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Introduction
Nowadays, cancer tumors are increasingly threatening 
human health; tumors of the kidney are among the most 
frequently occurring tumors in the urinary system [1]. 
Most Kidney tumors are malignant, and their incidence 
is second only to bladder cancer [2]. Clinically common 
kidney tumors include kidney carcinoma derived from 
the kidney parenchyma, Wilms tumor, and transitional 
cell papilloma arising in the kidney pelvis and calyx [3]. 
Among adult malignant tumors, kidney cell carcinomas 
(RCC) account for all 80-85% of primary kidney tumors. 
Next is transitional cell carcinoma of the kidney pelvis, 
which accounts for about 8%. In other kidneys, parenchy-
mal epithelial tumors are less common. In addition, such 
as kidney adenoma, kidney cyst, kidney hemangioma, 

BMC Medical Informatics 
and Decision Making

*Correspondence:
Bonan Yu
xsyubonan@163.com
Zhencheng Chen
zhenchchen@163.com
1School of Electronic Engineering and Automation, Guilin University of 
Electronic Technology, Guilin 541004, Guangxi, China
2Center for Genomic and Personalized Medicine, Guangxi Medical 
University, Nanning 530021, Guangxi, China
3School of Architecture and Transportation Engineering, Guilin University 
of Electronic Technology, Guilin 541004, Guangxi, China
4Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing 
Medical University, Nanjing, China

Abstract
Background  Kidney tumors have become increasingly prevalent among adults and are now considered one of 
the most common types of tumors. Accurate segmentation of kidney tumors can help physicians assess tumor 
complexity and aggressiveness before surgery. However, segmenting kidney tumors manually can be difficult 
because of their heterogeneity.

Methods  This paper proposes a 2.5D MFFAU-Net (multi-level Feature Fusion Attention U-Net) to segment kidneys, 
tumors and cysts. First, we propose a 2.5D model for learning to combine and represent a given slice in 2D slices, 
thereby introducing 3D information to balance memory consumption and model complexity. Then, we propose a 
ResConv architecture in MFFAU-Net and use the high-level and low-level feature in the model. Finally, we use multi-
level information to analyze the spatial features between slices to segment kidneys and tumors.

Results  The 2.5D MFFAU-Net was evaluated on KiTS19 and KiTS21 kidney datasets and demonstrated an average 
dice score of 0.924 and 0.875, respectively, and an average Surface dice (SD) score of 0.794 in KiTS21.

Conclusion  The 2.5D MFFAU-Net model can effectively segment kidney tumors, and the results are comparable to 
those obtained with high-performance 3D CNN models, and have the potential to serve as a point of reference in 
clinical practice.
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kidney hamartoma, kidney lipoma, etc., are benign 
tumors [4–7]. So far, kidney cancer’s etiology is unclear, 
and it may be related to many factors, such as environ-
mental factors, genetic factors, and so on [8, 9]. Most 
people have kidney tumors without feeling anything; 
sometimes, they are found in the advanced stages of can-
cer. Doctors can use medical imaging techniques such 
as CT, MRI, and ultrasound to visualize the kidneys and 
tumors, and analyze their size, shape, and appearance. 
This information can be utilized to determine the best 
possible treatment options for patients [10, 11]. Unfortu-
nately, identifying benign and malignant tumors directly 
from large numbers of patient kidney images is challeng-
ing. In addition, manual segmentation of kidney tumors 
significantly consumes the doctor’s energy and time and 
wastes medical resources [12]. In addition, manual seg-
mentation usually depends on the experience of doc-
tors. For example, when an inexperienced doctor finds 
the tumor inert after nephrectomy, the patient’s surgical 
treatment will be regarded as over-treatment because the 
patient has lost kidney function.

CNNs have led to rapid development in the field of 
image segmentation, particularly in medical image seg-
mentation [13, 14]. CNN can automatically complete 
kidney segmentation without human intervention. Pan-
dey et al. [15] analyzed multiple segmentation methods 
in kidney images. Their analysis accuracy, dataset size, 
and the impact of pathological kidneys on segmenta-
tion performance. Furthermore, they discussed the chal-
lenges associated with kidney segmentation and assessed 
the performance of these segmentation methods. The 
KiTS19 Challenge dataset includes 210 CT scans of 
patients’ kidneys and the corresponding label contained 
two parts: kidney and tumor, and did not contain some 
benign tumors, such as cysts. Therefore, the KiTS19 chal-
lengers strived to enhance the accuracy of tumor seg-
mentation. In 2021, KiTS21 updates the KiTS19 dataset, 
releasing 300 patient kidney images, and adding cysts to 
the label. The participating teams were tasked with creat-
ing the most effective method for segmentation of tumor. 
In the study of renal tumor segmentation, most partici-
pants of KiTS19 and KiTS21 used neural network-based 
cascade segmentation structure. Some experts also pro-
posed the method to remove sections irrelevant to the 
research interest from the kidney volume medical image 
[16]. Still, none of the methods has been evaluated as the 
best CNN method. Therefore, continued research in the 
renal tumor segmentation area remains significant, par-
ticularly in the case of kidney and tumor segmentation 
where cysts cyst segmentation cannot be overlooked.

