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Abstract
Background Heart failure (HF) is a major complication following ischemic heart disease (IHD) and it adversely affects 
the outcome. Early prediction of HF risk in patients with IHD is beneficial for timely intervention and for reducing 
disease burden.

Methods Two cohorts, cases for patients first diagnosed with IHD and then with HF (N = 11,862) and control IHD 
patients without HF (N = 25,652), were established from the hospital discharge records in Sichuan, China during 
2015-2019. Directed personal disease network (PDN) was constructed for each patient, and then these PDNs were 
merged to generate the baseline disease network (BDN) for the two cohorts, respectively, which identifies the health 
trajectories of patients and the complex progression patterns. The differences between the BDNs of the two cohort 
was represented as disease-specific network (DSN). Three novel network features were exacted from PDN and DSN to 
represent the similarity of disease patterns and specificity trends from IHD to HF. A stacking-based ensemble model 
DXLR was proposed to predict HF risk in IHD patients using the novel network features and basic demographic 
features (i.e., age and sex). The Shapley Addictive exPlanations method was applied to analyze the feature importance 
of the DXLR model.

Results Compared with the six traditional machine learning models, our DXLR model exhibited the highest AUC 
(0.934 ± 0.004), accuracy (0.857 ± 0.007), precision (0.723 ± 0.014), recall (0.892 ± 0.012) and F1 score (0.798 ± 0.010). The 
feature importance showed that the novel network features ranked as the top three features, playing a notable role in 
predicting HF risk of IHD patient. The feature comparison experiment also indicated that our novel network features 
were superior to those proposed by the state-of-the-art study in improving the performance of the prediction model, 
with an increase in AUC by 19.9%, in accuracy by 18.7%, in precision by 30.7%, in recall by 37.4%, and in F1 score by 
33.7%.

Conclusions Our proposed approach that combines network analytics and ensemble learning effectively predicts 
HF risk in patients with IHD. This highlights the potential value of network-based machine learning in disease risk 
prediction field using administrative data.
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Background
Ischemic heart disease (IHD) is one of the major under-
lying causes of heart failure (HF) [1–3] and is related 
to increase mortality [4, 5]. Abdissa et al. [6] investi-
gated 306 IHD patients, 64.1% of whom developed HF 
with the number of females being about twice the num-
ber of males. In our previous study on the comorbidity 
patterns of IHD patients, HF occurred in 29.39% of the 
IHD patients, and the incidence of HF in IHD patients 
was eight times higher than that in patients without 
IHD [7]. HF, as a complex cardiovascular syndrome, 
causes frequent hospitalization, leads to low quality of 
life, and accounts for a large portion of cardiovascular 
disease (CVD) morbidity and mortality [8, 9]. There-
fore, early prediction of HF risk in IHD patients may 
improve patients’ outcomes, and reduce medical costs 
and mortality.

In recent years, as a sub-filed of artificial intelligence, 
machine learning (ML) techniques attracted much atten-
tion in the medical domain [10–17], and have been 
increasingly employed for HF prediction [18–25]. For 
instance, Rammal et al. [26] integrated different types 
of data, including demographic data, chest X-ray images 
data, and clinical diagnostic and symptoms data, of 100 
HF patients to construct random forest (RF) and logistic 
regression (LR) predictive models which both achieved 
an accuracy of 93%. Akbilgic et al. [27] developed a con-
volutional neural network (CNN) model that utilized 
electrocardiographic (ECG) data for predicting the risk of 
developing HF, which achieved an AUC of 75%. Accord-
ing to Chen et al. [28], they employed demographic data, 
diagnostic data, clinical test data and intraoperative mon-
itoring data of patients to construct a model with deep 
pyramid CNN and extreme gradient boosting (XGBoost) 
method for forecasting the risk of HF after operation. 
Although the recent advances in ML techniques have 
significantly improved the prediction accuracy for HF, 
these works have two major issues. First, most ML mod-
els developed so far relied on multiple types of detailed 
medical data, such as cardiac image, laboratory exami-
nation and ECG data, and these models mainly aimed to 
interpret clinical data and assist clinicians for screening 
and diagnosis of HF. Few studies have attempted to estab-
lish ML-based risk prediction models for people who are 
likely to progress to HF (e.g., patients with IHD) when 
detailed diagnostic tests are unavailable. Second, these 
methods considered comorbidities, such as hypertension, 
diabetes and atrial fibrillation, as clinical risk factors for 
HF, but did not consider their complex relationships and 
progression patterns among comorbidities. Since HF is a 

major complication following IHD, capturing the disease 
progression pathways can reveal the multimorbidity risk, 
thus increasing the accuracy of disease risk prediction.

