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Abstract
Background Advanced machine learning models have received wide attention in assisting medical decision making 
due to the greater accuracy they can achieve. However, their limited interpretability imposes barriers for practitioners 
to adopt them. Recent advancements in interpretable machine learning tools allow us to look inside the black box of 
advanced prediction methods to extract interpretable models while maintaining similar prediction accuracy, but few 
studies have investigated the specific hospital readmission prediction problem with this spirit.

Methods Our goal is to develop a machine-learning (ML) algorithm that can predict 30- and 90- day hospital 
readmissions as accurately as black box algorithms while providing medically interpretable insights into readmission 
risk factors. Leveraging a state-of-art interpretable ML model, we use a two-step Extracted Regression Tree approach 
to achieve this goal. In the first step, we train a black box prediction algorithm. In the second step, we extract a 
regression tree from the output of the black box algorithm that allows direct interpretation of medically relevant risk 
factors. We use data from a large teaching hospital in Asia to learn the ML model and verify our two-step approach.

Results The two-step method can obtain similar prediction performance as the best black box model, such as Neural 
Networks, measured by three metrics: accuracy, the Area Under the Curve (AUC) and the Area Under the Precision-
Recall Curve (AUPRC), while maintaining interpretability. Further, to examine whether the prediction results match 
the known medical insights (i.e., the model is truly interpretable and produces reasonable results), we show that key 
readmission risk factors extracted by the two-step approach are consistent with those found in the medical literature.

Conclusions The proposed two-step approach yields meaningful prediction results that are both accurate and 
interpretable. This study suggests a viable means to improve the trust of machine learning based models in clinical 
practice for predicting readmissions through the two-step approach.
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Background
Introduction
Detecting which patients have a greater chance of read-
mission may allow for better treatment planning dur-
ing their hospital stays and better follow-up planning 
after their discharges. In the United States, readmission 
is a very common problem, with 20% of Medicare ben-
eficiaries readmitted within 30-days after hospital dis-
charge. Readmission costs roughly $17 billion in annual 
spending [1]. To reduce this significant cost, the Cen-
ters for Medicare and Medicaid Services have launched 
the Hospital Readmissions Reduction Program (HRRP) 
aiming at reducing the readmission rates [2]. By iden-
tifying patients at high risk of readmission, doctors can 
take targeted interventions to prevent readmission. 
Further, the prevention of avoidable readmission can 
significantly improve patient health outcomes and the 
financial viability of care providers. Traditional tools such 
as logistic regression and decision tree have the benefit of 
being easily interpretable, showing which factors play a 
greater or lesser role in predicting readmission probabil-
ity. However, the lower accuracy of the traditional mod-
els tends to limit their usefulness. Advanced machine 
learning models such as random forests and neural net-
works achieve greater accuracy but suffer from limited 
interpretability [3]. Interpretability is important because 
such black box methods may have inherent but unknown 
biases preventing generalizability to different popula-
tions. Interpretable models allow practitioners to lever-
age their clinical knowledge to evaluate and improve the 
prediction framework.

There is a growing interest in developing interpretable 
machine learning models, especially in the healthcare 
outcome prediction contexts. New techniques, such 
as the one developed in [4], allow one to look inside 
the black box of more advanced prediction methods to 
extract interpretable models such as decision trees. These 
interpretable models offer a similar prediction accuracy 
as the black box and help identify medically relevant risk 
factors. The authors of [4] demonstrated success in a dia-
betic prediction setting. Most existing studies on inter-
pretable machine-learning tools in healthcare focus on 
supporting medical decision-making, such as [5–7]. Few 
studies specifically looked into the areas of hospital read-
mission prediction. It is unclear whether existing inter-
pretable techniques can be successfully applied to this 
readmission setting, which motivates us to answer the 
following research question in this paper: in predicting 
the 30-day and 90-day hospital readmission, can inter-
pretable models maintain good prediction accuracy while 
increasing interpretability compared to the black box 
machine learning models?

In this paper, we develop a readmission prediction 
model that combines the high accuracy of a complex 

model with the interpretability of simpler models. This 
methodology applies a two-step process proposed in 
[4], which trains black box machine learning models for 
high accuracy and then extracts interpretable regres-
sion trees from the final results. The main innovation our 
paper improves over [4] is to use the continuous scores 
predicted from the first step regarding the readmis-
sion probability to train a regression tree in the second 
step (in contrast to using binary outcomes from the first 
step (e.g., readmitted/not readmitted) to train a decision 
tree as in the original paper [4]). Using data from a large 
teaching hospital in Asia, we show that this approach 
greatly improves the accuracy of the extracted tree in the 
readmission setting, compared with the original method 
in [4]. We further compare the prediction accuracy from 
the extracted tree model with that from the black box 
models, such as neural networks, to quantify the accu-
racy differential between the interpretable and black box 
models. Finally, we assess whether decisive factors from 
the extracted trees are consistent with those from the 
previous medical literature, confirming that the two-step 
model does indeed provide interpretable results.