Currently, 2D CNNs are used more in medical image 
processing due to the lower memory requirements and 
faster training time, However, 2D CNNs do not make 
use of 3D features, which can limit their performance in 

certain tasks. Therefore, in 3D kidney volume segmenta-
tion, it is difficult for 2D segmentation to acquire inter-
slice features [17]. On the other hand, the popularity of 
three-dimensional (3D) CNNs for medical image seg-
mentation has increased significantly, owing to their abil-
ity to learn hierarchical features across slices. In contrast 
to 2D CNNs, 3D CNNs requires more GPU memory 
consumption and significant computational costs. Addi-
tionally, these 3D models necessitate extensive fully 3D 
annotated datasets, further contributing to their limita-
tions. The primary focus of this paper is the limitation 
of existing 2D models to acquire inter-slice features and 
the excessive computational resource requirements of 
3D networks. We propose a trainable 2.5D MFFAU-Net 
model that balances memory consumption and model 
complexity. This paper offers several significant contribu-
tions, including:

1.	 This paper proposes a 2.5D scheme for kidney 
segmentation. This scheme inputs multiple slices 
in the input layer of the model, and the slices in 
the middle correspond to them in the output layer. 
By using this 2.5D scheme, the model can obtain 
3D information about the slices by performing 
2D convolutions on the multiple slice inputs and 
intermediate slice outputs.

2.	 In this paper, the MFFAU-Net model is proposed 
for kidney tumor segmentation. In the encoding and 
decoding stages, we use the ResConv architecture 
and analyze the spatial information between slices 
using multi-level features. These features are 
essential for accurate segmentation and help the 
model improve the segmentation results.

3.	 We evaluated the model proposed in this paper on 
both KiTS19 and KiTS21 kidney CT datasets, and 
both obtained good segmentation results.

This paper has adopted the following structure: Sect.  2 
presents a review of related research work, Sect.  3 pro-
vides the proposed model’s design, Sect.  4 reports the 
experimental results obtained through the model’s 
implementation, and Sect. 5 compares and discusses the 
proposed method with other state-of-the-art methods. 
Section 6 concludes the findings and contributions.

Related work
Despite the many traditional CT image segmentation 
techniques proposed in the past few decades, such as 
manual, threshold, atlas, graph, and hybrid segmenta-
tion, they have limitations in accurately segmenting 
kidneys on CT images. For instance, simple procedures 
like threshold segmentation are sensitive to noise and 
cannot handle significant intensity variations in CT; It is 
worth noting that atlas and threshold segmentation is not 
automatic, and their segmentation performance can be 
affected by inter-rater variability.
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Ronneberger et al. [18] used the U-Net model to com-
plete the task of medical image segmentation at ISBI 
in 2015. However, he only used 30 images and the data 
expansion strategy to achieve a meager error rate and 
won the ISBI championship. Subsequently, variant U-Net 
based algorithms were applied in many fields of image 
processing and achieved good results.

In 2021, Heller et al. [19] summarized the top five 
methods results of the KiTS19 challenge. In their paper, 
we have found that the segmentation models of the top 
five contestants are all related to U-Net, and the 1st was 
made by Fabian et al. [20]. Three 3D U-Net architec-
tures were tested and the submission scored a dice of 
0.974 and 0.851 for kidney and tumor resulting in 0.912 
composite scores. Therefore, the authors claimed that 
the power of the 3D U-Net method is sufficient for the 
best results. Some researchers who failed to participate 
in the KiTS19 challenge in time also proposed various 
kidney and tumor segmentation schemes. Kang et al. 
[21] introduced an a priori contour auxiliary channel in 
a 2D network to segment ROI regions containing kidneys 
and kidney tumors, used it as the input for subsequent 
fine segmentation, and then used ConvLSTM to extract 
spatial correlation slices and combined with 3D CNN for 
fine segmentation. Eventually, they achieved 0.964 kid-
ney dice and 0.789 tumor dice. da Cruz et al. [22] used 
AlexNet to narrow down the problem, used image pro-
cessing techniques to reduce false positives, and then 
used 2D U-Net to complete kidney segmentation. Finally, 
they achieved 0.930 kidney dice. Pandey [23] used prior 
knowledge of the shape, size, and position of the kidney 
relative to the spine to locate kidney ROI. Then they used 
a 3D U-Net to perform left and right kidney segmenta-
tion, respectively. Finally, they tested the method on CT 
data from 21 patients with KiTS19 and obtained a kidney 
dice score of 0.976.

KITS21 announced the kidney tumor segmentation 
models of some contestants. Shen et al. [24] used the 
COTRNet model for kidney segmentation. To learn 
multi-scale features, the designed encoder consists of 
ResNet, Transformer encoder layer, Pretrained model, 
and Deep supervision. Finally, their method ranked 22 
and achieved 0.923 kidney dice, 0.553 mass dice, and 
0.506 tumor dice. Adam et al. [25] used a 3D U-ResNet 
method for kidney segmentation, they introduced the 
Residual Block in the U-Net model and used rule-based 
post-processing to eliminate false positive artifacts. 

Ultimately, they led to the 12th position in the KiTS21. 
Zhao et al. [26] used the nnU-Net-based coarse-to-fine 
framework to get 1st in the KiTS21, and they performed 
dice scores of 0.975, 0.885, 0.869 for kidney, mass, tumor, 
respectively.

In conclusion, despite the use of various approaches 
as kidney segmentation models, the majority of kidney 
tumor segmentation studies continue to rely on the cas-
caded architecture as the primary model. However, 3D 
models will require more computational resources, and 
2D models cannot acquire spatial information. Therefore, 
this paper proposes a novel segmentation approach for 
kidneys and tumors, aiming to address the computational 
complexity issue associated with 3D CNNs while ensur-
ing adequate segmentation accuracy. The objective is to 
enhance the neural network architecture without com-
promising the accuracy and present a universal method-
ology applicable to kidney tumor segmentation. We not 
only focus on the segmentation results of the model in 
KiTS19 or KiTS21 but also focus on the segmentation 
results in KiTS19 and KiTS21 to aid physicians in the 
rapid diagnosis of patients.