Recently, the availability of large amounts of adminis-
trative data (e.g., hospital discharge records, HDR) and 
the development of network theory provide new oppor-
tunities to apply a predictive model for improving the 
disease risk assessment. The administrative data contains 
useful proxies for missing clinical predictors, e.g. diagno-
ses and procedures recorded during hospitalizations, and 
the network analysis offers effective approach to explore 
comorbidity patterns [29–31], and the temporal disease 
trajectories [32–34] of patients hidden in these data. For 
instance, a cross-sectional study [35] used electronic 
health records of 34,099 discharged patients and network 
analysis techniques and determined that the comorbidity 
networks of CVDs were highly centralized in prevalent 
diseases, such as cardiac arrhythmias, HF, chronic kid-
ney disease, hypertension, and ischemic diseases. Using 
large-scale datasets and network science, Ong et al. [36] 
constructed a directed disease network to identify rare 
and novel disease patterns in pediatric pulmonary hyper-
tension. Nevertheless, to the best of our knowledge, only 
very few studies have further combined network analyt-
ics with ML techniques to improve the healthcare sys-
tem [37–40], especially for disease risk prediction. Khan 
et al. [41] constructed disease networks from 1.4 million 
admission records to predict the risk of type 2 diabe-
tes. Their results showed that the measurements based 
on network theory ranked highest among the param-
eter estimation, LR, and decision tree (DT) models, with 
82–87% prediction accuracy. Hossain et al. [37] devel-
oped risk prediction models using social network analysis 
on administrative datasets to determine the risk of type 
2 diabetes in patients with CVD. They extracted three 
network-based features from the comorbidity network 
to indicate the comorbidity prevalence, transfer pattern, 
and cluster membership, and they constructed ML mod-
els with 79–88% accuracy. Using network analytics and 
administrative data, Uddin et al. [42] constructed five 
traditional ML models and two deep learning models to 
predict the number of chronic diseases. They concluded 
that the network analysis approach allowed them to bet-
ter represent the relationship among patients’ diseases.

This study aims to identify IHD patients at high risk of 
HF. Inspired by the previous studies [37, 41], we propose 
a risk prediction approach using disease network analy-
sis combined with ensemble learning technique based 
on routinely collected administrative data. It has two 
goals: (1) design novel network features to capture the 
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specific complex progression pattern from IHD to HF; (2) 
develop a stacking-based ensemble model to predict HF 
risk for IHD patients using basic demographic informa-
tion and network features.

Methods
Overview
Figure 1 shows the architecture of the framework for pre-
dicting HF risk in patients with IHD. First, two cohorts, 

cases for patients first diagnosed with IHD and then 
with HF, and control IHD patients without HF, were 
established from the HDR dataset. Each patient’s HDR 
includes basic information, diagnosis history, admission 
and discharge time, etc. Then, three types of comorbid-
ity networks, including personal disease network (PDN), 
baseline disease network (BDN), and disease-specific 
network (DSN), were constructed to identify patterns 
of patients’ diseases over time as well as the complex 

Fig. 2 The extraction process for two patient cohorts

 

Fig. 1 The overview of the framework for predicting HF risk in IHD patients. PDNs: Personal Disease Networks. BDNs: Baseline Disease Networks. DSN: 
Disease-Specific Network. DXLR: the two-stage ensemble machine learning model our study proposed
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progression pattern from IHD to HF. Next, based on the 
DSN and PDN, three novel network features were gener-
ated to better characterize the progression patterns from 
IHD to HF. Moreover, to predict HF risk in IHD patients, 
while validating the effectiveness of the designed fea-
tures, a stacking ensemble model and six traditional 
ML models were developed using different input fea-
tures (basic demographic features and network features). 
Finally, the Shapley Addictive exPlanations (SHAP) [43] 
method was applied to analyze the feature importance of 
the proposed model.

