which supports real time events and enables
the usage of waiting for an action to be done, without
having to rely on HTTP long polling.

The interface exposes a web API and runs the code
from the Cruzr SDK (Fig. 2.4) to make the robot speak,
move, show emotions, listen to the person in front of him
or display content on the robot’s tablet.

Fig. 2 The architecture overview shows the final implementation of the abstract architecture for the Cruzr robot. A WebSocket interface (2.1) called
RobotControl, a service to recognize hotwords called BackgroundVoice (2.2), a service for text-to-speech and speech-to-text via Google cloud
services with a dialogflow implementation called SpeechService (2.3), the Cruzr SDK for Android (2.4) which can be replaced by another robot
SDK, the Python implemention for the WebSocket interface called RobotControlAPI (2.5) and a webinterface to test out robot functions called
RobotWebControl (2.6)

8 https:// devel oper. mozil la. org/ en- US/ docs/ Web/ API/ WebSo ckets_ API

https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

Page 5 of 11Glauser et al. BMC Medical Informatics and Decision Making (2023) 23:118

The navigation and gesture functions were provided by
the Cruzr SDK. The speech functions use Google Cloud
Voice text-to-speech and speech-to-text. For the robot
face, a custom web page animation was created (Fig. 3)
which displays a abstract face which can be animated
[18].

The RobotControl app also includes some basic life
functions which can be triggered via voice command like
going back to the charging station and integration with
the SpeechServices to provide basic question answer
functions.

The Interface supports the functions listed in (Table 1).
Those include making the robot speak, making the robot
move to a specific position, listening to what someone in
front of the robot is saying, performing gestures, showing
emotions and scanning barcodes.

BackgroundVoice (2.2)
To enable the robot to listen to hot words in the back-
ground, a separate component was created that can listen
to specified keywords and trigger an action.

This was implemented using the vosk speech-to-text
engine based on their android app template9.

The vosk-model-small-de-0.15 was included in the app
to enable the offline always on speech recognition10.

SpeechService (2.3)
The SpeechService component provides the middleware
with the text-to-speech and speech-to-text functions. It
uses the Google Cloud services combined with Dialog-
flow to answer predefined questions. This app was based
on a provided template from Ubtech to enable including
and modifying the speech services on the Cruzr robot. It
was extended to translate system messages from English
to German and configured to use a custom Dialogflow
model in the Google Cloud for basic answer and question
functions.

The robot has a skill to change the language of the
robot to English or French via voice commands or a
touchscreen interface.

Cruzr SDK (2.4)
The Cruzr SDK 2.8.0 is a component provided by Ubtech,
the manufacturer of the robot. It provides the func-
tions of the robot to navigate, move joints and control
the lights of the robots and trigger the speech service
which was implemented. The SDK was provided as a Java
Archive (.jar), which was included in the RobotControl
App as an external library to enable the App to forward
actions from the WebSocket.

RobotControlAPI (2.5)
A Python implementation, which implements functions
1-16 from (Table 1) was created to enable the use of the
WebSocket interface from a Python program.

The philosophy behind the interface was based on the
book “A Philosophy of Software Design” [19]. The meth-
ods were designed to be available through the interface
in a simple manner, as described in the book, promising

Fig. 3 The Cruzr robot can show different emotions using the interface function 8 from Table 1: happy (3.1), sad (3.2), confused (3.3) and angry (3.4).
These emotions can be used on other robots with a tablet as a face

Table 1 Interface Functions implemented in the middleware

Nr Function

1 Making the robot speak

2 Change the robot’s volume

3 Moving the robot around with a joystick like interface

4 Moving the robot around on a map

5 Make the robot go back to the charging station

6 Finding out the current location of the robot

7 Localize the robot, when it is in the wrong location

8 Make the robot show different emotions (Fig. 3)

9 Make the robot perform gestures

10 Move the different servos on the robot

11 Look at the debug log to see errors

12 Use the robot for telepresence

13 Opening a QR / Bar code Scanner on the robot

14 Display web pages on the robot’s display

15 Interact with the web page on the robot’s display

16 Listen for speech and convert it into text
9 https:// github. com/ alpha cep/ vosk- andro id- demo
10 https:// alpha cephei. com/ vosk/ models

https://github.com/alphacep/vosk-android-demo
https://alphacephei.com/vosk/models

