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Abstract
Introduction The prevalence of end-stage renal disease has raised the need for renal replacement therapy over 
recent decades. Even though a kidney transplant offers an improved quality of life and lower cost of care than dialysis, 
graft failure is possible after transplantation. Hence, this study aimed to predict the risk of graft failure among post-
transplant recipients in Ethiopia using the selected machine learning prediction models.

Methodology The data was extracted from the retrospective cohort of kidney transplant recipients at the Ethiopian 
National Kidney Transplantation Center from September 2015 to February 2022. In response to the imbalanced nature 
of the data, we performed hyperparameter tuning, probability threshold moving, tree-based ensemble learning, 
stacking ensemble learning, and probability calibrations to improve the prediction results. Merit-based selected 
probabilistic (logistic regression, naive Bayes, and artificial neural network) and tree-based ensemble (random forest, 
bagged tree, and stochastic gradient boosting) models were applied. Model comparison was performed in terms of 
discrimination and calibration performance. The best-performing model was then used to predict the risk of graft 
failure.

Results A total of 278 completed cases were analyzed, with 21 graft failures and 3 events per predictor. Of these, 
74.8% are male, and 25.2% are female, with a median age of 37. From the comparison of models at the individual 
level, the bagged tree and random forest have top and equal discrimination performance (AUC-ROC = 0.84). In 
contrast, the random forest has the best calibration performance (brier score = 0.045). Under testing the individual 
model as a meta-learner for stacking ensemble learning, the result of stochastic gradient boosting as a meta-learner 
has the top discrimination (AUC-ROC = 0.88) and calibration (brier score = 0.048) performance. Regarding feature 
importance, chronic rejection, blood urea nitrogen, number of post-transplant admissions, phosphorus level, acute 
rejection, and urological complications are the top predictors of graft failure.

Conclusions Bagging, boosting, and stacking, with probability calibration, are good choices for clinical risk 
predictions working on imbalanced data. The data-driven probability threshold is more beneficial than the natural 
threshold of 0.5 to improve the prediction result from imbalanced data. Integrating various techniques in a systematic 
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Introduction
Chronic kidney disease (CKD) often progresses to end-
stage renal disease (ESRD) and kidney failure [1]. End-
stage renal disease (ESRD) affects 10–15% of worldwide 
and 14.3% of the Ethiopian population [2]. Kidney trans-
plantation remains the gold standard treatment option 
for patients with ESRD, offering superior survival and 
quality of life and reduced costs compared to dialysis [3]. 
In modern medicine, transplantation remains one of the 
most challenging and complex fields [3]. The develop-
ment of new immunosuppressive drugs and clinical care 
advancements considerably improved the short-term 
outcomes after kidney transplantation [4]. Despite this, 
long-term graft survival and loss due to chronic kidney 
dysfunction and death with a functional graft remain the 
leading causes of long-term graft loss [5, 6]. Therefore, 
predicting the risk of long-term graft failure across the 
transplant cohort is essential.

Machine learning (ML) refers to several techniques for 
recognizing patterns based on classification models and 
predicting new data, which have been increasingly used 
for diagnosing diseases [7]. Clinical risk prediction mod-
els, which include machine learning and statistical mod-
els, are omnipresent in many medical domains aimed at 
predicting a clinically relevant outcome using person-
level information [8]. These models help to estimate a 
patient’s risk of having a particular disease or experienc-
ing an event in the future based on their current char-
acteristics [9]. According to [10], ML-based prediction 
models are appropriate for predicting renal transplanta-
tion outcomes, including graft failure. Particularly, the 
existence of several predictors and the imbalanced nature 
of the data make machine learning attractive in this 
study. These models are powerful at predicting imbal-
anced and high-dimensional data over conventional sta-
tistical models. However, standard ML classifiers such 
as logistic regression, support vector machine, and deci-
sion trees are suitable when there is a balanced propor-
tion of classes in the outcome of interest [9]. But most 
medical data sets contain “normal” samples and only 
a small percentage of “abnormal” samples, resulting in 
class imbalance problems. Binary classification problems 
(for example, the current case) arise when there is a large 
negative (majority) class compared to a positive (minor-
ity) class [11]. This imbalanced class distribution needs 
to be considered to end with a reliable conclusion. Tech-
niques ranging from data-level to ensemble model-based 

strategies, such as data resampling, cost-sensitive learn-
ing, one-class algorithms, and ensemble modeling 
approaches, can address class imbalance issues [12].