Data preparation
This is a large-scale, retrospective study based on ano-
nymized HDRs collected from all the secondary and ter-
tiary hospitals in Sichuan Province, China from January 
1, 2015 to December 31, 2019. Each record contains de-
identified codes, sex, age, admission and discharge times, 
and diagnosis information. Standard ICD-10 (Interna-
tional Classification of Diseases, 10th Revision) coding 
was used for all the disease diagnosis data. Furthermore, 
IHD and HF patients were identified by the first three 
digits of the ICD code (i.e., IHD: I20-I25 and HF: I50).

As shown in Fig.  2, two patient cohorts that met the 
selection criteria were selected from the database. After 
excluding data with missing values, invalid values, incon-
sistent data, and redundant data, HDR data for a total 
of 152,600 IHD patients were obtained. Patients firstly 
diagnosed with HF then followed by IHD or with both 
HF and IHD at the same time were excluded (n = 48,865). 
To identify the evolution pattern of disease over time, a 
more restrictive inclusion criterion was utilized, exclud-
ing patients with fewer than three hospital admissions 
(n = 66,221). Finally, a total of 37,514 IHD patients with 
mean ages of 70.2 ± 10.7 years were included in this study, 
of which 48.2% were male. Among them, 11,862 patients 

who were first diagnosed with IHD and then with HF 
during the study period served as the case group, while 
the other 25,652 patients without a diagnosis of HF after 
IHD diagnosis were served as the control group.

This study was approved by the Ethics Committee of 
Health Information Center of Sichuan Province. The 
requirement to obtain informed consent was waived 
because of the secondary nature of the de-identified data 
in the retrospective study design.

Network construction
The construction process of the disease networks is 
shown in Fig. 3. Three types of directed comorbidity net-
works were constructed using 65% of the entire dataset 
and the remaining 35% was used for modeling the ML 
models.

First, PDN was constructed for each patient in the two 
cohorts to describe the health trajectory of a patient dur-
ing subsequent admissions over time [32]. In the PDN, 
the nodes, denoted as vi(vi ∈ V (PDN)), represent the 
diseases, and the edges, denoted asei(ei ∈ E (PDN))
, represent the sequential relationships among diseases. 
The node weight, denoted as freq (vi) , indicates the 
prevalence of a patient’s disease in all admission events, 
and the edge weight, denoted as freq (ei), indicates the 
number of times two diseases occurred during the same 
or consecutive admissions. Therefore, all nodes in PDN 
can be represented by a one-dimensional vector called 
disease vector. Each item in the vector represents a 
node vi  and the corresponding value is the node weight 
freq (vi) . Similarly, all edges in the PDN can be repre-
sented by a two-dimensional matrix called disease adja-
cency matrix. Each element represents edge ei  and the 
corresponding value is edge weight freq (ei).

Next, to obtain the disease progression patterns of the 
patients in different cohorts, two BDNs (i.e., BDNIHD & 

Fig. 3 The process of constructing networks. Nodes represent diseases and directed edges represent the sequential relationship between diseases. 
HDRs: Hospital Discharge Records. CIHD&HF: Cohort of patients with IHD and HF. CIHD: Cohort of patients with IHD. PDNs: Personal Disease Networks. 
(adapted from [37]). BDN: Baseline Disease Network. DSN: Disease-Specific Network
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HF and BDNIHD) were constructed by merging the cor-
responding PDNs from the two cohorts. The nodes and 
edges of the BDN and the corresponding weights were 
calculated by summing the nodes and edges of all the 
PDNs in the same cohort.

By considering the attribution theory [44], a final DSN 
was generated by combining BDNIHD & HF and BDNIHD. 
To better characterize the disease patterns in the con-
trol group, all the control patients were included, which 
led to an unequal number of patients in the two cohorts. 
Then considering the impact of the number of patients 
included in the cohort on the weight of the disease net-
work, the network weight was modified to the relative 
frequency. The DSN affords more weight to the chronic 
comorbidities which are more prevalent in BDNIHD & HF 
than in BDNIHD. Moreover, it affords a low priority to the 
opposite conditions. The weight of the node and edge for 
DSN were calculated by determining their relative incre-
ments in BDNIHD & HF compared to BDNIHD. The final 
DSN exhibited the specific disease trajectory of patients 
in cases [37]. Figure 4 displays the disease network visu-
alization of DSN.

Feature construction
As shown in Table 1, two types of features were extracted, 
including basic demographic features and network 
features.