Beyond the technical contribution, our paper contrib-
utes to the healthcare operations management literature 
by demonstrating the potential of recent methodologi-
cal developments from interpretable machine learning to 
impact healthcare decision-making, providing evidence 
from the hospital readmission risk prediction domain. 
Not only is readmission prediction and prevention of 
critical importance to hospital operations and finance, 
but also this use case provides proof of value for interpre-
table machine learning that can be more broadly applied 
to the development of predictive models in other health-
care settings to support decision making in healthcare 
operations.

Relevant work
Early studies (prior to 2011) on readmission risk analysis 
used descriptive, particularly discriminatory, analyses to 
determine the influence on a certain disease or disease 
classes of a few pre-selected risk factors (or handcrafted 
features based on experience), including comorbidity [8, 
9], age [10–13], sex [14], income [15], and level of educa-
tion [16], health utilization [11, 12, 16, 17], type of insur-
ance [17, 18]; and treatment and clinical factors [10, 12, 
19]. For more details, we refer to a systematic review pre-
pared by the Veterans Health Administration [20], which 
summarized 26 unique studies presented in English. This 
review paper notes that these studies often rendered 
c-statistics ranging from 0.55 to 0.8, with lower values 
from studies based on administrative data. Our paper 
also uses administrative data which lacks detailed clini-
cal features. Typical AUCs (one type of c-statistic) for 
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models trained on administrative data are in the range of 
0.6–0.7 [20].

To ensure interpretability in hospital readmission pre-
diction, indexing/scoring models have been developed 
based on predictive variables that can be easily extracted 
from electronic health records and medical claims data. 
For example, the LACE index uses four variables -- 
Length of stay (L), Acuity of the admission (A), Comor-
bidity of the patient (C), and Emergency department use 
in the previous six months before admission (E) -- to pre-
dict the risk of nonelective 30-day readmission after hos-
pital discharge among both medical and surgical patients 
[21]. Similarly, the HOSPITAL score uses seven clinical 
predictors, available in electronic health records, to iden-
tify patients at high risk of potentially avoidable hospital 
readmission within 30 days [22]. Despite some success in 
identifying key influential risk factors on hospital read-
mission, these regression models achieve only modest 
prediction accuracy [21].

On the other hand, there is also a substantial body of 
literature using machine learning to predict hospital 
readmission. For example, decision trees, neural net-
works, logistic regression, and Naïve Bayes classifiers 
were compared for predicting rehospitalization [23, 24]. 
With each patient represented by a vector of about 4000 
dimensions, a generalized additive model was applied to 
predict the hospital readmission risk of a general cohort 
of patients [25]. A comprehensive comparative study 
with several machine learning methods (support vector 
machine, decision trees, random forests, and general-
ized boosting machine) was conducted for predicting all-
cause hospital readmission based on administrative data 
[26]. More recently, deep learning has attracted the atten-
tion of the research community on hospital readmission 
prediction. Several studies have explored its potential 
[27–29]. Despite success in improving prediction perfor-
mance over classical regression modeling techniques, all 
deep-learning models were found to be less suitable for 
deployment in real-world applications due to the lack of 
interpretability [30].

Learning interpretable models is challenging because 
interpretability and accuracy are generally two compet-
ing objectives, i.e., one favoring simplicity and general-
ization while the other favoring nuance and exception. 
A long-standing question in the field is how to create 
predictive models that are sufficiently accurate and inter-
pretable for decision making in various applications, e.g., 
recidivism prediction for sentencing [31], review rating 
prediction for personalized recommendations [32], and 
academic performance prediction for university students 
under warning and probation [33]. Many such studies on 
interpretable prediction were inspired by medical deci-
sion-making. Frank et al. [34] presented a novel method 
for creating data-driven scoring systems called a Super 