Page 6 of 11Glauser et al. BMC Medical Informatics and Decision Making (2023) 23:118

to carry out the action ascribed to them. This means
handling simple errors, providing an interface without
many parameters and being able to connect to the robot
without having to initialize a lot of classes. The interface
is based around a class called Robot, which is used to
connect to the robot and with which you can send mes-
sages to the robot to make it run a command. The Robot
class contains methods to generate messages with simple
parameters.

With the Python implementation it is possible to pro-
gram the robot in a generic manner, which can be used
for different robots. (Listing 1).

Listing 1 Example code for RobotControlAPI. It shows
how the basic functions speech, navigation, display
and speech recognition can be used. The robot will show
a starting up message, then say “I’m coming”. Afterwards
the robot will move to the pharmacy and say “Here we
are at the pharmacy” after arriving. At the pharmacy
the robot will ask if the user wants to go to another sta-
tion. Depending on the answer the robot will move
to the mentioned stationThis code outlines the various
methods of the interface. The robot will first display a
message on the tablet, followed by an audible statement
of “I’m coming”. Subsequently, the robot will navigate to
the pharmacy using coordinates. Upon arrival, the robot
will announce “Here we are at our pharmacy”. Finally, the
robot will listen to the user and drive to the specified des-
tination, either the pharmacy or the intensive care unit.

The created Python WebSocket interface was docu-
mented with Mkdocs Material in markdown (Fig. 4).

This enables the users to learn about the interface indi-
vidually, makes it easy to add new knowledge by provid-
ing direct links to the edit page and updating the mkdocs

automatically by using continuous integration11. There
is a search function to search through the documenta-
tion (Fig. 4.1), a link to edit the page the visitor is on and
directly improve the documentation (Fig. 4.2), a link to
the Gitlab repository (Fig. 4.3), a button to copy the code
in the right formatting (Fig. 4.4) and a lot of examples to
get started with the middleware (Fig. 4.5).

The interface and the middleware architecture were
documented so that new robots can be supported, and
new skills can be added.

RobotWebControl (2.6)
As a demonstrator, a web component (Fig. 5) was created
to show the functions of the interface and enable an easy
demonstration for tours of the BFH laboratory. This is
similar to the existing Wizard of Oz Interfaces created for
the Pepper Robot [20]. The web application enables the
usage of functions 1-12 from (Table 1).

One can click on a point on the map to make the robot
move there (Fig. 5.1), move the robot with a joystick
(Fig. 5.2), make the robot say something aloud (Fig. 5.3),
make the robot perform gestures (Fig. 5.4), make the
robot show emotions (Fig. 5.5), starting a video call
(Fig. 5.6), moving the robot’s servos (Fig. 5.7) and looking
at the logs for errors (Fig. 5.8).

The source code of the application is in a private
repository12.

Validation of the results
The first use case for the robot middleware was a
new students course for bachelor students in medi-
cal informatics. Bern University of Applied Sciences
teaches bachelor students in medical informatics
since 2011.

In a modernization of the curriculum a new course
was established to introduce students to the future per-
spective of social robot use in medical environments
[21]. There, students were given the task to implement a
robot guided visitor tour within the medical informatics
lab [22]. Students were asked to include additional medi-
cal tasks such as recognizing a medication box in this lab
tour. The course was given in groups of five students in a
one week full time format. Initially, two Cruzr and two
Pepper robots were available.

The students utilized the middleware extensively
throughout the course without any technical issues. All
groups implemented the robot-guided lab tour, as well
as additional medical tasks on top of the middleware.
On the first day of the course, the students were able to

11 https:// squid funk. github. io/ mkdocs- mater ial/ publi shing- your- site/ 12 https:// gitlab. ti. bfh. ch/ futur elab/ robot webco ntrol

https://squidfunk.github.io/mkdocs-material/publishing-your-site/
https://gitlab.ti.bfh.ch/futurelab/robotwebcontrol

Page 7 of 11Glauser et al. BMC Medical Informatics and Decision Making (2023) 23:118

achieve successful movements and interactions with the
robot within minutes.