Although imbalance correction through resampling, 
like under and over-sampling, improves the balance 
between true positive and true negative rates, it may 
result in poorly calibrated models [13]. The model may 
perform better by balancing the class of outcome vari-
ables, but that may not represent the actual prevalence 
of the minority class. According to [13], resampling the 
original data is not a good practice in clinical prediction 
models. Model calibration becomes a central perfor-
mance criterion in prediction models where probability 
estimation is required [8]. Therefore, the choice of imbal-
ance handling requires special consideration in clinical 
soft prediction models (focus on probability estimates 
rather than class prediction) to increase the clinical util-
ity of the models.

As far as we know, no previous machine learning-based 
prediction models on renal transplant outcomes used a 
systematic framework to experiment with spot-check of 
different class imbalance handling and ensemble learn-
ing, such as stacking. Accordingly, this article aimed 
to develop a clinical prediction model to predict the 
tendency of patients toward graft failure among renal 
post-transplant recipients in Ethiopia using the experi-
mentally selected imbalance handling and classification 
algorithms.

Methodology
Data source and study design The data was extracted 
from the retrospective cohort of kidney transplant recipi-
ents at St. Paul’s Hospital Millennium Medical College 
National Kidney Transplantation Center in Ethiopia. 
The secondary data from the hospital records of kidney 
transplant recipients whose follow-up visits took between 
September 2015 and February 2022 were extracted. The 
information from the patient’s follow-up charts and 
medical records, including epidemiological, laboratory, 
and clinical histories, were taken. Table  1 provides the 
descriptions of those variables. About 278 kidney trans-
plant recipients with at least three follow-up visits were 
included in the current study. The data is a completed 
case with no missing values; we crosschecked the follow-
up chart and other medical records to fill in the missing 
value; moreover, calling the patient was another option to 
fill in the missing data. Since the data extraction tool is 

framework is a smart strategy to improve prediction results from imbalanced data. It is recommended for clinical 
experts in kidney transplantation to use the final calibrated model as a decision support system to predict the risk of 
graft failure for individual patients.

Keywords Renal transplantation, Graft failure, Imbalanced Data, Tree-based ensembles, Stacking ensemble, 
Probabilistic models
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No. Feature name (class) Feature values
1. Graft status (factor, outcome variable) 0 = Censored, 1 = Graft failure

2. Recipient’s age (integer) In years

3. Donor’s age (integer) In years

4. Body mass index (numeric) In kg/m2

5. Number of post-transplant admissions (integer) In count

6. Duration since transplant(integer) In months

7. Recipient’s gender (factor) 0 = Male, 1 = Female

8. Donor’s gender (factor) 0 = Male, 1 = Female

9. Recipient’s religion (factor) 0 = Orthodox, 1 = Muslim, 2 = Protestant, 3 = Catholic, 4 = other

10. Recipient’s marital status (factor) 0 = Married, 1 = Unmarried

11. Recipient’s level of education (factor) 0 = No education, 1 = Primary, 2 = Secondary,
3 = Tertiary (diploma), 4 = degree

12. Recipient’s employment status (factor) 0 = government employee, 1 = Private employee,
2 = No working

13. Recipient’s residence (factor) 0 = Urban, 1 = Rural

14. Donor-recipient relationship (factor) 0 = sibling, 1 = parent, 2 = child, 3 = spouse, 4 = relatives

15. Place of renal allograft transplantation (factor) 0 = Locally in the center, 1 = Outside the country

16. Post-transplant regular physical exercise (factor) 0 = No, 1 = Yes

17. The post-transplant average intake of water/day (factor) 0 = Less than 2 litters, 1 = 2–3 litters, 2 = 3–4 litters, 3 = More 
than 4 litters

18. Pre-transplant history of substance abuse (factor) 0 = No, 1 = Yes

19. Post-transplant non-adherence (factor) 0 = No, 1 = Yes

20. Cause of end-stage renal disease (factor) 0 = Chronic glomerulonephritis, 1 = Diabetes 2 = Hyperten-
sion, 3 = Others, 4 = Unknown