sparse Linear Integer Model (SLIM). Their experiments 
demonstrated that an optimized SLIM can create a highly 
tailored scoring system for sleep apnea screening, breast 
cancer detection, and survival prediction after breast 
cancer surgery. Zeng et al. [35] provided a Bayesian 
framework for learning classification models consisting 
of an ordered list of if-then rules, which were called fall-
ing rule lists. Patients were then stratified into decreasing 
risk sets with the prediction model built on falling rule 
lists. Seo et al. [36] introduced generative Bayesian Rule 
Lists (BRL), which employed a novel prior structure to 
encourage sparsity. The BRL preserved similar interpret-
ability with scoring systems in practical use but is more 
accurate. The aforementioned work is focused on gener-
ating risk classifications based on sets of binary decision 
rules, i.e., rules that can be phrased as yes/no questions, 
providing simple heuristics that are designed to support 
decision making in settings where the decision-maker 
has limited time and background knowledge. These deci-
sion rules are directly learned from “real” datasets avail-
able for training, which are often limited in the sample 
size. Our work focuses on a setting where the datasets are 
augmented by “synthetic” data generated from accurate 
prediction models. In other words, we create a model 
that mimics the performance of more accurate black 
box methods and provides medical reasoning behind the 
predictions. The goal is to increase adoption by instilling 
confidence in the prediction as well as enabling medical 
professionals to check the validity and generalizability 
of these prediction models based on their own clinical 
knowledge.

Methods
Dataset
We used an archived dataset obtained from a major 
teaching hospital in Southeast Asia, spanning from 
May 2010 to March 2011. The Purdue IRB (Institutional 
Review Board) decided that this study of de-identified, 
archived data does not meet the regulatory definition of 
human subjects research. The dataset contains a record 
of 58,036 patients, detailing their medical information 
including hospital length of stay; insurance class (private 
versus public insurance); admission source (admitted for 
elective surgery or from the emergency department); dis-
charge location; medical specialty, and admitting service 
including month, year, and day of the week of patient 
admission; patient’s Charlson score; patient’s van Wal-
raven score (see [28]); whether the patient was admitted 
to the intensive care unit; whether surgical operations 
were performed; and the number of transfers between 
intensive care units and general wards. The medical 
specialties were classified by the hospital; see [29] for a 
detailed explanation.
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Data pre-processing
The most common specialties represented in this data 
set were medicine 24.8%, surgery 19.7%, orthopedics 
9.5%, and cardiology 9.4%. Among the remaining 36.6% 
(see Table S1 in the Appendix for these specialties), we 
excluded pediatrics and obstetrics/gynecology specialties 
from our prediction analysis. Furthermore, in the pre-
diction analyses, we considered two model settings: one 
including patients from all the specialties, referred to as 
the all-specialty model, and one only including patients 
from the four specialties with the most patients (medi-
cine, surgery, orthopedics, cardiology), referred to as 
the main-specialty model. Additionally, we tried to stan-
dardize or normalize the features. The prediction per-
formances did not have a statistical difference between 
models with and without feature scaling. As a result, in 
the subsequent experiments, we used the original un-
scaled features.

Descriptive statistics and supporting data
Table S1 in the Appendix shows the descriptive statistics 
of the main features of the dataset after the pre-process-
ing. One feature suggested by the literature to improve 
prediction accuracy was the number of previous hos-
pitalizations for the patient in the last six months prior 
to the current hospital visit. We added this supporting 
feature (number of prior visits) via linking to another 
dataset from the same hospital, which contained patient 
encounter information from November 2008 to August 
2011. Mathematically, denote the admission and dis-
charge date of patient i ’s k th hospital visit as t0i,k  and 
ti,k, i = 1, ..., N, k = 1, ..., Ki  respectively, where N is the 
total number of patients included in the prediction analy-
sis, and Ki  is the maximum number of visits patient i  
has. Define h (.) to be the indicator function, which takes 
value 1 if the indicator is true and 0 otherwise. Then for 

the record at t0i,k , the number of prior visits within the 
last six month is calculated as 

∑k
j=1h(t0i,k − ti,j ≤ 180) .

Predictive targets
For each patient, we were able to use his/her patient 
ID and visit ID (both deidentified) to calculate the days 
between hospital admissions. From this variable, we 
calculated (i) a binary readmission indicator to label 
whether the patient had a subsequent hospital admission 
after the current visit, and (ii) the time between two con-
secutive hospital visits. Following medical convention, 
we considered both 30-day and 90-day readmission rates 
as our predictive targets. Mathematically, for the record 
at ti,k  (using the same notations as defined above), the 
two main prediction outcomes can be represented by

  • yi,k
30 = h(t0i,k+1 − ti,k ≤ 30) for the 30-day 

readmission indicator, and
  • yi,k

90 = h(t0i,k+1 − ti,k ≤ 90)for the 90-day 
readmission indicator.

