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Abstract 

Background We propose a new deep learning model to identify unnecessary hemoglobin (Hgb) tests for patients 
admitted to the hospital, which can help reduce health risks and healthcare costs.

Methods We collected internal patient data from a teaching hospital in Houston and external patient data from the 
MIMIC III database. The study used a conservative definition of unnecessary laboratory tests, which was defined as sta-
ble (i.e., stability) and below the lower normal bound (i.e., normality). Considering that machine learning models may 
yield less reliable results when trained on noisy inputs containing low-quality information, we estimated prediction 
confidence to assess the reliability of predicted outcomes. We adopted a “select and predict” design philosophy to 
maximize prediction performance by selectively considering samples with high prediction confidence for recommen-
dations. Our model accommodated irregularly sampled observational data to make full use of variable correlations 
(i.e., with other laboratory test values) and temporal dependencies (i.e., previous laboratory tests performed within the 
same encounter) in selecting candidates for training and prediction.

Results The proposed model demonstrated remarkable Hgb prediction performance, achieving a normality AUC of 
95.89% and a Hgb stability AUC of 95.94%, while recommending a reduction of 9.91% of Hgb tests that were deemed 
unnecessary. Additionally, the model could generalize well to external patients admitted to another hospital.

Conclusions This study introduces a novel deep learning model with the potential to significantly reduce healthcare 
costs and improve patient outcomes by identifying unnecessary laboratory tests for hospitalized patients.
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Introduction
Laboratory over-utilization is common, especially 
in the United States [1, 2]. Unnecessary blood draws 
waste resources and may harm patients by contrib-
uting to iatrogenic anemia [3]. Ideally, we want to 

minimize laboratory utilization while obtaining neces-
sary information [1, 4].

Trivial rule-based approaches are not generalizable to 
all laboratory tests due to the complexity and heterogene-
ity of patient conditions. Unlike these methods, machine 
learning approaches can offer more flexibility to define 
necessary and sufficient conditions of an unnecessary 
laboratory test. Recently, researchers have used machine 
learning to identify unnecessary laboratory tests. Most 
approaches leverage time series prediction methods to 
take advantage of previous patient information, such as 
autoregressive models [5], mixed-effect models [6], and 
traditional recurrent neural networks (RNN) [7, 8]. Pre-
vious studies that identify unnecessary laboratory tests 
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fall into two categories: information gain, and observabil-
ity learning.

Information gain methods measure whether cer-
tain laboratory tests yield informative values (i.e., large 
information gain). These approaches require an exact 
definition of unnecessary laboratory tests. Roy et al. [5] 
identify laboratory tests in the normal range as low-
yield laboratory tests, but they ignore events where the 
laboratory value changes from the normal to abnormal 
range; however, transitions such as these are likely to be 
clinically relevant events. Cismondi et  al. [9] dichoto-
mize laboratory tests into “information gain” or “no 
information gain” categories based on both normality 
and dropping levels. Aikens et al. [10] consider labora-
tory stability using both absolute value and standard 
deviation changes. Their models recommend eliminat-
ing laboratory tests that have little information gain. 
However, these algorithms lack confidence estimates 
to measure the reliability of predictions. Metrics that 
summarize the confidence of a prediction are important 
adjuncts for clinicians using the algorithm.

Observability learning approaches estimate the need for 
a lab to be checked in actual practice. A missing obser-
vation means that the laboratory test was not checked 
by the physician. Yu et al. [11, 12] used a two-layer long 
short term memory (LSTM) network with multiple fully-
connected layers to estimate the observability of the next 
laboratory test. The min–max loss function increases 
prediction accuracy as the likelihood of observabil-
ity (i.e., the necessity of conducting the next laboratory 
test) increases. Their first approach [11] has a narrow 
definition of the ground truth, which aims to predict the 
change rate for laboratory values. The second approach 
[12] extends the previous model by using multitask learn-
ing mechanisms to include predictions for abnormal-
ity (i.e., laboratory values beyond the normal range) and 
transition (i.e., laboratory values change from the normal 
to the abnormal range or vice versa). However, such rec-
ommendation algorithms are highly dependent on actual 
physician practices, which might not be optimal for labo-
ratory test reduction algorithms. Relying on past prac-
tices might not be applicable to different or complicated 
clinical situations. Observability learning models, which 
work to predict the need for a test, are likely to recom-
mend eliminating laboratory tests with low prediction 
confidence. We believe that, in addition to considering 
the future laboratory value, a better strategy of laboratory 
test reduction may be to simultaneously consider labora-
tory tests that can be confidently predicted.

To address the underlying issues above, we propose a 
novel approach that is distinct from the existing informa-
tion gain and observability learning studies. Our work 
is designed to reduce unnecessary hemoglobin (Hgb) 

tests based on the following conservative assumptions. 
Sequential Hgb levels within the normal range imply that 
the patient is stable [13, 14]. We further define that the 
Hgb test is “stable” when its immediate value does not 
change from normal to abnormal.

We explore approaches that enable our algorithm 
to make safe and confident predictions with features 
embedded in the algorithm. First, we introduce an out-
come-level safety assurance, which uses a conservative 
(‘safe’) definition of unnecessary Hgb laboratory tests. 
Specifically, we define ‘safe’ Hgb tests as ones that are 
predicted to remain stable and normal. If our model pre-
dicts that the Hgb level will remain stable and normal, 
we will recommend eliminating the next Hgb test. Sec-
ond, we will estimate the confidence of predicting Hgb 
test values as a sample-level safety assurance. Existing 
algorithms that estimate prediction confidence in a post-
hoc manner, such as Monte Carlo Dropout (MC Drop-
out) [15] and Bayesian Neural Networks (BNN) [16] are 
computationally expensive and require generating multi-
ple predictions for each input during testing. To enhance 
the computation efficiency, we estimate the confidence 
for predicting Hgb at a specific time based on all avail-
able time-series data by introducing a selection predictor 
in the neural network architecture [17]. During training, 
the model ignores certain samples whose inclusion would 
decrease the performance of the model. During testing, 
the selection predictor does not make recommendations 
if the selection confidence is below a certain threshold.