Methodology
In kidney tumor segmentation, most research still rely 
on the 3D CNN architecture as their fundamental model. 
The 3D convolution has the problems of high compu-
tational cost and large memory consumption of GPU, 
which cannot quickly complete the segmentation task. 
Thus, to rapidly segment the tumor from the kidney 
image, the 2D image segmentation algorithm is a suitable 
solution. When it comes to segmenting the kidney and 
tumor from a sequence of CT image slices, a 2D scheme 
is often used where the 3D image is converted into 2D 
slices and processed using 2D convolutions. However, 
this approach does not exploit the spatial structure in the 
3D image, which make segmentation more challenging. 
Therefore, this paper proposes a cascaded 2.5D MFFAU-
Net model that balances accuracy and computational 
resources for the kidney segmentation task, capable of 
incorporating 3D information introduced into CT images 
using 2D convolutions.

The 2.5D model is illustrated in Fig.  1. Part (a) is the 
input, part (b) is the MFFAU-Net model, and part (c) 
is the output. Parts (a) and (c) construct a 2.5D con-
volution strategy. First, the original 3D volume image 
is transformed into several consecutive 2D slices in 
part (a). Then, a stack of multiple adjacent slices is 
used (3 × 512 × 512 in this paper) as the input image for 
the model. Next, in part (c), the segmentation result 
(1 × 512 × 512 in this paper) corresponding to the mid-
dle CT image is used as the output image of the model. 
Finally, consecutive 2D segmentation results are con-
verted into 3D images to obtain the completed 3D 

Fig. 1  2.5D MFFAU-Net model architecture. (a) Input, (b) MFFAU-Net 
model, (c) Output
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segmentation results. By using a multi-slice input, the 
model can incorporate more image content from the 
axial plane. Therefore, in the 2.5D model, it is possible to 
introduce some of the 3D information by only using 2D 
convolutions.

Figure 2 shows the cascade segmentation model of kid-
ney tumors in this paper. The cascading model is com-
posed of two 2.5D MFFAU-Net model architectures. 
Firstly, (a) - (c) constitute a coarse segmentation frame-
work and divide the kidney ROI. (d) - (f) constitutes the 
fine segmentation framework, with the input being the 
kidney ROI results of coarse segmentation. In KiTS19, 
the output of fine segmentation is the kidney tumor. In 
KiTS21, the outputs are masses, tumors, and cysts. Cas-
cade segmentation can eliminate the interference of 
background information and narrow the range of tumors 
and cysts that need to be segmented by roughly segment-
ing the selected kidney ROI. The kidney ROI will provide 
smaller dimensions and more accurate information for 
subsequent segmentation.

In the model’s encoding and decoding paths, we pro-
pose using the ResConv architecture to replace the 
original 3 × 3 convolution. The ResConv architecture’s 
composition is shown in Fig. 3.

ResConv consists of a 1 × 1 convolution and two 
residual blocks. First, in Eq.  (1), we change the number 
of channels of feature maps of the original input image 
using a 1 × 1 convolution.

	 x0 = Conv(1 × 1)input � (1)

Then, Eqs.  (2) and (3) compute the results of the two 
residual blocks.

	 x1 = (Conv (3 × 3) + BN + Relu)x0 + x0� (2)

	 x2 = (Conv (3 × 3) + BN + Relu)x1 + x1� (3)

Finally, Eq. (4) adds the results of the two residual blocks 
and shows the final output.

	 output = x1 + x2� (4)

ResConv contains the results of two residual blocks so 
that the ResConv can capture more information.

The MFFAU-Net model is a modified version using 
the standard U-Net, and the architecture’s composition 
is illustrated in Fig.  4. The MFFAU-Net model shows 
two encoding paths. To connect the input and output, 
we utilize the ResConv architecture and Max Pooling in 
the first encoding path. In the second path, we only use 
Max Pooling without ResConv to down-sample the fea-
ture maps and concatenate them with the input, reduc-
ing the input by half. Then, use Skip Connections to 
connect outputs of the two encoding paths to form the 
input of the next convolution operation, which enables 
the model to learn feature information at different levels 
better. There are also two paths in the decoding part. The 
first decoding path is symmetric with the encoding path, 
but Max Pooling is replaced by up-sampling. To estab-
lish communication between the encoding and decoding 
paths at the same level, we employed Skip Connections in 
our architecture. Then go through the ResConv layer to 
get the output of the first decoding path. In addition, the 
second path of the decoding layer doubles the input using 
Up-sampling. It then concatenates with the result of the 
first decoding path to get the final outcome of the layer.

Because there is a lot of feature information in the cod-
ing path. Still, much of them are unnecessary and redun-
dant data. The attention gate is equivalent to filtering 
the current layer of the encoder to suppress irrelevant 
information in the image and highlight essential local 
features, thus improving the robustness of the model. To 
enhance the performance of the MFFAU-Net, the model 

Fig. 4  The specific architecture of the MFFAU-Net model

 

Fig. 3  ResConv architecture’s composition. 1 × 1: kernel size = 1 × 1; BN: 
batch normalization; ReLU: activation function; 3 × 3: kernel size = 3 × 3

 

Fig. 2  The cascade segmentation model of kidney tumors
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incorporated an attention gate into the Skip Connection 
section, as shown in the top half of Fig. 4.

1.	 The encoder output xl and the decoder output g are 
the two inputs of the attention gate. A and B are the 
results of the one-dimensional operation on g and 
xl simultaneously. A and B are two feature maps of 
the same size and channel number, but the features 
extracted by A and B differ. So then, C = A + B, C 
can strengthen the same region of interest signal 
compared with A and B.

2.	 We used the Relu activation function and 1 × 1 
convolution to convert C into D and E.

3.	 Then, we used the sigmoid activation function to get 
F.

4.	 F Restored the size through a Resampler module to 
get the weight information α.

5.	 Finally, we used the weight information α multiplied 
by the original input xl to obtain the activation 
function x̂l  of the attachment of xl. Next, the feature 
maps are weighted using attention coefficients. 
These coefficients are generated by calculating 
the similarity between the outputs of the current 
encoder layer and the next decoder layer.