Rather than make predictions on the general readmis-
sion status of a patient, separate models can be created to 
predict whether a patient is at risk for readmission within 
these specified windows of time.

Our data shows that 14.3% of patients were readmitted 
to the hospital within 30 days and 24.4% of patients were 
readmitted to the hospital within 90 days. Thus, most 
readmission cases occurred before 30 days have elapsed 
since the previous visit (Fig.  1). We limited our consid-
eration to the 90-day time window when accounting for 
readmission because some readmissions beyond 90 days 
may have causes unrelated to the initial case of hospi-
talization. In the prediction analysis, rather than mak-
ing predictions on 30-day and 90-day readmission status 
together, we created separate models to predict whether 
a patient is at risk for readmission within each specified 
window of time.

Black box model training
For machine learning models, we tested the following: 
logistic regression (LR), decision tree (DT), support vec-
tor machine (SVM), extremely randomized trees (ET), 
light gradient boosting machine (LGBM), extreme gra-
dient boosting (XGB), random forest (RF), and neural 
network (NN). We chose logistic regression as the base-
line model when comparing the prediction performance. 
Among these machine learning models we tested, ran-
dom forests and neural networks have several hyperpa-
rameters to tune (e.g., tree depth in the random forest 
and number of hidden layers in the neural network). For 
the model tuning, cross validation with stratified k folds 
was implemented. During each iteration of the k-fold 
cross-validation process, we split the data into k subsets, 
trained the model on k-1 subsets, and tested it on the 
remaining subset. This helped us ensure that the model 

Fig. 1 Distribution of the number of patients who are readmitted within 
90 days of discharge
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was not overfit to a specific training and testing set. By 
repeating this procedure k times and averaging the per-
formance scores obtained over the iterations, we were 
able to identify a set of hyperparameters that yielded 
consistently accurate predictions across the k folds. In 
our implementation of the stratified k-fold, we added 
an additional step of up- or down-sampling to account 
for imbalanced class distributions. This approach is 
especially relevant in classification tasks given that our 
samples (readmission versus non-readmission) were sig-
nificantly imbalanced; e.g., 14% 30-day readmitted vs. 
86% non-readmitted patients.

Interpretable machine learning model: two-step extract 
tree
In order to obtain an interpretable basis for the black 
box models, we leveraged the cutting-edge ExtractTree 
algorithm developed in [4]. In this method, any black 
box machine learning model can be processed with the 
ExtractTree algorithm to extract representative decision 
trees. These extracted trees outline which features of the 
dataset provided insight for the model in making predic-
tions. The process has two steps.

The first step is to learn a good black box predic-
tion model (e.g., train a neural network model). Let 
Xtrain ∈ Rn×d  be the feature matrix of the training data, 
where the d  features of the ith  sample are represented 
by the ith  row, Xi . Let Ytrain ∈ Rn  be the vector of out-
comes for the n  samples; in our setting, the outcomes 
are the 30- or 90-day readmission binary indicators as 
proposed by the original paper [4] (which we will replace 
by continuous scores in this paper as explained later). 
Denote the feasible set of the feature space as Xtrain ⊆ X
) and the set for the outcome space as Ytrain ⊆ Y . Then 
we can represent the trained black box model as a func-
tion that maps from the feature space to the outcome 
space, i.e., f : X → Y . Once we train a good model f
, for any given feasible point x ∈ X  , this mapping pro-
vides a prediction ŷ = f (x).

The second step is to extract interpretable trees using 
synthetic data labeled by the black box model, i.e., to 
approximate f  using a tree T . The tree is a function 
T : X → Y  as well. For a decision tree (which is used 
in the original paper [4]), Y  takes binary values, i.e., 
Y = {0,1}n . For a regression tree that we propose to use 
this paper, Y  takes continuous values, i.e., Y = [0, 1]n . 
Specifically, we modify the procedure in the second step 
for this paper.

  • First, we fit the original feature data Xtrain  with a 
Gaussian mixture model (GMM) to estimate the 
joint feature distribution P  over inputs from X. This 
GMM normalizes the features into a distribution 
from which more feature data could be sampled. 