Basic demographic features
Sex and age are risk factors for HF in IHD patients [6]. 
As shown in Table 1, these two basic characteristics were 
selected as the basic demographic features for modeling.

Network features
Three network features, including node score, edge score, 
and rank-based score were generated from the network 
to evaluate the HF risk in IHD patients, and to provide 
support from the network science perspective for early 
HF risk prediction.

Node score Inspired by the node match score described 
in [41], a modified network feature, called the node score, 
was proposed based on the weighted disease vector simi-
larity. To measuring the angular similarity between the 
disease vectors of the PDN and the DSN, the node score 
takes into account how closely the two vectors are posi-
tioned in the disease vector space. The closer the two vec-
tors, the higher their similarity, and the higher the node 
score. The node score is a disease similarity-based metric 
that measures the relationship between PDN and DSN 
from the disease similarity perspective. A higher node 
score denotes that PDN has more similar diseases to DSN, 
specifically the diseases present in IHD patients with HF 
as compared to those without HF.
Mathematically, the node score for a patient (i.e., PDN) is 
defined as follows:

Table 1 List of features considered in this study
Features Descriptions Number
Basic demographic
information

2

 Age Patient’s age 1

 Sex Male or female 1

Network 3
 Node Network node cosine similarity match 

score extracted from PDN and DSN
1

 Edge Network edge cosine similarity match 
score extracted from PDN and DSN

1

 Rank Network node centrality match score 
extracted from PDN and DSN

1

Fig. 4 Visualization of the Disease-Specific Network. Nodes represent diseases and node sizes represent disease prevalence. Directed edges represent 
the sequence of occurrence between diseases and the frequency of two diseases that occurred during the same or consecutive admissions. Edges 
weighted less than 0.5 are hidden for simplicity
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Fnode =

∑
vi∈V (PDN ),vj∈V (DSN ),vi=vj

freq (vi) ∗ freq (vj)
√∑

vi∈V (PDN ) freq(vi)
2 ∗

√∑
vj∈V (DSN ) freq(vj)

2

 
(1)

where vi  is the vertex i (i.e., disease i) in the PDN, vj  is 
the vertex j (i.e., disease j) in the DSN, and freq (v) is the 
prevalence of a patient’s disease occurring in all admis-
sion events.

Edge score Considering the evolutionary relationship 
between diseases over time, edge score was proposed as 
a metric based on the similarity of weighted disease vec-
tors. The edges in the three constructed networks repre-
sent the temporal sequential relationship among diseases. 
The edge score was calculated based on the similarity of 
the edge vectors of the PDN and the DSN, which allowed 
for the characterization of the differences in the disease 
evolution paths between the two networks. A higher edge 
score suggests that the patient’s disease progression pat-
tern is more similar to that of the DSN.
Mathematically, the edge score for a patient (i.e., PDN) is 
defined as follows:

Fedge =
Σei∈E(PDN ),ej∈E(DSN ),ei=ej

freq (ei) ∗ freq (ej)√
Σei∈E(PDN )freq(ei)

2∗
√

Σej∈E(DSN )freq(ej)
2

 
(2)

where ei  is the edge i (i.e., disease pairs i) in the PDN, ej  
is the edge j (i.e., disease pairs j) in the DSN, and freq (e) 
is the number of times the two diseases occurred during 
the same or consecutive admissions.

Rank-based score The significance of disease in the 
PDN compared to the DSN was identified by applying 
the PageRank algorithm [45] to determine the disease 
importance of nodes within the DSN. The sum of the 
weighted disease importance of PDN nodes was calcu-
lated to obtain the rank-based score, which reflects the 
importance of diseases in the PDN with respect to the 
DSN. The score is based on the importance of nodes in 
the DSN’s network structure, i.e., it takes into account the 
importance of the disease nodes in the disease network as 
well as the relationship between the different diseases. A 
higher rank-based score for a patient’s PDN indicates the 
presence of more diseases in the PDN that are also found 
in the DSN. These diseases have a high prevalence in the 
PDN and are characterized by a high node importance in 
the DSN.
Mathematically, the rank-based score for a patient (i.e., 
PDN) is defined as follows:

Frank =
Σvi∈V (PDN ),vj∈V (DSN ),vi=vj

freq (vi) ∗ pg (vj)
|V (PDN )|

 (3)

where vi  is the vertex i (i.e., disease i) in the PDN, vj  is 
the vertex j (i.e., disease j) in the DSN, freq (v) is the 
prevalence of a patient’s disease occurring in all the 
admission events and pg (v) is the PageRank value for 
vertex in the DSN, |V (PDN)|  is the total number of 
nodes (diseases) in the PDN.