The students feedback was mostly positive concerning
the interface and simple design of the API and the tools
provided with it.

The following issues were found:

• There were some issues with the servo motors con-
trolling the arms of the cruzr robot. The provided
robot API didn’t permit to keep the robot’s arms

Fig. 4 The documentation for the Python Interface (RobotControlAPI) is created with Mkdocs with the Material Theme which is updated
with continuous integration. There is a search function to search through the documentation (4.1), a link to edit the page the visitor is on and
improve the documentation (4.2), a link to the Gitlab repository (4.3), a button to copy the code in the right formatting (4.4) and a lot of examples
to get started with the middleware (4.5). The documentation contains information about the extension of the WebSocket interface, to add new
robots or skills to existing robots

Page 8 of 11Glauser et al. BMC Medical Informatics and Decision Making (2023) 23:118

lifted. The fix was to repeat the command to raise the
arm until the next command is sent to the robot.

• The camera located in the robot head couldn’t be
used with all functions. There was a malfunction

when using the bar code application while trying to
take pictures. Therefore, image acquisition was disa-
bled in favor of bar code reading.

Fig. 5 The web interface to control the robot manually (RobotWebControl). The web application enables the usage of functions 1-11
from (Table 1). This includes clicking on a point on the map to get the robot to move to it (5.1), manual joystick control (5.2), a way to make
the robot speak out loud (5.3), displaying emotions (5.4), performing different motions (5.5), start a video call (5.6), move the robot’s servos (5.7)
and look at the logs for errors (5.8)

Page 9 of 11Glauser et al. BMC Medical Informatics and Decision Making (2023) 23:118

• On one occasion, problems with the speech recog-
nition were encountered when using one word sen-
tences containing only numbers. These couldn’t be
resolved in the Google Cloud speech engine. There
was an unintended learning effect for the students as
they realized that robot programming should include
different variations e.g. to capture inputs alternatively
through the touchscreen.

• The implemented BackgroundVoice component
proved impractical due to too much background
noise triggering false positives.

Discussion
Discussion of results
The strength of the middleware is in its rapid and fast
development of practical use cases even for persons
with limited programming capabilities. The design of
the robot functions do not require any configuration and
the commands are straightforward and simple. Complex
robot functionality such as moving to a point on a map
are reduced to a simple function call.

In comparison with e.g. Choregraphe, complex use
cases with multiple feedback loops can be implemented
in Python modules, whereas in Choregraphe this leads to
incomprehensible scenarios.

Advanced features such as speech recognition, text-to-
speech and navigation can be provided to the inexperi-
enced user already at the beginning and permit realistic
medical use cases.

The Python programming language can be used easily
by users without much programming experience. Cur-
rent and modern program libraries provided by Python
result in a developer friendly programming environ-
ment. Code can be exchanged between different groups
of programmers.

It is possible as well to implement the interface for
other languages than Python, as the provided WebSocket
interface is simple to understand and implement.

Discussion of limitiations
The middleware was partially ported to the Pepper robot
(Fig. 6). This means however that code for moving ser-
vos, arms, and specific commands for the Cruzr needs
to be abstracted. Instead of moving the arms and servos,
the interface needs to provide more abstract methods
for listing the objects the robot sees, grabbing one of the
objects and placing it in a predefined space.

Adaption to new hardware will require adding func-
tionalities to the middleware e.g. if one wanted to drive a
robotic dog a function such sitdown() needs to be imple-
mented. Thus, the function moveTo(x,y) needs to be con-
nected to the robotic dog SDK.

We have used the proposed middleware solution in two
student courses over two consecutive years. The students
had prior programming experience from their first year
of study and completed the course in their second year. It
is yet to be determined if the middleware can be used by
medical staff with or without prior knowledge.