Our main contribution is the integration of the confi-
dence-based selection process for candidate samples into 
both the training and testing phases of the algorithm, 
instead of estimating prediction confidence in a post-hoc 
manner. We do not address clinical adoption issues such 
as specific confidence thresholds in this paper, which are 
outside the scope of our methodology investigation.

Method and materials
Dataset
Local hospital data
To validate the model’s performance internally, we uti-
lized local hospital data to predict Hgb based on data 
from a variety of hospitalized patients. The data was 
obtained from a large urban hospital system in the south-
ern United States and encompassed 75,335 distinct inpa-
tient encounters that occurred between 1/1/2020 and 
12/6/2020. Because the model requires learning from 
previous observations of laboratory data and we did not 
recommend omitting tests for patients who only had 
one Hgb test, we excluded 8,528 encounters with only 
one Hgb test. We also eliminated 4,328 encounters with 
systolic blood pressures less than 90 mmHg to focus on 
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patients who were hemodynamically stable, resulting in 
a final cohort of 62,479 unique encounters. This included 
804 pediatric encounters (age < 18). The demograph-
ics are summarized in S Table  1. To train and test the 
model, we partitioned the entire cohort into 80% train-
ing data and 20% test data. Data splitting was performed 
at the encounter level, which means that each encounter 
was treated as a separate instance, and all observations 
of laboratory data associated with that encounter were 
grouped together.

MIMIC III data
To validate the model’s generalizability externally, we 
trained with local hospital data (Section  Local hospital 
data) and tested using an unrelated critical care dataset. 
We collected 55,340 encounters from MIMIC (Medi-
cal Information Mart for Intensive Care) III (recorded 
in 2001—2012). After applying the exclusion crite-
ria (Section  Local hospital data), we had 46,847 unique 
encounters, including 1,176 pediatric encounters. The 
demographics are summarized in S Table 1. We took the 
entire MIMIC III cohort in the external validation set.

Data description
The dataset consists of 12 commonly ordered labora-
tory tests and 5 relevant vital signs (i.e., peripheral pulse 
rate, diastolic blood pressure, systolic blood pressure, 
respiratory rate, and SpO2 percent), as well as patient 
demographics (i.e., gender, race, and age), time dif-
ferences (i.e., time from last observation), Hgb value 
changes, and missing value indicators. Specifically, the 
laboratory tests include:

• Electrolytes: Na (sodium), K (potassium), Cl (chlo-
ride), HCO3 (serum bicarbonate), Ca (total calcium), 
Mg (magnesium), PO4 (phosphate)

• Renal function: BUN (Blood Urea Nitrogen), Cr (cre-
atinine)

• Complete Blood Count (CBC): Plt (platelet count), 
WBC (white blood count), Hgb (hemoglobin, and we 
predicted Hgb prescribed in the CBC panel)

These 12 laboratory tests are often ordered together 
in panels. Each panel and its associated vital signs were 
considered as the unit of observation. We included all 
laboratory data performed during the same encounter, 
regardless of whether it was collected before or after 
admission.

Data preprocessing
For each encounter, we organized laboratory test results 
into a consecutive sequence in temporal order, with 
several laboratory tests conducted in the same hour 

aggregated into a laboratory draw. If a laboratory test 
appeared more than once at the same hour, we aver-
aged the test results. The laboratory draws for each 
encounter was constrained to start with the draw where 
the first Hgb results were recorded, and end with the 
draw where the last Hgb result was recorded. To make 
the parameter space manageable, we capped the total 
length of laboratory draws to 30 timestamps based on 
the histogram of visit times (i.e., the number of times-
tamped laboratory records for encounters, see S Fig. 3). 
We padded zeros to the end of these laboratory draws 
if the sequence length was less than 30. To account for 
the patient’s condition, we integrated vital signs with 
the laboratory draw based on the event time. We cal-
culated average values when more than one vital sign 
was reported during the same hour. Additionally, we 
included patient demographics, involving gender, race, 
and age information. The normal range varies depend-
ing on gender and age (Table 1).

In our basic setup, we represented each encounter 
record of size 30 × 39, with each timestamp having a 
dimension of 1 × 39. The 39 dimensions correspond to 
12 laboratory tests, 5 vital signs, 3 demographic vari-
ables, time difference, Hgb value change, and 17 miss-
ing indicators of laboratory and vital features (S Fig.  4). 
This representation allowed us to incorporate all relevant 
information for each encounter into our model.

Notation
In our model, we used a number of symbols to repre-
sent important concepts related to the multivariate time 
series data that we analyzed. These symbols are summa-
rized in Table 2. For each encounter, we had a multivari-
ate time series data of length T  . As observations were not 
necessarily made at regular intervals, hence, the timestep 
t simply indexed the sequence of observations.