Experimental datasets and results
This section evaluated the MFFAU-Net method. First, we 
introduced the kidney datasets used for the experiments, 
then presented the proposed method’s experimental 
results in detail.

Dataset description
This paper aims to build a general system suitable for kid-
ney tumor segmentation. Therefore, we used two datas-
ets, KiTS19 and KiTS21.

The first dataset used in this study is KiTS19, KiTS19 
is a public data set, and the official website of KiTS19 
contains relevant descriptions of patient data (https://
kits19.grand-challenge.org). Therefore, we can use it 
directly without obtaining the patient’s informed consent 
again. The KiTS19 dataset excluded patients with cysts 
and tumor thrombi since it was challenging to identify 
the boundaries of tumors beyond the primary site. CT 
images and labels of patients are provided in anonymous 
NIFTI format with the shape num_slices-height-width. 
During image acquisition for the KiTS19 dataset, the 
patients were in a supine position, resulting in the origin 
of the height-width being at the left front of the patient. 
The num_slices in the KiTS19 dataset correspond to the 
axial view of the kidney, and as the slice index increases 
from top to bottom, the view progresses through the kid-
ney. In addition, 210 scans and labels are included in the 
KiTS19 dataset, which we can download from https://
github.com/neheller/kits19. To evaluate the segmen-
tation performance in KiTS19, the category of kidney 

includes both kidneys and tumors, while the category of 
tumor only considers tumors as the foreground.

The second dataset used in this paper is KiTS21, which 
was collected from patients who underwent partial or 
radical nephrectomy to treat suspected kidney malig-
nancy at M Health Fairview or Cleveland Clinic Medi-
cal Center over a period spanning from 2010 to 2020. 
These cases were reviewed retrospectively to identify all 
patients who underwent patients with contrast-enhanced 
preoperative CT scans of kidneys. KiTS21 is a public data 
set, and the official website of KiTS21 contains relevant 
descriptions of patient data (https://kits21.kits-challenge.
org). Therefore, we can use it directly without obtaining 
the patient’s informed consent again. The definition of 
kidney and tumor in KiTS21 was the same as that of kid-
ney and tumor in KiTS19 and added cysts. 300 scans with 
high-quality ground truth segmentation are included 
in the KiTS21 dataset, which we can download from 
https://github.com/neheller/kits21. KITS21 proposed to 
use the HECs to obtain relatively comprehensive metrics. 
The kidney HEC considers the kidney, tumor, and cyst as 
foreground classes in KITS21; the kidney mass HEC con-
taining tumor and cysts; and the tumor HEC only con-
siders the tumor as the foreground class. However, cyst 
segmentation should not be ignored, and we propose 
a cyst definition: the cyst category considers the cyst as 
the foreground only to determine the effectiveness of cyst 
segmentation.

Experimental results
Both KiTS19 and KiTS21 used the dice similarity coef-
ficients to evaluate the performance of the models. The 
dice is commonly used in image processing to analyze the 
performance of segmentation methods on ground truth 
[27]. The calculation method for the dice similarity coef-
ficient is shown in Eq. (5).

	

−
Dice=

1
n

n∑

1

2 |Ai ∩ Bi| + 1
|Ai| + |Bi| + 1

i = 1, 2, . . . , n.� (5)

In Eq.  (5), Ai denotes the label of the i-th image, and Bi 
denotes the corresponding segmentation result.

KiTS21 uses Surface dice (SD) as an evaluation index 
for kidney tumor segmentation. Therefore, we also calcu-
lated SD in the test of KiTS21.

This paper used the 2.5D MFFAU-Net model to seg-
ment kidney tumors. First, in order to reduce the effects 
of non-organic artifacts, we pre-process the dataset. 
Next, we uniformly use the 512 × 512 pixels for model 
input. Subsequently, used the mean and standard devia-
tion of the normal foreground to enhance the network’s 
training performance. Finally, we use the cascaded model 
to segment kidney ROI, mass and tumor.

https://kits19.grand-challenge.org
https://kits19.grand-challenge.org
https://github.com/neheller/kits19
https://github.com/neheller/kits19
https://kits21.kits-challenge.org
https://kits21.kits-challenge.org
https://github.com/neheller/kits21
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We tested the segmentation effect of 2.5D MFFAU-Net 
in the KITS19 and KiTS21 datasets. All the data were 
introduced in Sect. 4.1, and no other datasets have been 
used. We randomly selected 20% of patients’ CT data 
for testing, 42 CT scans for KiTS19 and 60 for KiTS21. 
Then, 80% for training. At the same time, we have done 
ablation research and tested the segmentation effects of 
U-Net, ResU-Net, DenseU-Net, and V-Net, respectively. 
All models used the same training and test sets for each 
test, and were trained on three computers with NVIDIA 
GeForce RTX 3090 Ti (24GB) graphics processing unit 
(GPU). We trained the model for a total of 100 epochs 
and the training process will automatically stop when 
the model has no performance improvement for 30 con-
secutive epochs. During the test, the MFFAU-Net needs 
about 7 s to obtain the segmentation results of a patient 
in KiTS19 in KiTS21.

Table  1 shows the segmentation results in KiTS19. 
There are two types of input: 3 × 512 × 512 and 
5 × 512 × 512. In the segmentation results with 3 adjacent 
slices as input, the MFFAU-Net (ResConv) used longer 
training time and achieved 0.975 kidney dice, outper-
forming U-Net (0.950), ResU-Net (0.961), DenseU-Net 

(0.963), V-Net (0.965) and MFFAU-Net with original 
convolution (0.972). Furthermore, MFFAU-Net achieved 
0.872 tumor dice, outperforming U-Net (0.779), ResU-
Net (0.856), DenseU-Net (0.852), V-Net (0.850) and 
MFFAU-Net with original convolution (0.868). In addi-
tion, the segmentation results with 5 adjacent slices 
as input show that more slices would benefit from a 
wider context on the z-axis in U-Net, ResU-Net, and 
V-Net. But it brought worse results on DenseU-Net and 
MFFAU-Net. Table  1 can show that the 2.5D MFFAU-
Net (ResConv) with 3 adjacent slices as input had good 
segmentation performance in KiTS19.