We follow [4] and use an expectation-maximization 
(EM) algorithm to fit the model P :

 
pP (x) =

∑K

i=1
ϕiN(µi, Σi)

where pP  is the probability density function associated 
with the distribution P , the weights ϕ ∈ [0, 1]k  satisfy ∑K

i=1ϕi = 1 , and the ith  Gaussian distribution in the 
mixture has mean µi ∈ Rd  and a diagonal covariance 
matrix Σi ∈ Rd2.

  • Then, we sample data from this fitted distribution P  
and run sampled data through the neural network 
to generate output predictions. That is, we create 
synthetic data that is generated from x̃ ∼ P and 
use the black box model trained in the first step 
to generate the outcome score, ỹ = f (x̃) ∈ [0,1] , 
corresponding to the readmission probability. With 
the trained model, we can generate as many (x̃, ỹ) 
pairs as needed. Having access to a large amount of 
sampled data improved the training performance 
of the decision tree and regression tree, which 
otherwise achieved poor performance on the original 
data (see Table 1).

In [4], the authors extracted decision trees. The major 
improvement we made in this paper was to apply the 
same procedure but extract regression trees instead of 
decision trees. To explain our rationale, though the pre-
dicted labels for the data from the neural network are 
indicated to be 0 (“not readmitted”) or 1 (“readmitted”), 
the model in fact outputs a continuous score between 0 
and 1 (representing a probability of readmission). Thus, 
to generate the binary prediction, a properly chosen 
threshold is used to convert the continuous score, where 
the default threshold is 0.5. That is, if the predicted (con-
tinuous) score is below the threshold of 0.5, the predicted 
label is set to be 0 (non-readmission); otherwise, 1 (read-
mission). By employing a regression tree, we can directly 
train on the continuous values predicted by the black box 
model, rather than the binary values of 0 or 1. This allows 
us to retain more information from the black box model 
and improve the accuracy of our interpretable model.

Performance metrics and model evaluation
Data analyses were performed with scripts written in 
Python. Machine learning backends used were Keras and 
Tensorflow, and Python libraries used for modeling and 
visualization included Sci-Kit Learn, Pandas, and Mat-
plotlib. We adopted the following metrics to compare 
prediction models: Area Under the Curve (AUC) of the 
receiver operating characteristic (ROC), area under the 
precision-recall curve (AUPRC), accuracy (ACC), preci-
sion, recall, F-value, and Matthews correlation coefficient 
(MCC). To assess the model’s ability to generalize to new 
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data, we present the results of out-of-sample testing. This 
involves evaluating the model on data that it has not seen 
during training, in order to determine its performance on 
new, unseen data. We used the performances of the stan-
dard logistic regression (LR) as benchmarks to compare 
the machine learning tools, as it is interpretable and has 
decent prediction performance.

The experimental results indicate that the relative rank-
ings of the tested methods are mostly consistent in differ-
ent performance metrics; see Table S2 in the Appendix 
for the detailed results. In the main paper (“Results” sec-
tion), we present AUC and AUPRC as well as accuracy, 
because these three metrics are the most used metrics 
for classification with unbalanced data. Specifically, accu-
racy is calculated as the proportion of examples in the 
test dataset that were predicted correctly, divided by all 
predictions that were made on the test dataset. The ROC 
curve plots the false positive rate against the true posi-
tive rate for a binary classifier. A more accurate classifier 
has an ROC curve closer to the top left corner, and AUC 
closer to 1. An AUC (Area Under the Curve) of 0.5 rep-
resents a classifier “guessing” randomly between binary 
outputs, so an effective classifier must have an AUC 
higher than the threshold of 0.5. The precision-recall 
curve is a plot of the precision (the fraction of true posi-
tives among all predicted positives) on the y-axis and the 
recall (the fraction of true positives among all actual pos-
itives) on the x-axis. A classifier with a high AUPRC can 
correctly identify many true positive instances, which is 
particularly useful in medical diagnosis. Different from 
AUC, the baseline (actual) AUPRC is equal to the frac-
tion of positive values. For our problem, it was 0.143 
(0.244) for 30-day (90-day) prediction in model with all 
specialties; 0.135 (0.224) for 30-day (90-day) prediction 
in model with main specialties. In addition to these met-
rics, we also report the confusion matrices in Table S3 in 
the Appendix.