Ensemble learning model construction
Traditional ML methods are becoming increasingly 
popular in the field of disease prediction due to their 
excellent prediction abilities, while models generated 
from the same data among different ML algorithms have 
great heterogeneity [46]. Integrating various ML models 
might be a feasible way to produce a more powerful and 
robust model. This study developed a two-stage stacked 
ensemble learning model DXLR using network features 
and basic demographic features, which was comprised 
of three base learners (DT, XGBoost and Light Gradient 
Boosting Machine (LightGBM)) and a meta learner (RF).

As shown in Fig.  5, in the first stage, five-fold cross-
validation was performed for each of the models to gen-
erate a training set for the meta classifier. Among these 
folds, the base classifiers were used on four-folds, leav-
ing one-fold for validation. Each base classifier output a 
new feature of the training set by merging the five valida-
tion folds and generated a new testing feature by averag-
ing the five prediction results. Moreover, in the second 
stage, the most important feature of each basic learner 
was merged as crucial features to form the new training 
and testing set. The crucial features consisted of the most 
critical features in each base learner that have high fea-
ture importance for predicting HF risk in IHD patients.

Model comparison and evaluation
To compared with DXLR model, six traditional ML 
classifiers, including LR [47], support vector machines 
(SVM) [48], DT [49], RF [50], XGBoost [51], and Light-
GBM [52], were developed. LR is a widely used classical 
linear model and has the advantage of fast convergence. 
As for SVM, the linear kernel was selected as the kernel 
function to improve the training efficiency of the model 
under millions of datasets. Before training the LR and 
SVM models, standard normalization was applied to the 
datasets. The DT, RF, XGBoost, and LightGBM models 
are tree-based ensemble models, which proved the non-
linear fitting ability and better ideas for improving the 
prediction model performance and robustness. A grid 
search strategy was adopted to determine the best model 
parameters.

A series of evaluation metrics, such as precision, recall, 
accuracy, and F1 score, were used to evaluate the model 
performance. Furthermore, the area under the receiver 
operating characteristic curve (AUC) was obtained to 
compare the discrimination of the different ML models. 
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To avoid data deviation caused by dataset partition, the 
dataset was randomly split into a training set (80%) and a 
testing set (20%) 100 times. The results were represented 
in the form of mean ± standard deviation. The six tradi-
tional ML models and the DXLR model were trained and 
validated on the training set through 10-fold cross-vali-
dation on each randomly divided sample set. Addition-
ally, the Synthetic Minority Over-sampling Technique 
(SMOTE) [53] was used to avoid data imbalance.

 
Precision =

TP

TP + FP
 (4)

 
Recall =

TP

TP + FN
 (5)

 
Accuracy =

TN + TP

TN + TP + FN + FP
 (6)

 
F1score =

2*TP

2*TP + FP + FN
 (7)

where TP denotes true positive, FP represents false 
positive, TN indicates true negative, FN denotes false 
negative.

To better understand the impact of different features 
on the results, the SHAP methods was applied to further 
extend and enhance the prediction results given by the 
DXLR model.

Results
Descriptive statistics
This study included 37,514 patients with IHD from Janu-
ary 1, 2015, to December 31, 2019. The basic character-
istics of all IHD patients are shown in Table  2 and are 
classified by the presence or absence of subsequent HF 
diagnosis. Overall, 11,862 (31.6%) patients who were first 
diagnosed with IHD and then with HF during their hos-
pitalization served as the case group, while the remaining 

25,652 (68.4%) patients who were not diagnosed with HF 
served as the control group. The average age of the total 
patient group was 70.21 ± 10.74 years and 48.16% of the 
patients were male. The average age of the case group 
was 5.95 years higher than that of the control group 
(74.28 ± 9.55 vs. 68.33 ± 10.74; P-value < 0.001).