Furthermore, the middleware may not be suitable for
all healthcare use cases due to the limited functions that
have been implemented. The design of the middleware
functions to be used without requiring any configuration
could make it difficult to create more complex use cases.

At the moment robots using this middleware can’t run
scenarios without being controlled by an external device,
e.g. a laptop. However, this is not a technical limitation
and can be addressed in future versions. Furthermore,
the presented middleware relies on Android, which may
limit its usability with other robots.

Outlook
Google cloud services were utilized for speech recogni-
tion and speech synthesis, which resulted in occasional
latency and service outages. Furthermore, a constant
internet connection is required.

For medical use cases, it is an open question whether
cloud-based voice services can be utilized for sensi-
tive medical information. In the future, it will be nec-
essary to examine whether speech recognition and
synthesis should be run on the robot itself, a server on the

Fig. 6 The middleware running on the Pepper robot’s tablet, which
runs on Android. This shows that the middleware could be run
on multiple robots. To be fully functional, it would be necessary
to implement all the skills for the pepper as well, which is technically
possible

Page 10 of 11Glauser et al. BMC Medical Informatics and Decision Making (2023) 23:118

premises, or as a cloud service. The decision will be con-
tingent upon the uptime and reliability of the services.

In this project, the Python programming language
has been successfully utilized with the middleware. It is
conceivable to envision a future where natural language
commands, such as “Robot, please bring the garbage to
the bin,” are sufficient for interaction. To reach such an
advanced state, intermediate steps such as instructing
the robot by demonstrating the tasks may be necessary
[3]. This could eventually eliminate the need for pro-
gramming languages such as Python. Similarly, code
generating environments which are given an oral task
description, such as OpenAI Codex13 or GitHub Copi-
lot14 can be employed in conjunction with robots. This
could reduce the barrier for people to use robots in eve-
ryday settings, such as hospitals and nursing homes.

Can other researchers, based on the particular paper, reuse
the method?
With this kind of middleware, it is possible to easily adapt
to new use cases without having robotics knowledge.
The simple design makes it easy as well to create new use
cases. The middleware enables human robot interaction
tests, with the web interface or with simple scripts using
the Python implementation.

At the present time, the source code and documenta-
tion have not yet been published. The middleware and
other components are in a private repository of the Bern
University of Applied Sciences15,16,17,18. Those who are
interested in using the middleware can contact us.

Our contribution allows other researchers to adapt
their robots to the middleware or use the Cruzr robot
with the middleware to enable an easier adaption of their
use cases.

The course shows that it is possible to build a simpli-
fied robot middleware that can be used to build social
robotics healthcare use cases and adapt them to new
challenges.

Conclusion
The following three points highlight the important
aspects of this research paper:

1 This research paper shows that the new middle-
ware can enable students or non-robotics experts to

implement simple to intermediate use cases within a
short time span.

2 It demonstrates that the middleware can run on mul-
tiple robots and shows ways how the same code can
run on different robots by using an abstraction of
robot movements.

3 New ideas to make programming a robot easier are
discussed, along with the possible concepts that can
be realized with current natural language processing
(NLP) technology.

Availability and requirements

Project name: RobotControl
Project home page: Not available
Operating system(s): Android 5.1.1
Programming language: Java, Python, Javascript
Other requirements: A cruzr robot for using the
middleware
License: Copyright owner
Any restrictions to use by non-academics: The cur-
rent implementation is based around the laboratory,
but can be customized to fit other environments.

Acknowledgements
The authors thank the anonymous reviewers for their valuable suggestions.

Authors’ contributions
R.G. and T.B. wrote the paper together. R.G. created the middleware, wrote
the Python implementation, the web demonstration, the documentation
and wrote the draft for this paper. J.H. is the head of Medical Informatics and
provided funding for the project. M.B. helped organize the student course,
was involved in discussion about the middleware, and provided feedback for
the paper. T.B. lead the project, organized the course, collected sources and
helped edit and write this paper.