Table 2 shows the dice and SD results in KiTS21. There 
are two types of input: 3 × 512 × 512 and 5 × 512 × 512. 
In the dice results with 3 adjacent slices as input, the 
MFFAU-Net needs 129 h of training and achieved 0.973 
kidney dice, outperforming U-Net (0.949), ResU-Net 
(0.953), DenseU-Net (0.961), V-Net (0.967) and MFFAU-
Net with original convolution (0.968). Furthermore, 
MFFAU-Net achieved 0.887 mass dice, outperforming 
U-Net (0.808), ResU-Net (0.815), DenseU-Net (0.811), 
V-Net (0.853), and MFFAU-Net with original convolution 
(0.877). In addition, MFFAU-Net achieved 0.873 tumor 
dice, outperforming U-Net (0.702), ResU-Net (0.779), 
DenseU-Net (0.753), V-Net (0.798) and MFFAU-Net 
with original convolution (0.795). Finally, MFFAU-Net 
achieved 0.768 cyst dice, outperforming U-Net (0.580), 
ResU-Net (0.622), DenseU-Net (0.591), V-Net (0.653), 
and MFFAU-Net with original convolution (0.651). In the 
SD results with 3 adjacent slices as input, The MFFAU-
Net (ResConv) achieved 0.941 kidney SD, 0.788 mass 
SD, 0.769 tumor SD, and 0.678 cyst SD. The MFFAU-Net 
(ResConv) got the excellent segmentation performance in 
dice and SD. In addition, we also tested the segmentation 
results with 5 adjacent slices as input in KiTS21. Unfor-
tunately, the result is not better than MFFAU-Net with 3 
adjacent slices as input. Table 2 shows that the ResU-Net 
model and DenseU-Net model have similar segmentation 

Table 1  Segmentation results in KiTS19
Algorithm or 
method

Input Training 
time

Kidney 
Dice

Tumor 
Dice

2.5D U-Net 3 × 512 × 512 76 h 0.950 0.779

5 × 512 × 512 87 h 0.950 0.788

2.5D ResU-Net 3 × 512 × 512 82 h 0.961 0.856

5 × 512 × 512 94 h 0.965 0.855

2.5D DenseU-Net 3 × 512 × 512 83 h 0.963 0.852

5 × 512 × 512 96 h 0.962 0.850

2.5D V-Net 3 × 512 × 512 96 h 0.965 0.850

5 × 512 × 512 103 h 0.970 0.855

2.5D MFFAU-Net 
(original conv)

3 × 512 × 512 92 h 0.972 0.868

5 × 512 × 512 105 h 0.972 0.865

2.5D MFFAU-Net 
(ResConv)

3 × 512 × 512 104 h 0.975 0.872

5 × 512 × 512 133 h 0.970 0.860

Table 2  Dice and SD results in KiTS21
Algorithm or method Input Training time Kidney Dice/SD Mass Dice/SD Tumor Dice/SD Cyst Dice/SD
2.5D U-Net 3 × 512 × 512 90 h 0.949/0.912 0.795/0.663 0.702/0.581 0.580/0.452

5 × 512 × 512 106 h 0.951/0.915 0.795/0.662 0.700/0.578 0.585/0.460

2.5D ResU-Net 3 × 512 × 512 93 h 0.953/0.914 0.815/0.688 0.779/0.669 0.622/0.522

5 × 512 × 512 110 h 0.956/0.915 0.818/0.700 0.780/0.672 0.620/0.515

2.5D DenseU-Net 3 × 512 × 512 96 h 0.961/0.930 0.811/0.683 0.753/0.648 0.591/0.500

5 × 512 × 512 114 h 0.961/0.932 0.815/0.686 0.750/0.650 0.600/0.505

2.5D V-Net 3 × 512 × 512 112 h 0.967/0.934 0.853/0.715 0.798/0.698 0.653/0.541

5 × 512 × 512 122 h 0.965/0.930 0.854/0.718 0.801/0.700 0.658/0.550

2.5D MFFAU-Net (original conv) 3 × 512 × 512 116 h 0.968/0.935 0.877/0.746 0.795/0.688 0.651/0.551

5 × 512 × 512 137 h 0.965/0.932 0.875/0.742 0.800/0.696 0.648/0.543

2.5D MFFAU-Net (ResConv) 3 × 512 × 512 129 h 0.973/0.941 0.887/0.788 0.873/0.769 0.765/0.678

5 × 512 × 512 153 h 0.972/0.938 0.886/0.788 0.858/0.748 0.729/0.622



Page 7 of 11Sun et al. BMC Medical Informatics and Decision Making           (2023) 23:92 

performance and prove that MFFAN-Net has good seg-
mentation performance in KiTS21.

The results of case 149 in KiTS19 are presented in 
Fig. 5. (A)-(D) depict the label of the axial, sagittal, cor-
onal, and 3D views, respectively. On the other hand, 
(E)-(H) demonstrate the predicted values. KiTS19 only 
divided the whole kidney into two categories: kidney and 
tumor, so only two colors are shown in the image. The 
color red is used to represent the kidney, while green is 
used to represent the tumor in the segmentation results. 
To better visualize the 3D structure of the kidney, we 
rotated the 3D view. (E)-(G) demonstrated that the 2.5D 
MFFAU-Net can segment kidney and tumor regions 
from each slice in multiple planes. (H) demonstrates that 
the 2.5D MFFAU-Net is capable of accurately segmenting 
the precise locations of kidneys and tumors, thereby indi-
cating its potential to be used in clinical practice.