Comparison of models
Table 3 displays the performance of the six traditional ML 
models and the DXLR model with both network features 
and basic demographic features considered. The results 
show that the proposed DXLR model exhibited higher 
performance and better stability on all evaluation met-
rics compared with other models. Although, XGBoost 
was the best performing model among the six traditional 
ML models, DXLR showed significantly improvement 
(P-value < 0.0001) in all metrics. As a result, the DXLR 
model was selected as the representative classifier for 
subsequent experiments.

Performance comparison of network features
The contributions of the three network features were fur-
ther analyzed. As is shown in Table 4, the DXLR model 
with the rank-based score removed (i.e., using basic 
demographic features, node score, and edge score as 
input features) had the largest degradation in AUC per-
formance. Meanwhile, the DXLR model with the node 
feature removed (AUC = 0.927) was marginally better 
than model with the edge feature removed (AUC = 0.923).

Table 2 Basic characteristics of the IHD patients
Character-
istics

Total
(n = 37,514)

Patients 
with HF
(n = 11,862)

Patients 
without HF
(n = 25,652)

P-
value

Age(years) 70.21 ± 10.74 74.28 ± 9.55 68.33 ± 10.74 < 0.001

Sex < 0.001

 Male 18,067(48.16%) 5,870(49.48%) 12,197(47.55%)

 Female 19,447(51.84%) 5,992(50.51%) 13,455(52.45%)

Fig. 5 The overall framework of DXLR.
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Feature importance
To visually explain the importance of different charac-
teristics in the classification of the two groups of patients 
considered, SHAP was applied to illustrate how these fea-
tures affect the performance of the DXLR model. Figure 6 
shows all the features evaluated by the average absolute 
SHAP values. The feature ranking (y-axis) indicates the 
importance of the prediction model and the SHAP value 
(x-axis) is a uniform index reflecting the impact of a par-
ticular feature in the model. Overall, the absolute SHAP 
values of network features were considerably higher than 
those of the basic demographic features. The highest was 

the rank-based score (0.311), followed by the edge score 
(0.155) and the node score (0.122).

Sensitivity analysis of the predictive model
To analyze the generalization performance of the DXLR 
model, the performance of our best classifier (with basic 
demographic features and network features) was com-
pared on different subsets of patients. Table  5 lists the 
comparison results. The AUC and accuracy values of 
the predictive model for females were slightly higher 
(about 0.01) than those for males. The DXLR model 
showed no statistically significant difference in precision, 
recall, and F1 score values for different sex stratifications 

Table 3 Comparison of the performance in six traditional models and the proposed DXLR model
Models Metric [Mean ± SD]

Precision Recall Accuracy F1 score AUC
LR 0.538 ± 0.016 0.649 ± 0.016 0.712 ± 0.008 0.589 ± 0.013 0.766 ± 0.009

SVM 0.540 ± 0.016 0.644 ± 0.015 0.713 ± 0.008 0.587 ± 0.013 0.765 ± 0.009

DT 0.647 ± 0.015 0.827 ± 0.020 0.802 ± 0.007 0.726 ± 0.011 0.879 ± 0.006

RF 0.681 ± 0.015 0.833 ± 0.013 0.823 ± 0.007 0.749 ± 0.011 0.905 ± 0.005

XGBoost 0.714 ± 0.014 0.878 ± 0.012 0.850 ± 0.006 0.788 ± 0.010 0.928 ± 0.005

LightGBM 0.674 ± 0.015 0.836 ± 0.011 0.820 ± 0.007 0.746 ± 0.011 0.901 ± 0.005

DXLR 0.723 ± 0.014 0.892 ± 0.012 0.857 ± 0.007 0.798 ± 0.010 0.934 ± 0.004
P-valuea < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
a: t-test for the DXLR model and the best performing traditional model (XGBoost); The bold font is the best performing model

Table 4 Performance comparison of the DXLR model with removal of network feature separately
Method Metric [Mean ± SD]

Precision Recall Accuracy F1 score AUC
DXLR 0.723 ± 0.014 0.892 ± 0.012 0.857 ± 0.007 0.798 ± 0.010 0.934 ± 0.004