Authors’ information
R.G. is a research assistant at the Institute for medical informatics, which is part
of the Bern University of Applied Sciences, located in Biel, Switzerland. As part
of a course, he created the middleware described in this paper to allow the
students to program the robots with Python and assisted the students during
the course with their project. He finished his bachelors degree in medical
informatics at the Berne University of Applied Sciences in 2022.
M.B. is a medical informatics specialist and currently a research associate at
the Bern University of Applied Sciences with technical and administrative
responsibility for the medical informatics laboratory Living Lab at the Institute
for Medical Informatics I4MI. During his work in IT departments of hospitals,
he introduced various medical information systems as a project manager, was
responsible for their operation as an application manager and, as a business
analyst, mapped the digital transformation of medical work processes in these
systems.
J.H. is head of the department of medical informatics at the Bern University
of Applied Sciences. As a neurobiologist with a doctorate from ETH Zurich,
he has been involved with the possibilities of informatics in medical research
and treatment processes. As the founder of various start-ups in the field of
medical informatics, he was commissioned in 2009 to design and establish a
department for medical informatics at BFH. Today, 150 students study in the
bachelor’s program, 20 employees work in the Institute for Applied Research
in Medical Informatics I4MI (Institute for Medical Informatics).

13 https:// openai. com/ blog/ openai- codex/
14 https:// github. com/ featu res/ copil ot
15 https:// gitlab. ti. bfh. ch/ futur elab/ robot contr ol
16 https:// gitlab. ti. bfh. ch/ futur elab/ speec hserv ice
17 https:// gitlab. ti. bfh. ch/ futur elab/ backg round voice
18 https:// gitlab. ti. bfh. ch/ futur elab/ robot contr olapi

https://openai.com/blog/openai-codex/
https://github.com/features/copilot
https://gitlab.ti.bfh.ch/futurelab/robotcontrol
https://gitlab.ti.bfh.ch/futurelab/speechservice
https://gitlab.ti.bfh.ch/futurelab/backgroundvoice
https://gitlab.ti.bfh.ch/futurelab/robotcontrolapi

Page 11 of 11Glauser et al. BMC Medical Informatics and Decision Making (2023) 23:118

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

T.B. is professor for medical informatics at the Bern University of Applied
Sciences and responsible academic teacher for the 2nd year student course
“robots in medicine”. He studied and gained his PhD in medicine and holds
an additional informatics degree. His career comprised scientific positions in
Medical Informatics at Giessen University where he gained the venia legendi,
then Münster University and Erlangen University, Germany. His research
interests include clinical information systems, decision support, evaluation of
information systems and nursing informatics.

Funding
The Medical Informatics Institute at the Berne University of Science provided
funding for the project, bought one each of the robots (Cruzr, Pepper) and
organised that the two other robots were lent out from the other institute
during the student week.

Availability of data and materials
The source code has not been published yet, as the first version is still custom
made for the laboratory. Testing of the robot has already been conducted in
other environments, with a demo and access to the code available on premise
or through video conference.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent to publish
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 July 2022 Accepted: 15 June 2023

References
 1. Sorell T, Draper H. Robot carers, ethics, and older people. Ethics Inf Tech-

nol. 2014;16(3):183–95. https:// doi. org/ 10. 1007/ s10676- 014- 9344-7.
 2. Bendel O. Roboter im Gesundheitsbereich. In: Bendel O, editor. Pflegero-

boter. Wiesbaden: Springer Fachmedien; 2018. p. 195–212. https:// doi.
org/ 10. 1007/ 978-3- 658- 22698-5_ 11.

 3. Su H, Mariani A, Ovur SE, Menciassi A, Ferrigno G, De Momi E. Toward
Teaching by Demonstration for Robot-Assisted Minimally Invasive
Surgery. IEEE Trans Autom Sci Eng. 2021;18(2):484–94. https:// doi. org/ 10.
1109/ TASE. 2020. 30456 55.

 4. Srinivasa SS, Ferguson D, Helfrich CJ, Berenson D, Collet A, Diankov R,
et al. HERB: a home exploring robotic butler. Auton Robot. 2009;28:5–20.
https:// doi. org/ 10. 1007/ s10514- 009- 9160-9.