The results of case 131 in KiTS19 are presented in 
Fig. 6. (E) - (G) show that 2.5D MFFAU-Net has a slight 
deviation in kidney segmentation, which corresponds to 
the reason for low kidney dice in Table  1. (H) demon-
strates that 2.5D MFFAU-Net can segment specific loca-
tions of kidneys and tumors in KiTS19. Overall, 2.5D 

MFFAU-Net can effectively segment kidneys and tumors 
in KiTS19.

Figure 7 shows the results of case 243 in KiTS21. (a)-
(d) depict the label of the axial, sagittal, coronal, and 3D 
views, respectively. On the other hand, (e)-(h) demon-
strate the predicted values. Different from KiTS19, in the 
KiTS21 dataset, the entire kidney is classified into three 
categories: kidney, tumor, and cyst, kidney is labeled in 
red, tumor in green, and cyst in blue. In order to better 
observe the kidney 3D structure, we rotated the 3D view. 
We can find from (h) that the structure of the cyst in case 
243 is small and easily overlooked, and the tumor and 
cyst are not on the same kidney. This case requires evalu-
ating both the tumor and cyst to formulate a better treat-
ment plan. (e)-(h) prove that the 2.5D MFFAU-Net can 
not only segment the specific locations of kidneys tumors 
in KiTS21 but also maintain an excellent segmentation 
effect for smaller objects (such as cysts).

Figure  8 shows the results of case 58 in KiTS21. (a)-
(d) depict the label of the axial, sagittal, coronal, and 3D 
views, respectively. On the other hand, (e)-(h) demon-
strate the predicted values. In order to better observe the 
kidney 3D structure, we rotated the 3D view. We can find 
from (d) and (h) that the structure of the cyst in Case 58 

Fig. 8  The results of case 58 in KiTS21. The ITK-SNAP software is used to 
visualize the segmentation results. (a)-(c) display the label of the 30th slice 
in axial plane, the 171st in sagittal plane, and the 309th in coronal plane. 
(d) show the ground truth of 3D views. (e)-(h) exhibit the corresponding 
predicted values

 

Fig. 7  The results of case 243 in KiTS21. The ITK-SNAP software is used to 
visualize the segmentation results. (a)-(c) display the label of the 30th slice 
in axial plane, the 167th in sagittal plane, and the 237th in coronal plane. 
(d) show the ground truth of 3D views. (e)-(h) exhibit the corresponding 
predicted values. In these figures, kidney is labeled in red, tumor in green, 
and cyst in blue

 

Fig. 6  The results of case 131 in KiTS19. The ITK-SNAP software is used 
to visualize the segmentation results. (A)-(C) display the label of the 27th 
slice in axial plane, the 329th in sagittal plane, and the 335st in coronal 
plane. D) illustrates the ground truth of the 3D view. On the other hand, 
Figures (E)-(H) exhibit the corresponding predicted values

 

Fig. 5  The results of case 149 in KiTS19. The ITK-SNAP software is used to 
visualize the segmentation results. (A)-(C) display the label of the 61st slice 
in the axial plane, the 328th slice in the sagittal plane, and the 261st slice 
in the coronal plane. (D) illustrates the ground truth of the 3D view. On the 
other hand, Figures (E)-(H) exhibit the corresponding predicted values. In 
these figures, kidney is highlighted in red, while tumor is highlighted in 
green
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is minimal and easily overlooked, and every kidney con-
tains a tumor, which is a severe kidney tumor patient. 
In addition, the left kidney has both kidneys and cysts, 
which is a complex situation. Considering the preserva-
tion of kidney function, more accurate segmentation 
results are needed to help formulate better treatment 
plans. (e) - (h) demonstrated that the 2.5D MFFAU-Net 
could segment specific kidney and tumor locations in 3D 
CT images and maintain good segmentation results for 
smaller objects such as cysts. 2.5DMFFAU-Net can effec-
tively segment kidneys, tumors, and cysts in KiTS21.

Tables 1 and 2; Figs. 5, 6, 7 and 8 demonstrated that the 
2.5D MFFAU-Net has good segmentation performance 
in kidney, tumor, and cyst segmentation, especially the 
MFFAU-Net has been shown to effectively capture minor 
features such as tumors and cysts. In addition, segmenta-
tion of minor features can assess the aggressiveness and 
complexity of tumors, which can help physicians plan 
diagnosis and treatment and avoid overtreatment of kid-
ney tumors. Therefore, we believe that the 2.5D MFFAU-
Net can serve as a reference model for kidney tumor 
segmentation.

Discussion
This paper presented a 2.5D cascade model with multi-
level feature fusion for kidney tumor segmentation. The 
results of the MFFAU-Net in both KiTS19 and KiTS21 
datasets have been demonstrated to be good through 
Tables  1 and 2; Figs.  5 and 6. Furthermore, we covered 
the state-of-the-art methods. In Table  3, we can see a 
comparison with state-of-the-art approaches in terms of 
performance for kidney tumor segmentation in KiTS19. 
As the training and testing divisions vary between the 
studies that employed these methods, it should be 
emphasized that each study employed various validation 
techniques. Therefore, we utilized their results directly.

Fabian et al. [20] segmented kidneys and tumors using 
3D U-Net architectures. The authors stated that the 3D 
U-Net has great potential for achieving excellent results. 
They were able to achieved the highest performance in 
the KiTS19 challenge with 0.974 kidney dice and 0.857 
tumor dice, resulting in a composite score of 0.912. Com-
pared with 3D-U-Net, the 2.5D structure we use can save 
more training time, and the results from the experiments 
presented in this paper suggest that MFFAU-Net outper-
forms 3D U-Net in segmentation tasks.