The feature measurements X represent a group of input 
features that we used to generate predictions. These fea-
tures include laboratory values, vital signs, Hgb value 
changes, demographics, time differences, and observation 

Table 1 Hgb normal range stratification table

LBNR means the lower bound of the normal range. UBNR means the upper 
bound of the normal range. Our experiments only considered Hgb LBNR to 
identify normality and stability

Age Hgb LBNR (g/dL) Hgb 
UBNR 
(g/dL)

6 months to 6 years 10.5 14.5

7—12 years 11.0 16.0

Adult Women 12.0 16.0

Adult Men 14.0 18.0
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indicators. Hgb normality labels Y  , Hgb stability labels Z , 
and Hgb values V  served as gold standards to measure our 
model’s prediction performance. Specifically, Hgb nor-
mality and stability are determined by its normal range 
(Table  1). To measure the confidence in predicting the 
next Hgb test, our model also predicted the selection prob-
ability P . The normality yt , stability zt , values vt , and selec-
tion probabilities pt represented the outcome realized at 
timestep t.

To handle missing values in the dataset, we used obser-
vation indicators denoted as O . If an encounter had 
observed data (i.e., a Hgb test drawn and resulted) at a 
timestep t , we denoted the observation indicator ot = 1 ; 
Otherwise, we denoted ot = 0.

We used a sigmoid function to output predictions 
for normality Y  , stability Z , and selection probability P 
in a range of [0, 1] . Predictions for V  were restricted to 
be positive. We used a threshold of 0.5 to make cutoffs 
for classifications of normality, stability, and selection 
probability. In the test stage, the selection thresh-
old was adjustable, and we set values in the range of 
τ ∈ [0.05.0.95].

Prediction tasks
Our confidence-based selection model has four predic-
tive tasks: selection probability pt , Hgb normality yt , 
Hgb stability zt , and Hgb value vt . Specifically, predict-
ing Hgb normality yt and Hgb stability zt are responsible 
for outcome-level safety assurance, and predicting selec-
tion probability pt is responsible for sample-level safety 
assurance.

Selection probability pt measures the confidence of 
the model’s predictions for the next Hgb. Prediction 
confidence represents predictability, that is, the relia-
bility of Hgb predictions estimated by the model. Based 
on Hgb tests that are confidently predicted, our model 
can make more accurate predictions of normality and 
stability. The model selected Hgb candidates with high 

prediction confidences, whose pt is greater than a 
selection threshold τ.

For the Hgb normality yt task, a predicted value 
above the lower bound of the normal range (LBNR) 
indicated a normal (i.e., yt = 1 ) Hgb test, while a value 
below LBRN indicated an abnormal (i.e., yt = 0 ) test. 
The study assumes that Hgb results exceeding the 
upper bound of the normal range (UBNR) are rela-
tively uncommon (e.g., polycythemia) or irrelevant 
(e.g., indicate dehydration or chronic hypoxia that are 
usually monitored using other modalities and were 
excluded from our analysis) to our analysis. Notably, 
the majority of clinical cases focus on dropping Hgb 
(e.g., bleeding), and only 0.37% of Hgb results in our 
samples were above the UBNR. In our population-
driven model, instead of using a uniform LBNR over 
the entire population, we defined normal Hgb based 
on age and gender (Table 1).

For the Hgb stability zt task, a predicted value was 
considered stable (i.e., zt = 1 ) if it remained within the 
normal range and did not shift from normal to abnor-
mal. Specifically, only a decreasing drop from normal 
to abnormal was considered for this task. Agreement 
between normality and stability predictions reinforces 
the confidence of the overall prediction.

The Hgb value vt was an auxiliary task aimed at 
improving the model’s primary prediction tasks – Hgb 
normality and stability. We expected that Hgb value 
predictions with confident normality and stability 
predictions would also closely approximate the actual 
values.

Given an encounter’s input features X , we 
defined the ground truth of unnecessary Hgb tests 
as the intersection of the following conditions: 
{X |yt = 1} ∩ {X |zt = 1} ∩ {X |pt > τ } . This means that 
if the next Hgb value was predicted to be normal and 
stable among the selected candidates, the model would 
recommend a ‘safe’ reduction.

Table 2 Nomenclature table

Symbol Explanation

X Input features (including laboratory values, vital signs, demographics, time differences in terms of hours, and observation indicators)

O Observation indicator. It is included in input featuresX  . (If the laboratory sample is observed,ot = 1 ; otherwise, ot = 0)

T The total number of timesteps. In a time sequence, a record of a laboratory group occurs at one timestep. The maximum number of 
timesteps is 30

P The selection probability (If the Hgb is selected, pt = 1 ; otherwise, pt = 0)

Y Normality label (If the Hgb value is above the LBNR, yt = 1 ; otherwise, yt = 0)

Z Stability label (If the Hgb value does not transit from normal to abnormal, zt = 1 ; otherwise, zt = 0)

V Hemoglobin value

τ The selection threshold. Its default value is 0.5. (If predicted selection probability pt > τ , the corresponding Hgb sample is selected as a 
candidate for reduction; otherwise, the Hgb sample is not a candidate for reduction)
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Clinical significance and implementation
We envision that the model could be integrated into the 
electronic health record (EHR) system, and the output 
of the model could be presented to the clinician through 
a user interface within the EHR. In practice, the model 
could present recommendations to the clinician regard-
ing the necessity of a laboratory test for a given patient. 
To implement the model, we first choose an acceptable 
confidence level to determine the subset of laboratory 
tests to be selected. The selected tests will be con-
sidered high-confidence candidates. We recommend 
canceling pending laboratory tests if it is predicted to 
be normal and stable among the selected candidates; 
otherwise, we recommend clinicians check the follow-
ing laboratory tests. The clinician would retain the final 
decision-making authority based on their assessment of 
the patient’s clinically relevant observations that may 
not be captured by our model (e.g., surgical procedures, 
hemoptysis).