 5. Früh M, Gasser A. Erfahrungen aus dem Einsatz von Pflegerobotern
für Menschen im Alter. In: Bendel O, editor. Pflegeroboter. Wies-
baden: Springer Fachmedien; 2018. p. 37–62. https:// doi. org/ 10. 1007/
978-3- 658- 22698-5_3.

 6. Chance, Bundesministerium für Bildung und Forschung-Projektgruppe
Wissenschaftsjahr Demografische. Eine Therapie-Robbe für demenz-
kranke Menschen?: Wissenschaftsjahr 2013 - Demografische Chance.
https:// www. wisse nscha ftsja hr. de/ 2013/ die- themen/ themen- dossi ers/
besser- leben- mit- techn ik/ eine- thera pie- robbe- fuer- demen zkran ke-
mensc hen. html. Accessed 2 Mar 2022.

 7. Chang WL, Šabanović S, Huber L. Situated Analysis of Interactions
between Cognitively Impaired Older Adults and the Therapeutic Robot
PARO. In: Herrmann G, Pearson MJ, Lenz A, Bremner P, Spiers A, Leonards
U, editors. Social Robotics. Cham: Springer International Publishing; 2013.
p. 371–80.

 8. Pino M, Boulay M, Jouen F, Rigaud AS. “Are we ready for robots that care
for us?” Attitudes and opinions of older adults toward socially assistive
robots. Front Aging Neurosci. 2015;7. https:// doi. org/ 10. 3389/ fnagi. 2015.
00141.

 9. Sarker S, Jamal L, Ahmed SF, Irtisam N. Robotics and artificial intelligence
in healthcare during COVID-19 pandemic: A systematic review. Robot
Auton Syst. 2021;146:103902. https:// doi. org/ 10. 1016/j. robot. 2021.
103902.

 10. Shen Y, Guo D, Long F, Mateos LA, Ding H, Xiu Z, et al. Robots Under
COVID-19 Pandemic: A Comprehensive Survey. IEEE Access. 2021;9:1590–
615. https:// doi. org/ 10. 1109/ access. 2020. 30457 92.

 11. Mai T. UBTech robots being used to control coronavirus in Wuhan. 2020.
https:// robot icsan dauto matio nnews. com/ 2020/ 05/ 12/ ubtech- robots-
being- used- to- contr ol- coron avirus- in- wuhan/ 32218/. Accessed 15 Feb
2022.

 12. Elkady A, Sobh T. Robotics Middleware: A Comprehensive Literature
Survey and Attribute-Based Bibliography. J Robot. 2012;2012:e959013.
https:// doi. org/ 10. 1155/ 2012/ 959013.

 13. Quigley, Morgan & Conley, Ken & Gerkey, Brian & Faust, Josh & Foote,
Tully & Leibs, Jeremy & Wheeler, Rob & Ng, Andrew. ROS: an open-source
Robot Operating System. ICRA Workshop on Open Source Software.
2009;3: 6.

 14. Calisi D, Censi A, Iocchi L, Nardi D. OpenRDK: A modular framework for
robotic software development. pp. 1877. https:// doi. org/ 10. 1109/ iros.
2008. 46512 13.

 15. Metta G, Fitzpatrick P, Natale L. YARP: Yet Another Robot Platform. Int J
Adv Robot Syst. 3(1):8. https:// doi. org/ 10. 5772/ 5761.

 16. Hourdakis E, Chliveros G, Trahanias P. ORCA: A physics based, robotics
simulator able to distribute processing across several peers. In: Ieee Isr
2013. 2013. p. 1–6. https:// doi. org/ 10. 1109/ isr. 2013. 66956 64.

 17. Wise M. Wiki. http:// wiki. ros. org/ ROS/ Tutor ials/ Writi ngPub lishe rSubs
criber% 28pyt hon% 29. Accessed 19 Feb 2022.