Kang et al. [21] used a method that combined Conv-
LSTM for spatial information extraction between slices 
and 3D-CNN for kidney segmentation. The authors pro-
posed that the ConvLSTM module could be utilized in 
the down-sampling process to capture the strong correla-
tion between the 3D CT slices. They randomly selected 
20 cases as the validation set and obtained average scores 
of 0.964 and 0.789 for kidneys and tumors. Our model 
significantly improved kidney and tumor segmentation 
compared to their model.

da Cruz et al. [22] proposed a modified version of the 
2D U-Net, incorporating AlexNet for feature extrac-
tion, to improve the kidney and tumor segmentation. 
They reported achieving a 0.930 kidney Dice with this 
approach. Unfortunately, their study did not acquire 3D 
information on the kidneys and did not study the seg-
mentation of the tumor, which prevented doctors from 
planning a diagnosis of the tumor in subsequent surgical 
protocols.

Pandey et al. [23] developed a method based on active 
contour and deep learning techniques. First, the author 
used prior knowledge information of the kidney rela-
tive to the spine to locate the kidney region and cut 
the left and right kidneys into two pieces with a size of 
128 × 128 × 128 as an independent image of the kidney 
region. Then they used the 3DU-Net model to perform 
left and right kidney segmentation, respectively. Finally, 
they combined the segmentation results of the two kid-
neys to obtain the final kidney segmentation image. They 
were evaluated on CT data from 21 patients with KiTS19, 
and the results showed a kidney dice score of 0.976. Sin-
gle kidney segmentation treats tumors as kidneys with-
out interference from tumor types. Therefore, using prior 
knowledge or image processing methods can achieve 
high kidney scores. However, tumor segmentation is also 
essential, as accurate segmentation can help clinicians 
formulate surgical plans.

da Cruz et al. [28] employed the DeepLabv3 + 2.5D 
model to perform tumor segmentation. In their research, 
they removed the fully connected layer from the DPN-
131 and used it as the encoder in the DeepLabv3 + model. 
The authors claimed that DPN had the advantages of 
ResNet model and DenseNet model. In their study, da 
Cruz et al. randomly partitioned the provided dataset of 

Table 3  Comparison with the state-of-the-art methods in 
KiTS19.
Authors methods Kid-

ney 
Dice

Tumor 
Dice

This paper 2.5D MFFAU-Net 0.975 0.872

Fabian et al. [20]. 3D U-Net 0.974 0.851

Kang et al. [21]. 3D-CNN + ConvLSTM 0.964 0.789

da Cruz et al. [22]. AlexNet + 2D U-Net 0.930 \

Pandey et al. [23]. active contour + deep 
learning

0.976 \

da Cruz et al. [28]. 2.5D DeepLabv3+ \ 0.852

Causey et al. [29]. Ensemble of U-Net 0.949 0.601

Kittipongdaja et al. [30]. 2.5D DenseU-Net 0.960 \

Türk et al. [31]. Hybrid V-Net 0.977 0.865

Türk et al. [32]. Two-Stage Bottleneck 
Block

\ 0.869
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210 CTs from the KiTS19 challenge into training, vali-
dation, and testing sets consisting of approximately 147, 
32, and 31 volumes, respectively. They achieved a tumor 
score of 0.852 without achieving kidney segmentation, 
and their results were similar to those of our tested 2.5D 
ResU-Net and 2.5D DenseU-Net in Table 1. Compared to 
their model, we achieved kidney and tumor segmentation 
in KiTS19.

After testing many models, an ensemble of U-Net deep 
learning models was proposed by Causey et al. [29]. They 
named the modified models the KT model in the coarse 
segmentation and the KT/T in fine segmentation. In their 
study, they used 168 scans with ground-truth segmenta-
tion for training their ensemble of U-Net deep learning 
models, and achieved 0.949 kidney dice and 0.601 tumor 
dice.

Kittipongdaja et al. [30] used 2.5D ResU-Net and 2.5D 
DenseU-Net to achieve kidney segmentation, and they 
did not study tumor segmentation. They achieved 0.960 
kidney dice using 2.5D DenseU-Net in KiTS19. The out-
comes they achieved were comparable to those obtained 
using the 2.5D DenseU-Net model we tested in Table 1. 
The 2.5D MFFAU-Net model outperformed the models 
they tested on kidney segmentation.

Türk et al. [31] developed a hybrid V-Net that utilized 
the strengths of V-Net models to improve the encoder 
and decoder levels, resulting in a more successful seg-
mentation system. The decoder module was designed of 
the ET-Net structure, and the encoder module captured 
all features during the segmentation process through an 
integrated V-Net model. As a result, they achieved high 
average dice scores of 0.977 and 0.865 for kidney and 
tumor. The MFFAU-Net had a lower kidney dice but 
achieved better tumor dice, possibly because the hybrid 
V-Net using 3D images had more contextual information 
and was more sensitive to the extensive features (kid-
neys). On the other hand, the 2.5D MFFAU-Net using 
ResConv convolution structure and attention gate mech-
anism paid more attention to minor features (tumors).

Türk et al. [32] introduced a new architecture for kid-
ney tumor segmentation that consisted of three stages. 
the encoder was modified to include SE blocks for better 
learning of image features in the first stage. The second 

stage used a decoder based on the ResNet + + structure 
to capture finer details before the output layer. The third 
stage integrated the NLB + GAB structure to address the 
bottleneck issue commonly encountered in convolutional 
neural networks. Finally, 0.869 tumor dice were obtained 
in a test set of 20 kidney data.

Table  4 presents a comparison with other state-of-
the-art methods in KiTS21. As the training and test-
ing divisions vary between the studies that employed 
these methods, it should be emphasized that each study 
employed various validation techniques. Therefore, we 
utilized their results directly.

Shen et al. [24] presented the COTRNet model for kid-
ney tumor segmentation, which combined various deep 
learning techniques. The COTRNet included U-Net, 
ResNet, Transformer encoder layer, Pretrained model, 
and Deep supervision, while still maintaining the original 
U-shaped architecture. Ultimately, their model achieved 
the average scores of 0.661 for the dice, and 0.536 for the 
SD in test set contains 100 CT cases. They did not study 
the segmentation of cysts and ranked 22nd in KITS21 
challenge.