It is worth noting that our proposed model should be 
used as a decision-support tool, rather than a replace-
ment for clinical judgement. The system allows the clini-
cian to override the model’s recommendation and order 
a laboratory test if they deem it necessary based on their 
clinical judgement.

Feature processing
This section introduces our methods to handle miss-
ing data and random mask corruption. We incorporated 
relational positional time embeddings to replace absolute 
one-dimensional time differences. Since time embed-
dings have little impact on improving model performance 
in our experiment, we discuss details of this approach in 
S Text.

Missing data handling
In our study, we utilized 12 common laboratory tests 
as features, but some tests were not conducted in the 
same time window. This was due to the fact that no 
patient had all laboratory tests drawn at the same time. 
We treated these unmeasured laboratory tests as miss-
ing values, which are denoted as vt = 0 . Previous work 
[18] has demonstrated that deep learning models, such 
as long short term memory (LSTM) networks, can effec-
tively handle missing data by integrating an additional 
indicator ot = 0 for these missing values vt = 0 . Thus, 
our model utilized two vectors ( ot,vt ) instead of a single 
vector of observed lab test values, enabling the model to 
discern which observations were missing. This so-called 
zero imputation strategy can handle missing data implic-
itly by considering feature correlations.

Random mask corruption
During the training stage, our approach employed a ran-
dom mask corruption method to simulate the impact of 
laboratory test reduction on future predictions. This was 
achieved by introducing a hypothetical scenario where a 
laboratory test is reduced at time t , making its observed 
value unavailable for predicting future tests at time t + 1 . 
To simulate this scenario, we randomly corrupted 10% 
of observed inputs ( ot = 1 ) by setting their correspond-
ing value as vt = 0 in future predictions. The motiva-
tion behind this approach was based on prior research 
[12], which indicated that random mask corruption is an 
effective way to enhance model performance under the 
assumption of laboratory test reduction. We still consid-
ered the prediction errors of these corrupted Hgb values 
from time t − 1 to t , but did not use them to make future 
predictions. During the testing stage, we did not intro-
duce any corruption and simply changed vt = 0 for lab 
tests that were recommended for reduction with respect 
to future predictions.

Development of confidence‑based deep learning approach
The workflow of the confidence-based candidate selec-
tion is demonstrated in Fig. 1. The zero imputation and 
random zero mask mechanism were described in Sec-
tion Feature Processing. The architecture of the network 
model was described in Section  Feed-forward Atten-
tion LSTM and Section  Network Model Architecture 
and Fig. 2. The loss function to constrain the selection of 
laboratory test candidates was described in Section Loss 
Function with Reject Optimization.

Feed‑forward attention LSTM
A time-aware attention mechanism [19] was used to 
extract essential features from the input sequence over 
time. First, the LSTM layer generated a sequence of hid-
den vectors h . Second, for each timestep t , the learnable 
function a computed the hidden vector ht , then produced 
an encoded embedding et . We computed a probability 
weight at using a softmax function over the entire time 
sequence. Finally, the context vector c was computed as a 
weighted sum of the hidden vectors ht.

(1)et = a(ht)

(2)at = exp(et)/

T

k=1

exp(ek)

(3)c =

T∑

t=0

atht
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As a result, the attention mechanism enabled the 
model to distribute weights over the entire time period, 
which smoothly adjusted the impacts of long-time mem-
ories for irregular time sequences.

Network model architecture
We proposed a novel confidence-based deep learning 
approach using LSTM and the selective neural network 
under multitask learning strategies. The main idea is to 
select a subset of Hgb candidates with high prediction 
confidence so that the selected Hgb candidates are more 
likely to make correct classifications of normality and sta-
bility. The architecture of our model is depicted in Fig. 2. 
The input features were first fed into the LSTM network 
module, which consists of a common feed-forward LSTM 
layer to capture the shared information and two atten-
tion-based LSTMs for task-specific learning. Our model 
architecture was inspired by a previous multitask learn-
ing approach [20]. The shared LSTM layer accepted all 
features (i.e., laboratory values, vital signs, patient demo-
graphics, Hgb value changes, time differences, and obser-
vation indicators) as inputs, and optimized hidden states 
at every timestep. Demographic features were duplicated 
and placed in every timestamp. The two attention-based 
LSTM layers, which shared parameters, capture task-
specific information. In the attention-based LSTM layer, 

input embeddings were augmented by concatenating the 
hidden features of the shared LSTM layer and original 
data X.

The stability predictor was implemented following 
the first attention-based LSTM layer. We used Hgb 
values to measure the stability of future Hgb tests, and 
this first layer learned a subset of features, including 
Hgb value changes, patient demographics, time dif-
ferences, and observation indicators. On the other 
hand, the normality, value, and selection predictor was 
implemented following the second attention-based 
LSTM layer. These three prediction tasks require com-
plex features and may influence each other [11]. This 
second layer learned entire feature vectors, including 
laboratory values, vital signs, patient demographics, 
Hgb value changes, time differences, and observation 
indicators.

The downstream selective network module employed 
multilayer perceptrons (MLPs) with ReLU activation, 
each followed by a final task-specific prediction. Each 
MLP predictor consisted of two fully-connected layers. 
The selection MLP predictor estimated the likelihood of 
choosing the Hgb test as a high-confidence sample [17], 
and its details will be explained in the next section. The 
normality and stability MLP predictors were responsible 
for the primary predictions of selected Hgb candidates. 