To evaluate the out-of-sample testing performance, we 
leveraged the bootstrapping method to produce the stan-
dard errors on the performance scores [30]. That is, for a 
specified structure of the prediction model and a speci-
fied set of its hyperparameters, we ran 50 replications 
on our dataset where, in each replication, we randomly 
split the dataset into training and testing according to a 
70–30% ratio. We then fit the prediction model, using the 
specified structure and hyperparameters, on the training 
data and evaluated the performance on the testing data 
using the fitted model. This method provided 50 perfor-
mance scores from one prediction model, allowing us to 
report the mean performance score and the correspond-
ing sample standard deviation. Because the one-sided 
upper 95% confidence limit on the normally distributed 
population standard deviation equals 1.2017 times the 
sample standard deviation with n = 50, we treated 1.2017 

times the standard deviations of the replicated means 
as deliberately conservative standard errors. The unad-
justed standard deviation (SD) of the logistic regression 
(baseline) model’s accuracy, AUC and AUPRC were mea-
sured to be 0.0093, 0.0088, and 0.0049, respectively. This 
yielded upper confidence limits for the SD of 0.0112, 
0.0106, and 0.0058, respectively, when we compared 
other models against the baseline model. Since multiple 
comparisons were made, any differences greater than 
twice the adjusted-SDs were considered statistically sig-
nificant at a 95% level of confidence (i.e., 0.0224 for accu-
racy, 0.0212 for AUC, and 0.0116 for AUPRC) and any 
differences greater than three times the adjusted-SDs 
were considered statistically significant at a 99% level of 
confidence (i.e., 0.0336 for accuracy, 0.0318 for AUC, and 
0.0174 for AUPRC).

Results
Black box model performance
Table 1 below report the prediction performances for 
the baseline and black box machine learning models on 
the 30-day and 90-day readmission predictions for the 
all-specialty and main-specialty models. The baseline LR 
model yielded an out-of-sample accuracy of 0.706 (0.699), 
AUC of 0.661 (0.664), and AUPRC of 0.217 (0.339) for 
30-day (90-day) readmission predictions. When the sub-
set of patients from the four main specialties was ana-
lyzed, the LR model yielded an out-of-sample accuracy of 
0.636 (0.664), AUC of 0.621 (0.642), and AUPRC of 0.180 
(0.325) for 30-day (90-day) readmission predictions.

The results in Table  1 show that the neural network 
(NN) model outperformed the logistic regression (LR) 
model in terms of AUC in all four tested models with 
a 99% level of confidence. Additionally, the NN model 
produced a similar or better performance than the LR 
model for accuracy and AUPRC. Other models, such as 
Light Gradient Boosting Machine (LGBM), Support Vec-
tor Machine (SVM) and Random Forest (RF), also dem-
onstrated significant improvements in accuracy, AUC 
or AUPRC in some of the tested models as compared to 
the LR model. While significant performance improve-
ment in the performance scores suggested superior per-
formance in predicting hospital readmissions to LR, this 
came at the expense of interpretability. Given that NN 
has the best or close-to-best performance consistently 
among all the tested models, we chose it as the black box 
model to extract the interpretable models. The details of 
the hyperparameters used in the NN model are reported 
in Sect. 3 (Hyperparameter Settings) in the Appendix.

Performance of extracted trees
Based on the ExtractTree algorithm outlined in Sect.  3, 
we extracted decision trees (as in the original paper [4]) 
and regression trees (our improvement) from the tuned 
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neural network. Table 2 summarizes the performance of 
(i) Benchmark: the logistic regression model, (ii) Decision 
tree extracted through the original learning strategy [4], 
and (iii) Regression tree extracted using our improved 
strategy [4]. One of the extracted regression trees is 
shown in Fig. 2. Each node in the regression tree repre-
sents a binary split. The intensity of the color at a node 
corresponds to the proportion of examples classified as 

“readmitted”. For continuous variables, the split is binary 
with cutoff values: Charlson score, van Walraven score, 
number of prior visits (referred to as visit_num in the 
figure), age, and number of second diagnosis counts. For 
binary variables, 0.5 is the cutoff value to differentiate 
between choices: whether the admission source is from 
the emergency department (EM), and whether the dis-
charge location is to a nursing home.