21. Pre-transplant history of co-morbidity (factor) 0 = No, 1 = Yes

22. Pre-transplant history of dialysis (factor) 0 = No, 1 = Yes

23. Pre-transplant history of blood transfusion (factor) 0 = No, 1 = Yes

24. Pre-transplant history of abdominal surgery (factor) 0 = No, 1 = Yes

25. Family history of kidney disease (factor) 0 = No, 1 = Yes

26. Post-transplant malignancy (factor) 0 = No, 1 = Yes

27. Post-transplant urological complications (factor) 0 = No, 1 = Yes

28. Post-transplant vascular complications (factor) 0 = No, 1 = Yes

29. Post-transplant cardiovascular complication (factor) 0 = No, 1 = Yes

30. Post-transplant infection (factor) 0 = No, 1 = Yes

31. Post-transplant diabetes (factor) 0 = No, 1 = Yes

32. Post-transplant hypertension (factor) 0 = No, 1 = Yes

33. An episode of hyperacute rejection (factor) 0 = No, 1 = Yes

34. An episode of acute rejection (factor) 0 = No, 1 = Yes

35. An episode of chronic rejection (factor) 0 = No, 1 = Yes

36. Post-transplant gastrointestinal problems (factor) 0 = No, 1 = Yes

37. Post-transplant glomerulonephritis (factor) 0 = No, 1 = Yes

38. Post-transplant delayed graft functioning (factor) 0 = No, 1 = Yes

39. Post-transplant fluid overload (factor) 0 = No, 1 = Yes

40. Post-transplant Covid-19 (factor) 0 = No, 1 = Yes

41. Systolic blood pressure (integer) In mm Hg

42. Diastolic blood pressure (integer) In mm Hg

43. Body weight (numeric) In kg

44. White blood cell count (numeric) In G/L

45. Hemoglobin level (numeric) In G/DL

46. Platelets (integer) In count/mL

47. Serum creatinine level In mg/dL

48. Blood Urea Nitrogen level In mg/dL

49. Glucose level (numeric) In mg/dL

50. Potassium level (numeric) In mg/dL

Table 1 Descriptions of Variables under the Investigation
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developed based on the renal post-transplant follow-up 
guidelines and standards, no missing variables exist.

Feature selection
Before developing the clinical prediction models, we per-
formed data-driven feature selection. The goal of feature 
selection is to select a subset of features from the entire 
feature space that allows a classifier to achieve optimal 
performance, where it is a user-specified or adaptively 
parameter chosen [9]. In machine learning, the data 
we work with typically has many dimensions. There-
fore, models built using these data are victims of the 
curse of dimensionality (problems associated with high 
dimensional datasets). Although having more informa-
tion is beneficial, when the data contains duplicated or 
highly detailed information, the model trained on them 
becomes over-fitting and is likely to yield a poor-per-
forming model [14]. We used a Recursive Feature Elimi-
nation (RFE) wrapper method (feature selection based 

on a specific machine learning algorithm, random forest 
in this case). The RFE fits the random forest model and 
determines how significant features are to explain the 
variation in the outcome variable (graft status, failed or 
not) using the training data set. Having determined the 
importance of each feature, it removes them one by one 
during each iteration [15]. By adjusting for multicol-
linearity using a correlation matrix, this variable selec-
tion process ends with the top seven predictors from the 
total feed of 54 variables. From the top 20 important fea-
tures presented in Fig. 1, an episode of chronic rejections, 
blood urea nitrogen level, number of post-transplant 
admissions, an episode of acute rejections, post-trans-
plant urological complication, hemoglobin level, and 
phosphorus level are selected as important refined fea-
tures. Scaling of continuous predictors by standardiza-
tion (mean centering) and identifying near-zero variance 
predictors (predictors with almost similar values) were 
performed. Accordingly, these seven refined predictor 

Fig. 1 Top 20 Important Features from the Recursive Feature Elimination Method

 

No. Feature name (class) Feature values
51. Sodium level (numeric) In mg/dL

52. Calcium level (numeric) In mg/dL

53. Phosphorus level (numeric) In mg/dL

54. Tacrolimus metabolism rate (Tac_MR) (numeric) In ng/ml × 1/mg

55. Estimated glomerular filtration rate (eGFR) (numeric) In mL/min/1.73m2

Table 1 (continued) 
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variables are used throughout the model development 
and testing experiments.

Class imbalance of the outcome variable
As it has been reviewed in the introduction section, 
imbalanced classification refers to a classification predic-
tive modeling problem where the number of examples in 
the training dataset for each class label is not balanced. 
From the exploratory data analysis of the response vari-
able, it is evident that about 92.5% of the instances were 
grouped under the negative class (censored), while the 
remaining 7.5% were grouped under the positive class 
(graft failure). According to [16], which categorized the 
degree of imbalance based on the proportion of minority 
class as 20–40% of the data set as mild, 1–20% as mod-
erate, and less than 1% as severe imbalance, the severity 
of the class imbalance for the current data lies on mod-
erately imbalanced. Suppose we directly use this data 
for model training. In that case, the predictive models 
will undervalue the minority class (graft failure) and 
learn more from the majority class (censored), and we 
risk drawing wrong conclusions. Traditional classifica-
tion algorithms have difficulty discriminating between 
minorities and majorities classes because the imbalance 
introduces a bias in favor of the majority [17]. Therefore, 
researchers should deal with this class imbalance prob-
lem to end up with a valid inference. Accordingly, a spot 
check of different imbalance handling techniques was 
performed to determine the appropriate and effective 
methods for the dataset. Decision tree-based ensemble 
learning, resampling, cost-sensitive learning, hyperpa-
rameter tuning, probability threshold moving, model 
stacking ensemble learning, and probability calibration 
were performed. Except for resampling and cost-sensi-
tive learning, those experiments’ results were presented 
in the result section. As theoretically reviewed in the 
introduction, resampling is not recommended for clinical 
prediction, as the artificially balanced data may not rep-
resent the actual prevalence of the event of interest. Simi-
larly, cost-sensitive were conducted by giving weight to 
instances based on their class distribution, but this didn’t 
help much. These are why the results from the two imbal-
ance handling methods are excluded.