Fig. 1 Block diagram of candidate selection. (1) We imputed zeros for missing features before processing the network model. (2) In the training 
stage, we inserted a random zero mask for existing laboratory values. The network model predicted selection probabilities for individual laboratory 
tests. Thus, the model ignored some samples, whose inclusions were considered to decrease performance. Each model was trained under one 
target coverage rate that constrained the actual proportion of selected laboratory tests. Intuitively, the lower coverage rate means that selections 
are stricter. (3) We chose a model at an acceptable coverage rate in the test stage. A threshold τ was used to determine whether individual 
laboratory tests were selected. The selected tests were considered high-confidence candidates. The model recommended canceling pending 
laboratory tests if predicted values satisfied two joint conditions: a. High confidence; b. Unnecessary (i.e., predicted to be stable and remain normal)



Page 7 of 15Huang et al. BMC Medical Informatics and Decision Making           (2023) 23:93  

The value MLP predictor made the auxiliary predic-
tion that covered all Hgb samples, including Hgb tests 
that were not selected by the model. The auxiliary pre-
diction was introduced to prevent overfitting (i.e., the 
model chooses non-representative samples to only ben-
efit normality and stability prediction). The Hgb value 
optimization used the entire dataset to evaluate the loss 
in order to ensure the generalizability of normality and 
stability predictors.

Loss function with reject optimization
We considered the problem of selective prediction 
in the laboratory reduction network and leveraged 
the integrated reject mechanism developed in Selec-
tiveNet [17]. It is a deep learning architecture that is 
optimized for selecting samples that maximally ben-
efit model predictions. Based on our assumption that 
the dataset contains a proportion of Hgb outliers, such 
a specialized rejection model only considers a propor-
tion of samples and filters out low-confidence ones. 
The approach proposes a loss function that enforces 
the coverage constraint using a variant of the Interior 
Point Method (IPM) [21]. The selection head outputs a 

single probabilistic value pt using a sigmoid activation. 
At a certain timestep t , the selective network module 
achieves LSTM hidden features, then predicts Hgb nor-
mality fY (xt) and stability fZ(xt) if and only if the selec-
tion probability pt exceeds a user-defined threshold τ 
(Table  2); otherwise, the model rejects the prediction 
tasks of normality and stability for xt . Given the selec-
tion loss Lf  in Eq. (4), the performance of the selective 
algorithm is measured by the likelihood of normality 
r(fY ) , the likelihood of stability r(fZ) , and a quadratic 
penalty function ψ(a).

where c is the customized target coverage (i.e., the 
expected proportion of samples to be considered eligible 
for reductions, for which the model will predict), � is a 
penalty parameter to control the weight of the regulariza-
tion. The likelihood of normality r(fY ) and the likelihood 
of stability r(fZ) are determined by the normality loss 
L(fY (xt), yt) and stability lossL(fZ(xt), zt) , respectively.

(4)Lf = r(fY )+ r(fZ)+ �ψ(c − φ(P))

(5)ψ(a) = max(0, a)2

Fig. 2 Model Architecture Framework. In the LSTM network module, the shared LSTM layer received all input features, and outputs hidden features 
that contained general information derived from original data. The attention-based LSTM layer augmented input embeddings by concatenating 
hidden features and duplicating original features. One attention-based layer learned a subset of features for the following stability predictor. The 
other attention-based layer learned entire feature vectors to obtain complicated information for the following normality, value, and selection 
predictor. In the selective network module, we had four 2-layer MLP predictors to make task-specific predictions for Hgb stability, Hgb normality, 
Hgb value, and selection probability in parallel. Stability and normality predictors were treated as primary predictions that focus on selected Hgb 
samples. The value predictor served as the auxiliary prediction that covered all Hgb samples, including the non-selected ones
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where

In Eq.  (9) and (10), the normality loss L(fY (xt), yt) 
and stability loss L(fZ(xt), zt) are both calculated using 
the binary cross-entropy, where σ denotes the sigmoid 
function that converts predictions into probabilistic 
values.

Additionally, we handled Hgb value predictions fV (xt) 
as the auxiliary task using a standard mean squared error 
(MSE) loss function. Auxiliary predictions were used to 
connect the selection loss Lf  by accounting for all sam-
ples. Otherwise, normality loss and stability loss only 
consider optimizing predictions of selected samples, 
which might cause the overfitting issue. Thus, the overall 
loss function L is a combination of the selection loss Lf  
and the auxiliary loss Laux as follows:

where α is the selection weight which lies in [0, 1] , and

Training and evaluation design
When internally evaluating the model, the algorithm 
was trained and tested with local hospital data (Sec-
tion  Local hospital data). When externally evaluating 
the model, the algorithm was trained with local hospi-
tal data and tested with MIMIC III data (Section MIMIC 
III data). We present model performance tested on the 
local hospital data in Sections  Label Prediction Perfor-
mance, Value Prediction Performance, and  Selection 
Performance, and on MIMIC III in Section Model Per-
formance on MIMIC III.

In the training stage, we conducted random mask cor-
ruption (Section Random mask corruption) to transform 
some observations into zeros in order to simulate the 

(6)r(fY ) = (1/T

T∑

t=0

L(fY (xt), yt)pt)/φ(P)

(7)r(fZ) = (1/T

T∑

t=0

L(fZ(xt), zt)pt)/φ(P)

(8)φ(P) = 1/T

T∑

t=0

pt

(9)
L(fY (xt ), yt ) = yt log(�(fY (xt ))) + (1 − yt )log(1 − �(fY (xt )))

(10)
L(fZ(xt ), zt ) = zt log(�(fZ(xt ))) + (1 − zt )log(1 − �(fZ(xt )))

(11)L = αLf + (1− α)Laux

(12)Laux = 1/T
∑T

t=0(fV (xt)− vt)
2

impact of recommended lab test reduction. In the test 
stage, we either converted omitted laboratory values to 
zeros (in reduction evaluation) or kept the original labo-
ratory values (in no-reduction evaluation).