Table 1 Average performance scores of readmission classification (or prediction) models with data rebalancing
Model 30-day 90-day

ACC AUC AUPRC ACC AUC AUPRC
All Specialties DT 0.608 0.606 0.181 0.604 0.603 0.288

LR 0.706 0.660 0.216 0.699 0.664 0.339

LGBM 0.702 0.683* 0.230* 0.702 0.685 0.355

ET 0.662 0.660 0.211 0.664 0.668 0.335

SVM 0.696 0.661 0.215 0.661 0.651 0.332

RF 0.698 0.688* 0.232* 0.697 0.691* 0.358*

XGB 0.697 0.674 0.224 0.695 0.678 0.348

NN 0.708 0.711** 0.213 0.662 0.713** 0.329

Main Specialties DT 0.574 0.573 0.158 0.571 0.566 0.274

LR 0.636 0.621 0.180 0.652 0.642 0.325

LGBM 0.669** 0.655** 0.200* 0.664 0.655 0.336*

ET 0.625 0.638 0.188 0.643 0.646 0.327

SVM 0.650 0.638 0.189 0.689** 0.670* 0.341

RF 0.640 0.650* 0.195* 0.651 0.657 0.334

XGB 0.626 0.631 0.184 0.641 0.637 0.320

NN 0.619 0.654** 0.178 0.649 0.685** 0.320
Performances that are determined to be statistically better than the baseline (logistic regression, LR) were marked with a single-asterisk(*) to indicate a significant 
difference at a 95% level of confidence, and marked with a double-asterisk (**) to indicate a significant difference at a 99% level of confidence. Here, “DT” = decision 
tree, “LGBM = “light gradient boosting machine”, “ET"= extremely randomized trees, “SVM” = support vector machine, “RF” = random forest, “XGB” = extreme 
gradient boosting, and “NN” = neural network

Fig. 2 Regression tree extracted from sampled data (Four main specialties, 90-day readmission prediction)
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The decision tree extracted from the neural network 
model performed no better than the logistic regression 
model for all four models. In contrast, the regression tree 
preserved the performance superiority of the neural net-
works and performed significantly better especially in 
terms of AUC. Table  2 presents the results of using an 
adapted version of the ExtractTree algorithm [4], which 
extracts regression trees instead of decision trees. The 
results show that this algorithm led to a significant per-
formance improvement in AUC compared to the baseline 
logistic regression model at a 99% level of confidence.

As discussed earlier, the reason that the extracted 
regression tree archived a much better performance than 
the extracted decision tree is that more information is 
preserved during the synthetic data generation process. 
That is, when extracting the decision tree, the predictive 
label we generated is a binary variable, which requires 
a properly chosen threshold to convert the continu-
ous score from the trained neural network to the binary 
variable. This adds one layer of information loss. In con-
trast, by employing a regression tree, we can skip this 
thresholding step and directly use the continuous score 
from the trained neural network. Hence, we were able to 
retain more information from the black box model and 
improve the accuracy of our interpretable model. It is 
worth noting that decision tree directly trained on the 
data (without using the two-step procedure) yielded a 
worse performance than the LR (see Table 1) and a much 
worse performance than the extracted RT. For example, 
the AUC score for 30-day readmission prediction with all 
specialties is only 0.606 using the directly trained deci-
sion tree. Thus, the two-step extraction procedure is the 
key to improving the predictive performance.

Discussion
From these results, we can verify our main hypothesis: 
the extracted regression tree can achieve a similar per-
formance score, compared to the tuned neural network 
models, while maintaining the important feature of 
interpretability. A standard decision tree model did not 
perform better than even the classic logistic regression 
model. The extracted regression trees improved over the 

existing models for predicting readmission while provid-
ing interpretability.

Besides the regression tree extracted from a neural net-
work model for 90-day readmission with all specialties 
(Fig.  2), we also extracted decision trees and regression 
trees for the 30- and 90-day readmission predictions with 
all specialties and main specialties (see the Appendix). 
Commonalities yielded from a comparison of the gener-
ated trees (Fig. 3) implied that the identified features are 
highly predictive of patients’ readmission status. If deci-
sion trees and regression trees extracted from neural 
network models have overlaps in the node features (indi-
cating the features are influential), then those suggested 
features may be assessed by subject area experts to deter-
mine whether the black box model predictions match 
clinical knowledge and experience and provide additional 
features for clinical consideration.

From Fig.  3, we observe that variables reliably impor-
tant and used in all the models are patient age, Charlson 
score, admission source, the number of prior visits, and 
length of stay. Variables in the data but included in none 
of the models shown were the date of patient admission 
and the number of transfers between intensive care units 
and general wards. The variables identified to be impor-
tant factors were consistent with prior clinical studies, 
suggesting the extracted trees provide interpretability 
that can be used by medical doctors.