 18. Breazeal C, Scassellati B. How to Build Robots That Make Friends and
Influence People. Proc IEEE Int Conf Intell Robots Syst. 2003;2. https:// doi.
org/ 10. 1109/ iros. 1999. 812787.

 19. Ousterhout J. A Philosophy of Software Design. Palo Alto: Yaknyam; 2018.
https:// dl. acm. org/ doi/ 10. 5555/ 32887 97.

 20. Rietz F, Sutherland A, Bensch S, Wermter S, Hellström T. WoZ4U: An
Open-Source Wizard-of-Oz Interface for Easy, Efficient and Robust HRI
Experiments. Front Robot AI. 2021;8. https:// doi. org/ 10. 3389/ frobt. 2021.
668057.

 21. Bürkle T, Bender M, Glauser R. Using Robots in Medical Informatics Educa-
tion. Stud Health Technol Inform. 2022;294:765–9. https:// doi. org/ 10.
3233/ shti2 20580.

 22. Holm J, Bürkle T, Gasenzer R, von Kaenel F, Nüssli S, Bignens S, et al. A
Novel Approach to Teach Medical Informatics. Stud Health Technol
Inform. 2015;216:1011.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1007/s10676-014-9344-7
https://doi.org/10.1007/978-3-658-22698-5_11
https://doi.org/10.1007/978-3-658-22698-5_11
https://doi.org/10.1109/TASE.2020.3045655
https://doi.org/10.1109/TASE.2020.3045655
https://doi.org/10.1007/s10514-009-9160-9
https://doi.org/10.1007/978-3-658-22698-5_3
https://doi.org/10.1007/978-3-658-22698-5_3
https://www.wissenschaftsjahr.de/2013/die-themen/themen-dossiers/besser-leben-mit-technik/eine-therapie-robbe-fuer-demenzkranke-menschen.html
https://www.wissenschaftsjahr.de/2013/die-themen/themen-dossiers/besser-leben-mit-technik/eine-therapie-robbe-fuer-demenzkranke-menschen.html
https://www.wissenschaftsjahr.de/2013/die-themen/themen-dossiers/besser-leben-mit-technik/eine-therapie-robbe-fuer-demenzkranke-menschen.html
https://doi.org/10.3389/fnagi.2015.00141
https://doi.org/10.3389/fnagi.2015.00141
https://doi.org/10.1016/j.robot.2021.103902
https://doi.org/10.1016/j.robot.2021.103902
https://doi.org/10.1109/access.2020.3045792
https://roboticsandautomationnews.com/2020/05/12/ubtech-robots-being-used-to-control-coronavirus-in-wuhan/32218/
https://roboticsandautomationnews.com/2020/05/12/ubtech-robots-being-used-to-control-coronavirus-in-wuhan/32218/
https://doi.org/10.1155/2012/959013
https://doi.org/10.1109/iros.2008.4651213
https://doi.org/10.1109/iros.2008.4651213
https://doi.org/10.5772/5761
https://doi.org/10.1109/isr.2013.6695664
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
https://doi.org/10.1109/iros.1999.812787
https://doi.org/10.1109/iros.1999.812787
https://dl.acm.org/doi/10.5555/3288797
https://doi.org/10.3389/frobt.2021.668057
https://doi.org/10.3389/frobt.2021.668057
https://doi.org/10.3233/shti220580
https://doi.org/10.3233/shti220580

	How can social robot use cases in healthcare be pushed - with an interoperable programming interface
	Abstract
	Introduction
	Methods
	Results
	Conclusion

	Introduction
	Topic and goal of the research
	Why is a new methodology necessary?
	The working environment: robots and software

	Methods
	Results
	RobotControl (2.1)
	BackgroundVoice (2.2)
	SpeechService (2.3)
	Cruzr SDK (2.4)
	RobotControlAPI (2.5)
	RobotWebControl (2.6)
	Validation of the results

	Discussion
	Discussion of results
	Discussion of limitiations
	Outlook
	Can other researchers, based on the particular paper, reuse the method?

	Conclusion
	Availability and requirements
	Acknowledgements
	References