 −Node 0.699 ± 0.014 0.905 ± 0.010 0.846 ± 0.006 0.788 ± 0.009 0.927 ± 0.004

 −Edge 0.681 ± 0.013 0.907 ± 0.012 0.836 ± 0.006 0.778 ± 0.009 0.923 ± 0.004

 −Rank 0.492 ± 0.015 0.663 ± 0.019 0.676 ± 0.010 0.565 ± 0.012 0.737 ± 0.010

Fig. 6 SHAP summary plot of the DXLR model. Average absolute impact of features on the final model output magnitude ordered by decreasing feature 
importance. Rank: the rank-based score. Edge: the edge score. Node: the node score
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(P-value > 0.0001). In terms of the age groups, all the 
performance metrics exhibited statistically significant 
differences. The DXLR model showed the highest accu-
racy, precision, and AUC values for the 18–44 age group 
among the five age groups (0.798 ± 0.185, 0.960 ± 0.030, 
and 0.975 ± 0.044, respectively). While for the 80 + age 
group, the DXLR model had the highest recall and F1 
score values and the lowest accuracy and AUC values.

Comparison with state-of-the-art study
Our proposed network features for predicting HF risk for 
IHD patients were also compared with those in a state-
of-the-art study (three network features designed by 
Hossain [37]) under different classifiers. All the features 
were generated based on our dataset, and basic demo-
graphic features were sex and age. The DXLR model and 
RF (the best model in [37]) were selected as the models 
for feature comparison and verification. Table  6 veri-
fies the superior performance of our features in all the 
evaluation metrics for both classifiers. The DXLR model 
using the network features proposed in this study out-
performed the model using network features in [37], with 
an increase in precision by 30.7%, in recall by 37.4%, in 
accuracy by 18.7%, in F1 score by 33.7% and in AUC by 
19.9%, respectively. Compared with the RF model using 
network features in [37], the precision, recall, accuracy, 
F1 score and AUC of the RF model using our network fea-
tures increased by 28.0%, 18.3%, 15.9%, 23.6%, and 15.9%, 
respectively.

Discussion
This study proposes an approach to predict high-risk 
groups for HF among IHD patients using routinely col-
lected administrative data. By integrating network ana-
lytics with ensemble learning, our approach is able to 
extract disease patterns hidden in administrative data 
and identify patients at high risk that may benefit from 
screening and a preventive strategy. This method could 
be used in other regions where large administrative data-
sets can be linked at the individual person level to help 
health authorities identify high-risk groups and formu-
late targeted policies to better guide individuals, thus 
reducing the risk of illness.

In this study, the performance of the DXLR model was 
compared with six traditional models, and the results 
showed that the DXLR model outperformed all the other 
models. Among the traditional models, tree-based mod-
els performed relatively better compared to LR and SVM, 
with XGBoost exhibiting the best performance. However, 
the proposed DXLR model performed significantly better 
(P-value < 0.0001) than the XGBoost model in all metrics, 
achieving a precision of 0.723, a recall of 0.892, an accu-
racy of 0.857, an F1 score of 0.798 and an AUC of 0.934. 
This performance improvement highlights the effective-
ness of our DXLR model, which combines the strengths 
of multiple models to achieve higher prediction accuracy.

Although there were some variances in performances 
across subgroups, such as a slightly lower AUC in male 
patients and decreasing AUC with increasing age, our 
proposed DXLR model still demonstrated a strong and 

Table 5 Performance in stratified subgroups
Subgroup Metrics [Mean ± SD]

Precision Recall Accuracy F1 score AUC
Sex
 Male 0.716 ± 0.020 0.881 ± 0.017 0.848 ± 0.010 0.790 ± 0.015 0.926 ± 0.007

 Female 0.722 ± 0.018 0.875 ± 0.019 0.857 ± 0.009 0.791 ± 0.014 0.932 ± 0.006

 P-valuea 0.0327 0.0277 < 0.0001 0.5533 < 0.0001

Age groups
 18–44 0.798 ± 0.185 0.901 ± 0.143 0.960 ± 0.030 0.832 ± 0.148 0.975 ± 0.044

 45–59 0.685 ± 0.053 0.801 ± 0.060 0.919 ± 0.014 0.736 ± 0.042 0.953 ± 0.013

 60–69 0.658 ± 0.034 0.809 ± 0.029 0.860 ± 0.013 0.725 ± 0.026 0.924 ± 0.010

 70–79 0.725 ± 0.022 0.887 ± 0.018 0.838 ± 0.012 0.798 ± 0.015 0.921 ± 0.008

 80+ 0.757 ± 0.021 0.928 ± 0.017 0.816 ± 0.014 0.834 ± 0.015 0.894 ± 0.013

 P-valueb < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001
a: t-test; b: one-way analysis of variance.