Historically, readmission prediction models have fallen 
into two categories: interpretable models with moderate 
predictive power and non-interpretable machine learning 
models with strong predictive power. Our contribution is 
to design a readmission prediction model that achieves 
similar predictive power to non-interpretable models 
while being able to generate interpretable features, i.e., 
identify risk factors that contribute to readmission risk. 
Adoption of readmission risk prediction tools in practice 
has been slow, possibly because of the poor prediction of 
interpretable models that can be validated and integrated 
with clinical knowledge and the fact that black box mod-
els producing better prediction results are difficult to 
work with as they normally do not naturally offer clinical 
justification for the predictions. In the end, interpretable 

Table 2 Average performances of decision trees (DT) and regression trees (RT) extracted from neural networks
30-day 90-day
ACC AUC AUPRC ACC AUC AUPRC

All Specialties LR 0.706 0.660 0.216 0.699 0.664 0.339

Extracted DT 0.730 0.669 0.226 0.667 0.653 0.325

Extracted RT 0.729 0.699** 0.227* 0.682 0.697** 0.328

Main Specialties LR 0.636 0.621 0.180 0.652 0.642 0.325

Extracted DT 0.614 0.641 0.188 0.639 0.646 0.326

Extracted RT 0.623 0.648* 0.188 0.643 0.677** 0.322
Performances that are determined to be statistically better than the baseline (logistic regression, LR) were marked with a single-asterisk(*) to indicate a significant 
difference at a 95% level of confidence and marked with a double-asterisk (**) to indicate a significant difference at a 99% level of confidence
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models not only help garner trust from users when key 
risk factors match clinical knowledge but, equally impor-
tantly, they provide an opportunity for a closer connec-
tion between machine prediction and human (clinical in 
this case) knowledge and experience.

We calibrated and validated a number of predictive 
models using data from a large hospital in Southeast 
Asia. The interpretable two-step method we applied to 
extract a regression tree from a neural network model 
had similar performance to the best neural network 
model, while also being able to identify readmission risk 
factors. As a validation of the extraction method, the fea-
tures identified by the extracted regression tree were sim-
ilar to features found to be predictive of readmissions in 
the literature. Some key factors predicting readmissions 
from our model were common, including age, Charl-
son and van Walraven scores, admission source, and 
the number of prior visits. For the all-specialty model, 
Length of Stay and whether the patient had an opera-
tion (surgical procedure) were also significant. These fac-
tors make sense when considering all specialties, since 
knowing the length of stay and whether the patient was 
a surgery patient can serve as proxies for a more detailed 
classification of the patient type, whereas the main-spe-
cialty model had already segmented the population into 
more specific patient types. When only including the top 
four specialties, secondary diagnosis and discharge loca-
tion were also significant, which could help the model 
further differentiate among patients of a similar type. A 
key insight is that by using regression trees instead of 

decision trees we were able to significantly improve the 
accuracy without losing interpretability because regres-
sion trees used more of the information output from the 
neural network and were, therefore, better able to match 
risk factors to readmission outcomes.

To conclude the discussion, we acknowledge the fol-
lowing limitations of this work. First, our method was 
tested on a dataset from a single hospital. While detailed, 
patient-specific datasets in healthcare are difficult to 
obtain, further testing in a wider variety of hospitals 
would better demonstrate the generalizability of these 
results and represents an avenue for future work. Sec-
ond, our dataset contains primarily administrative data. 
Additional clinical data has the potential to improve the 
black box (e.g., neural network) model. Clinical data is 
even more difficult to obtain than administrative data, 
but testing the method proposed in this paper on a richer 
dataset would be a fruitful avenue for future research.

Conclusions
The study of readmission prediction demonstrates that 
our two-step extract regression tree model adapted from 
the literature achieve similar accuracy as the black box 
neural network models while outperforming the com-
monly deployed, interpretable logistic regression mod-
els. Risk factors extracted via applying a regression tree 
to a neural network model were consistent with com-
mon readmission risk factors reported in the literature. 
This study suggests a possible way to improve the trust 
in machine learning based prediction models in clinical 

Fig. 3 Comparison of Features in Extracted Decision and Regression Trees from black box models on 90-day readmission rate. “General Class” in the table 
means patient with public insurance. The checkmark means the feature is identified as an influential feature from the corresponding machine learning 
models
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practice through the two-step prediction method, using 
readmission prediction as a case study. That is, by 
using regression trees extracted from the neural net-
work model, instead of standard decision trees or logis-
tic regression, we were able to significantly improve the 
accuracy without losing interpretability as compared 
to traditionally more powerful black box methods. This 
method may have broader applicability for accurate and 
medically interpretable predictions for other types of 
adverse events in health care.
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