• Training protocol: In the training stage, input fea-
tures X were fed into the network model at a fixed 
length T  . The prediction at every timestep t depends 
on the observations from all previous timesteps. We 
trained separate models at the target coverage rate 
c = {0.75, 0.8, 0.85, 0.9, 0.95, 1.0} , which reflects the 
expected proportion of laboratory candidates that are 
selected for possible reduction.

• Reduction evaluation (practical setting): In the test 
stage, we simulated dynamic laboratory reduction 
during the evaluation process. Starting at the ini-
tial timestep t = 0 , the model was fed initial inputs 
x0 . For the following timesteps t > 0 , we conducted 
stepwise reduction estimation. If the model esti-
mated the next Hgb to be normal and stable, which 
yielded a recommendation to omit that test, the next 
Hgb input would be set at a zero value. The reduction 
evaluation process iterated until the last timestep.

• No-reduction evaluation (idealized setting): Like the 
training stage, the second evaluation protocol per-
formed a fixed evaluation process. At every timestep 
t , the model obtained all input features from the 
previous timesteps. In this process, we always used 
full observation to make future predictions, and no 
lab test was ever reduced in the prediction process. 
Model robustness can be estimated from the gap 
between reduction and no-reduction evaluations.

Results
Baseline comparison
To evaluate the impact of different components on 
the overall performance of the proposed model, we 
conducted an ablation study for our proposed model 
(Table  3). Specifically, we investigated the performance 
of the model without time embeddings (S Text), which 
treated time differences as a one-dimensional vector. 
We also examined the model without attention weights, 
which omitted the attention mechanism in any LSTM 
layer, and the model without confidence selections, which 
did not predict selection probabilities and excluded the 
corresponding loss function. To establish a baseline, we 
compared the network structure of our model with that 
of vanilla LSTM, which was derived from a state-of-art 
observability learning model targeting at reducing unnec-
essary laboratory tests [12].

The results of the ablation study demonstrate that 
our model outperformed the vanilla LSTM, which was 
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attributed to the integration of attention and confi-
dence selection mechanisms. The attention mechanism 
improved normality AUC (i.e., the AUROC of normal-
ity predictions) by 3.21% and AUPRC by 7.06%, while 
the confidence selection mechanism improved normal-
ity AUC by 4.98% and AUPRC by 16.13%. Moreover, 
the time embedding mechanism also contributed to 
improving normality accuracy, and achieved compara-
ble stability accuracy to the full model.

Label prediction performance
We conducted multiple experiences to demonstrate the 
effectiveness of our proposed confidence-based selec-
tion model in predicting normality and stability labels. 
Our model selected high-confidence samples using a 
default selection threshold of τ = 0.5 and a coverage 
rate c (Section  Loss Function with Reject Optimiza-
tion). A trade-off exists between being too strict on pre-
diction confidence, which would reduce the selection 
size and affect the model’s generalizability, and being 
too lenient, which would include unreliable samples. 
We evaluated our model under reduction evaluation 

and no-reduction evaluation metrics (Section Training 
and Evaluation Design), and the comparison results are 
shown in Fig. 3 and numerical results in Table 4 and S 
Table 4.

To differentiate the concepts, we defined “model cov-
erage rate” as the actual proportion of Hgb samples con-
sidered by the model, while “target coverage rate” as the 
customized coverage constraint c . Our results (Table 4, S 
Table 4) demonstrated that “model coverage rates” were 
close to “target coverage rates”, and they had less than 2% 
of differences in all settings, showing that the model is 
enforcing the target coverage rate.

We employed AUC and AUPRC as performance meas-
ures since the data distribution was skewed, with only 
19.5% of labs being normal and only 9.2% transitioning 
from normal to abnormal. The results demonstrated that 
our model achieved normality AUCs (Fig.  3  b) at over 
90%, and stability AUCs (Fig.  3  e) at over 94%, even in 
the extreme coverage case at c = 1 . Notably, despite set-
ting c = 1 (Table 4), our model did not consider all Hgb 
predictions as good candidates for reduction, in which 
our results represented 99% of Hgb samples eligible for 

Fig. 3 Model performance at multiple selection coverages under reduction and no-reduction evaluation. The prevalence refers to the proportion 
of positive samples (i.e., normal and stable Hgbs) in the selected Hgb candidates. The normality AUC and stability AUC refer to the AUROC for the 
normality prediction and stability prediction, respectively. The selection threshold τ is 0.5. The coverage rate refers to the expected proportion of 
Hgb samples to construct the model
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reduction recommendation. We observed that our model 
reduced 9.91% Hgb tests at a “target coverage rate” of 
0.85 (Table  4), achieving a good tradeoff between per-
formance and reduction. Most AUCs and AUPRCs 
decreased as the “target coverage rate” increased, except 
for stability AUCs, which did not drop at a steady rate 
because the proportion of stable samples was much 
larger than unstable ones, resulting in the mean probabil-
ity bias favoring stable lab tests [22]. Our model achieved 
comparable performances over no-reduction evaluations 
(Fig.  3), demonstrating its robustness in practical set-
tings when some input laboratory values are missing due 
to previous reductions. Moreover, as the “target cover-
age rate” increased, the normality prevalence (Fig.  3. a) 
increased linearly, while the stability prevalence (Fig.  3. 
c) decreased linearly. This suggested that our higher-
confidence model tends to select more samples from the 
dominating class of labels (i.e., abnormal Hgbs and stable 
Hgbs) to obtain higher accuracy while recognizing minor 
labels (i.e., normal Hgbs and unstable Hgbs).