Adam et al. [25] proposed a model with pre-processing, 
post-processing, and data enhancement functions. They 
introduced Residual Block in the U-Net structure and 
achieved 0.951 kidney dice, 0.798 mass dice, 0.781 tumor 
dice, and an 0.904 kidney SD, 0.648 mass SD, 0.627 tumor 
SD. The training, validation, and test cases were ran-
domly split into 210, 30, and 60 cases, respectively, out 
of a total of 300 cases. Their proposed model ResU-Net 
is similar, and in the end, their results are also similar to 
2.5D ResU-Net in Table 2.

Zhao et al. [26] applied the nnU-Net model for coarse-
to-fine segmentation of kidney tumors. T They used 
20% of the KiTS21 dataset as validation set and their 
model won first place and outperformed the MFFAU-
Net on kidney segmentation with dice and SD. Still, 
the MFFAU-Net performed better than their model 
on tumor segmentation. Furthermore, they did not test 
the cyst segmentation in their study, it is important to 
note that cysts should not be ignored in kidney tumor 
segmentation.

Table 4  Comparison with the state-of-the-art methods in KiTS21.
Authors methods Kidney Dice/SD Mass Dice/SD Tumor Dice/SD Cyst Dice/SD
This paper 2.5D MFFAU-Net 0.973/0.941 0.887/0.788 0.873/0.769 0.765/0.678

Shen et al. [24]. COTRNet 0.923/0.885 0.553/0.369 0.506/0.355 \

Adam et al. [25]. 3D U-ResNet 0.951/0.904 0.798/0.648 0.781/0.627 \

Zhao et al. [26]. nnU-Net 0.975/0.949 0.885/0.787 0.869/0.769 \

Zang et al. [33]. 3D U-Net 0.970/0.937 0.851/0.720 0.819/0.700 \

Chen et al. [34]. ResSENormUnet + DenseTransUnet 0.943/ \ \ 0.778/ \ 0.710/ \

Li et al. [35]. 3D deep learning 0.960/ \ \ 0.815/ \ 0.450/ \

George [36]. 3D U-Net 0.975/0.945 \ 0.871/0.761 0.881/0.773
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Zang et al. [33] used a 3D U-Net with the incorpora-
tion of deep supervision, foreground oversampling, and 
large-scale image context for kidney and tumor segmen-
tation. They also trained their model on majority-pre-
dicted segmentation masks. Ultimately, they validated 60 
cases and reported a dice of 0.970, 0.851, and 0.819 for 
kidney, mass, and tumor segmentation. Additionally, they 
achieved an SD score of 0.937, 0.720, and 0.700 for the 
same segmentation tasks. 3D U-Net still showed excel-
lent segmentation performance in their study.

Chen et al. [34] employed a cascaded semantic seg-
mentation model in KiTS21. First, they utilized Res-
SENormUnet for coarse segmentation, which combined 
SE blocks with normalization to improve the model’s 
performance. Then, during the fine segmentation, a 
Transformer was added to the DenseUnet, and Dense-
TransUnet was constructed to achieve tumor and cyst 
segmentation. Finally, they validated 60 cases and 
reported 0.943 kidney dice, 0.778 tumor dice, and 0.710 
cyst dice. Their solution needed to construct two differ-
ent models, and our cascaded segmentation scheme only 
needed to use the same model.

Li et al. [35] introduced the 3D deep learning for seg-
mentation of kidney. Their method was divided into two 
stages where the first stage focused on kidney while the 
second stage focused on tumor and cyst. The architecture 
of the deep learning network was based on 3D residual 
U-Net. For validation, they used 30 cases and results 
were comparable to the ResU-Net and DenseU-Net mod-
els presented in Table 2.

George [36] proposed a 3D U-Net network for kid-
ney tumor segmentation. First, the network was trained 
on down-sampled CT volumes to segment the kidney 
region. Second, another 3D U-Net was trained on full-
resolution images of the kidney region. George reported 
0.975 kidney dice, 0.871 tumor dice, and 0.881 cyst dice 
with 5-fold. Their segmentation results demonstrated 
the effectiveness of the cascaded 3D U-Net in medical 
image segmentation. However, 3D models require a lot 
of computing resources and memory consumption. The 
cascaded 2.5D model proposed in this paper can achieve 
similar effects while saving computing resources.

This paper used a cascaded 2.5D MFFAU-Net model 
to segment kidneys, masses, tumors, and cysts, and 
good segmentation results were achieved. After analyz-
ing the state-of-the-art methods, it can be concluded 
that the cascaded segmentation approach is still widely 
used in medical image segmentation, with the 3D U-Net 
demonstrating outstanding segmentation performance 
compared to other models. Despite this, the method 
presented in this study exhibits superior performance 
compared to other models when it comes to the segmen-
tation of masses and tumors. Finally, our model attained 
a remarkable dice score of 0.975 for kidney and 0.875 for 

tumor in KiTS19, and achieved the average score of 0.875 
for dice and 0.794 for SD in KiTS21.

Conclusion
The 2.5D MFFAU-Net model is the proposed method in 
this paper for segmenting kidney tumors in 3D images. 
This model uses 2D convolution to incorporate 3D infor-
mation in a memory-efficient manner during training. 
In addition, MFFAU-Net model combined high-level 
and low-level feature information on the original U-Net 
structure and introduces the attention gate for improved 
accuracy in kidney tumor segmentation. Finally, 2.5D 
MFFAU-Net achieved good segmentation results on both 
KiTS19 and KiTS21 datasets. In future work, we will also 
collect and validate more types of images, such as MRI, 
to develop segmentation approach that can be applied to 
various image modalities.
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