Table 6 Comparison of the classifier and features proposed in this study with the features proposed in previous study
Classifier Network Features Metrics [Mean ± SD]

Precision Recall Accuracy F1 score AUC
DXLR model our study 0.723 ± 0.014 0.892 ± 0.012 0.857 ± 0.007 0.798 ± 0.010 0.934 ± 0.004

[37] 0.553 ± 0.017 0.649 ± 0.021 0.722 ± 0.009 0.597 ± 0.013 0.779 ± 0.010

Random Forest our study 0.681 ± 0.015 0.833 ± 0.013 0.823 ± 0.007 0.749 ± 0.011 0.905 ± 0.005

[37] 0.532 ± 0.016 0.704 ± 0.016 0.710 ± 0.009 0.606 ± 0.013 0.781 ± 0.010
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stable predictive ability. These differences in performance 
could be due to their differences in comorbidity burden 
and in complex comorbidity relationships in male and 
older IHD patients [7]. Nevertheless, our model provides 
a promising tool for identifying high risk groups for HF 
in diverse IHD patient populations.

The comparison of the contributions of the three net-
work features revealed that the removal of the rank-based 
score led to the most significant drop in AUC (0.197), fol-
lowed by a 0.011 and 0.007 decrease in AUC when the 
edge score and node score were removed, respectively. 
Furthermore, SHAP was applied to validate the contri-
bution of the three network features to the prediction 
results of the DXLR model. The rank-based score yielded 
the highest SHAP value score, with about twice as impor-
tant as the edge and the node score. These results suggest 
that the rank-based score is the most critical network fea-
ture for predicting HF risk in IHD patients. One possible 
explanation for this finding is that the rank-based score 
captures the relative importance of diseases within the 
DSN network. A higher number of specific diseases in a 
patient’s PDN that are important for the disease progres-
sion patterns from IHD to HF in the DSN, may increase 
the likelihood of developing HF. Additionally, the edge 
score reflect the similarity of disease progression trajec-
tories between patients, while the node score capture 
the overall disease burden of patients. The combination 
of these network features provides a more comprehen-
sive characterization of the risk of HF in IHD patients 
and helps to identify high risk patients that could benefit 
from early screening and prevention strategies.

The three network features proposed by our study 
exhibit better prediction performance than the network 
features designed in a state-of-the-art study [37] under 
the same model and basic demographic features. As 
shown in Table  6, compared with the features designed 
by Hossain et al. [37], our network features captured the 
complex comorbid and progressive relationship between 
IHD and HF, improving the predictive metrics of the 
DXLR model by 0.135–0.243. Compared with the best-
performing RF model in [37], the precision and F1 score 
improved by 0.149 and 0.143, respectively. These network 
features were used to measure the propensity of patients 
to progress from IHD to HF with node score and edge 
score characterized the disease propensity and disease 
pair progression propensity of IHD patients by measur-
ing the similarity of disease vectors and disease pair vec-
tors of PDN and DSN, respectively. The rank-based score 
portrays the disease-weighted propensity of IHD patients 
by measuring the similarity of the weighted disease vec-
tors of PDN and DSN. Therefore, models using our pro-
posed network features performed better than those in 
previous work.

Our study has several limitations. First, the model this 
study proposed is only suitable for early risk prediction, 
not for clinical auxiliary diagnosis. Second, our network 
features were proposed based on the association of dis-
ease pairs or the progressive relationship of disease pairs. 
The prediction accuracy could be further improved by 
considering the patient-to-patient similarity inherent 
in the administrative dataset [38, 54]. In addition, graph 
neural networks (GNNs) are increasingly popular for 
learning network-based tasks [55, 56]. Future research 
is recommended to incorporate GNN-based algorithms 
to better utilize the network and improve its predictive 
performance.

Conclusions
This study proposed an approach to predict risk of HF in 
patients with IHD by integrating network analytics with 
ensemble learning. Experimental results showed our pro-
posed DXLR model outperformed the other traditional 
ML models. Further experiments also demonstrated our 
proposed network features exhibited better performance 
on the same data and model compared with the features 
created by the state-of-the-art study. These results high-
light the potential value of network-based ML in disease 
risk prediction field using administrative data.
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