Value prediction performance
We evaluated the consistency between predicted values 
and predicted normality, conducted under the reduction 
evaluation. Our aim was to determine whether the pre-
dicted values were consistent with the predicted normal-
ity, with a particular focus on the expected location of 
normal Hgb samples above the LBNR.

Figure 4 indicated that our proposed multitask learning 
framework was successful in leveraging the auxiliary task 
of value prediction to support the primary prediction 
tasks of normality and stability prediction. Specifically, 
we observed that, among Hgbs predicted to be normal, 
more than 90% of corresponding values were predicted 
to be above the LBNR with a tolerable error of 3% at “tar-
get coverage rates” less than 0.85, and with a tolerable 
error of 5% at almost all “target coverage rates”. These 
findings suggested that our model’s predicted values were 

consistent with the expected normality predictions, vali-
dating the effectiveness of our proposed framework.

Furthermore, our results also suggested that the “tar-
get coverage rate” has a significant impact on recognizing 
the normality of predicted values. As the coverage rate 
increased, the accuracy of normality prediction showed 
more variability at error rates of 0–10%, indicating that 
the low-confidence model had great variability in its 
value predictions.

Selection performance
We present the evaluation of our model’s classifi-
cation accuracy with different selection thresholds 
τ ∈ [0.05, 0.95] (with intervals at 0.05) under laboratory 
reductions. During training, we set the selection thresh-
old at τ = 0.5 and used the different values in the test 
phase. The “target coverage rate” was set to 0.85.

Figure 5 illustrated that the performance curves fluctu-
ated at nearby selection thresholds, but the trend remained 
consistent and increased as the threshold value increased. 
With a higher threshold, the model selected fewer normal 
Hgbs and more stable Hgbs, resulting in higher confidence 
in classifications. When the threshold τ was above 0.5, our 
model achieved normality predictions over 95.8% AUC 
and 80.0% AUPRC. Similarly, stability predictions achieved 
more than 95.9% AUC and 99.8% AUPRC. These results 
demonstrated that our model’s performance was robust 
to the selection threshold and could achieve high accuracy 
with different values of the threshold.

Model performance on MIMIC III
We conducted an external evaluation of our model 
using the MIMIC III dataset to assess its generaliz-
ability in predicting Hgb values for patients admitted 
to another healthcare institution. Our model demon-
strated normality prediction accuracy of over 88% and 
stability prediction accuracy of over 95% (Fig. 6) across 

Table 4 Model performance by selection coverages and reduction rate

The model coverage rate refers to the actual proportion of Hgb samples considered by the model; the reduction rate refers to the proportion of Hgb samples 
recommended for reduction among the entire Hgb test dataset; Prev indicates prevalence, which denotes the proportion of normal/stable Hgbs in selective 
candidates; AUC indicates area under the ROC curve; Acc indicates accuracy; Prec indicates precision; AUPRC indicates the precision-recall curve

Target Coverage Model Coverage Reduction Rate Normality Stability

Prev AUC Acc Prec AUPRC Prev AUC Acc Prec AUPRC

0.75 77.92% 3.08% 10.09% 95.92% 95.16% 78.28% 81.52% 99.70% 96.91% 99.70% 99.70% 99.99%

0.80 81.64% 4.94% 12.24% 95.34% 94.49% 82.33% 80.78% 98.99% 95.99% 99.01% 99.02% 99.96%

0.85 83.80% 9.91% 15.25% 95.89% 93.17% 74.38% 80.05% 97.40% 95.94% 97.41% 97.46% 99.89%

0.90 89.84% 11.71% 17.28% 93.89% 89.47% 64.89% 71.12% 93.94% 96.06% 94.84% 97.21% 99.74%

0.95 96.91% 16.89% 19.07% 92.24% 86.76% 60.99% 67.56% 92.25% 95.19% 94.22% 95.77% 99.58%

1.0 99.99% 17.48% 19.51% 91.10% 85.64% 59.18% 63.43% 90.82% 94.94% 93.43% 95.36% 99.47%
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Fig. 4 Consistency between predicted values and predicted normality. The objective was to measure the consistency between predicted values 
and predicted normality. The “normality accuracy of predicted values” was defined as the percentage of predicted values with fV (xt) >= b , where b 
is the value of the LBNR, on Hgb samples with fY (xt) = 1 . We considered a tolerable boundary to be m% lower than the LBNR for predicted normal 
Hgbs

Fig. 5 Model performances using different selection thresholds for reduction evaluation. The range of our selection threshold is τ ∈ [0.05, 0.95] 
with intervals at 0.05
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different “target coverage rates”. The model achieved a 
reduction rate of 7.30% of Hgb tests at a “target cover-
age rate” of 0.90 (S Table  3). However, the reduction 
rate did not increase monotonically as the “target cov-
erage rate” increased from 0.90 to 0.95, indicating that 
the model’s confidence may not accurately represent 
a different cohort at a large coverage rate. When the 
target coverage rate was over 0.9, the model achieved 
higher accuracy on MIMIC III data, implying that the 
overall MIMIC III data may have higher predictability 
in estimating Hgb values. Conversely, for a “target cov-
erage rate” <  = 0.9, the model obtained lower accuracy 
on MIMIC III data because it selected more samples 
(e.g., 89.78% selected samples at “target coverage rate” 
of 0.75, S Table  3) with lower prediction confidences. 
While some normality AUCs and AUPRCs did not drop 
steadily, stability AUCs and AUPRCs decreased as the 
“target coverage rate” increased, suggesting that the 
model was particularly robust at detecting stable Hgbs. 
The trends in value performance were similar to those 
observed with local hospital data (S Fig. 6).

Discussion
We introduced a deep learning model with a selective 
framework to address the laboratory reduction problem. 
We conducted a case study on Hgb reduction. Based on 
the definition that unnecessary laboratory tests are the 
ones predicted to be normal and stable, we demonstrated 
that our selective model achieved good predictive per-
formance. Our major contribution is to offer safe recom-
mendations for omitting unnecessary Hgb samples by 
jointly considering the confidence and prediction accu-
racy during training and testing. The idea was to select 
a proportion of Hgb candidates with high prediction 

confidence in estimating normality and stability. Our 
model automatically identified an appropriate balance 
between stability, normality, and prediction confidences, 
which achieved a performance of 95.89% normality AUC 
and 95.94% stability AUC with the potential to eliminate 
9.91% of Hgb tests. In addition, when future Hgb tests 
were predicted as normal, our model predicted > 90% of 
the corresponding predicted Hgb values within a toler-
able error range of 3% at a 90% selection coverage, dem-
onstrating its robustness.

We also made some technical contributions in order 
to handle irregular time sequences in laboratory reduc-
tion by introducing a feed-forward attention function 
to capture the importance of every timestep. The abla-
tion study results confirmed that both selective mecha-
nism and attention-based LSTM layers contributed to 
the improvement of model performances. The model 
achieved competitive accuracy, even with the lower pre-
diction confidence, when externally validated with ICU 
patients in the MIMIC III database. The high accuracy in 
external evaluation suggests that our model generalized 
well to ICU patients at different health institutions.

Our model allows for the integration of a confidence-
based selection process into the training and testing 
phase. While decision trees and random forests can 
incorporate measures of uncertainty in the form of node 
impurity or feature importance scores during the training 
phase, they lack measures of confidence in the form of 
prediction outcomes. In contrast, our proposed approach 
estimates prediction confidence directly from the model’s 
output probabilities and uses it to select samples with 
high reliability for recommendations. By doing so, the 
model can focus on the most informative samples while 
minimizing the risk of false positives or false negatives. 

Fig. 6 Comparing model accuracy when evaluating local hospital data and MIMIC III data. The selection threshold τ is 0.5
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This makes our approach appropriate to the specific 
problem of identifying unnecessary laboratory tests and 
making safe reduction recommendations.

Not all predictable laboratory tests are unnecessary 
in complicated clinical situations. To ensure usability, 
our model discovered unnecessary Hgb tests among 
predicted high-confidence candidates. The predicted 
low-confidence Hgb samples are not recommended for 
elimination, for which our model would acknowledge 
‘I don’t know’ and let clinicians decide. Our model also 
offers a tunable parameter to control the confidence level 
for sample inclusion (i.e., expected selection coverage). 
Clinicians can choose a confidence level based on the 
context to receive recommendations for clinical decision 
making. For some severe patients, the desired confidence 
level might be lifted to a high level such that we would 
reduce fewer laboratory tests to more closely monitor 
the patient. Since our approach was designed to identify 
unnecessary laboratory tests in the routine laboratory 
monitoring, it may not identify certain situations such as 
surgical procedures or hemoptysis, in which a clinician 
orders a test based on observed clinical events. In situa-
tions where there are clinical observations or other fac-
tors that might indicate the need for a laboratory test, the 
clinician should use their judgment to decide whether the 
test is necessary, regardless of the predictions made by 
our approach.

Conclusion
Although our model has shown promising results in 
identifying unnecessary Hgb tests among predicted high-
confidence candidates, it has some limitations. First, the 
optimal expected coverage rate that controls the model’s 
confidence might vary by different situations, and it is 
not directly interpretable as confidence intervals that are 
familiar to clinicians. Second, when applied to external 
patients admitted to another health institution (MIMIC 
III), the model would reduce fewer Hgb samples to 
ensure the confidence guarantee. Third, our model rec-
ommends a reduction of an individual laboratory test. 
In clinical practice, Hgb tests are commonly ordered as 
a part of a complete blood count panel, which includes 
platelet count and white blood count. Our model cur-
rently does not account for bundled test reduction strate-
gies because the laboratory panel information is missing 
in the dataset. Finally, the ground truth of unnecessary 
laboratory tests might not be perfect. Our model relies 
on the standard of laboratory normal ranges, whereas 
some abnormal results may be predictable and stable 
(e.g., a clinically stable patient with stable anemia) and 
thus could be omitted.

Our approach is applicable to any scenario where 
time series data is available and where the prediction of 
laboratory test results would be useful. While our study 
specifically focused on predicting Hgb tests, it could 
be generalized to platelet count (Plt) and white blood 
count (WBC). It is because most clinical cases focus 
on dropping values of these laboratory tests, making it 
appropriate to use a similar definition of normality and 
stability. Ideally, the general approach we developed can 
be adapted to other laboratory tests with different defi-
nitions of normality and stability (e.g., including the case 
with increasing values) by replacing the input features 
and output labels with those specific to the new test. 
For example, if we were interested in predicting glucose 
levels, we would use glucose-specific features and gold-
standard labels.

Future research will address these limitations and 
further explore the applicability of our model to other 
laboratory tests, as well as its integration into clinical 
decision-making process.
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