Model performance evaluation metrics
The metric is the measuring stick by which all models are 
evaluated and compared. The wrong metric can mean 
choosing lousy algorithms [18]. The confusion matrix is 
the most commonly used metric for assessing the perfor-
mance of a classification model. This metric shows how 
many accurate and incorrect predictions were made by a 
model about the actual target value [19]. It has a pool of 
model performance evaluation metrics; accuracy is the 
most commonly used. But this metric is best as there is 

an equal or approximately equal class proportion of the 
target outcome. But in severe skew in the class distribu-
tions, accuracy can become unreliable. The intuitions 
for classification accuracy are the leading causes of this 
unreliability in machine learning. Predictive modeling 
for classification is typically applied to the datasets when 
the class distribution is equal or nearly equal. Achiev-
ing a classification accuracy of 90 or even 99% during 
an imbalanced classification may not mean much [20]. 
Accordingly, the model performance evaluation met-
rics appropriate for imbalanced data have been used to 
measure the prediction performance of the machine 
learning algorithms. We used precision (the quality of a 
positive prediction), recall (or sensitivity, true positive 
rate), F1-score (combined information of precision and 
recall), and area under the curve (AUC) of receiver oper-
ating characteristic (ROC) as model evaluation metrics. 
These metrics are less likely to suffer from imbalanced 
distributions as they take class distribution into account 
[9]. In addition, since probability estimates are needed, 
the metric that evaluates the calibration of the estimated 
probabilities is required. Brier score is a commonly used 
evaluation metric that checks the goodness of a predicted 
probability score [21].

The spot-check of classification algorithms
Spot-checking machine learning algorithms entails com-
paring various methods while modifying the hyperpa-
rameters as little as possible. The most frequently asked 
classification question in machine learning is ‘what is the 
best classification algorithm?‘ Researchers addressed the 
question from various perspectives, including data type. 
Still, the class distribution of the outcome variables has 
been neglected. The current study gives special empha-
sis to the class distribution of instances, particularly the 
class imbalance. Classification algorithms are chosen 
based on their ability to handle imbalanced data sets and 
directly provide probability estimates. Accordingly, logis-
tic regression, naive Bayes, and artificial neural networks 
can directly provide probability estimates [22]. At the 
same time, decision tree-based ensemble models (ran-
dom forest, bagged CART (classification and regression 
tree), and stochastic gradient boosting, in this case) are 
effective for imbalanced data sets. And their probabil-
ity-like score needs to be calibrated to be interpreted as 
probability estimates [22].

Logistic regression (LR) LR, also called the sigmoid 
function, is a machine-learning classification algorithm 
that predicts binary outcomes [11]. It predicts an event’s 
probability (p) and isolates positive entities from nega-
tive ones by setting a threshold boundary. It classifies as 
one if p > = 0.5; otherwise, it ranks as zero. In the sigmoid 
function, the probability value (continuous) is mapped to 
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the discrete classes (0 and 1) [23]. Its probabilistic nature 
makes it appropriate for the current prediction of graft 
failure risk.

Naive Bayes (NB) NB is a well-known classification 
machine learning algorithm that helps classify the data 
based on conditional probability values. It implements 
the Bayes theorem for probability computation and uses 
class levels represented as feature values or vectors of 
predictors for classification [24]. The name naive is used 
because it assumes the features that go into the model are 
independent. The NB is a good choice for classification 
problems requiring probability estimates [25].

Neural networks (NN) Neural networks, also known as 
artificial neural networks (ANNs), are a subset of machine 
learning. They mirror how organic neurons communi-
cate by taking their name and structure directly from the 
human brain [26]. An input layer, one or more hidden lay-
ers, and an output layer make up the node layers of an 
ANN. Each node (artificial neuron) is connected to oth-
ers and has a weight and threshold that goes along with 
it. Any node whose output exceeds the defined thresh-
old value is activated and provides data to the network’s 
uppermost layer. Otherwise, no data is transmitted to the 
network’s next layer. ANNs are a powerful tool in medi-
cine for disease diagnosis and handling complex clinical 
conditions [27]. Due to its suitability for disease diagnosis 
and ability to estimate risk, this model was chosen to pre-
dict the risk of graft failure.

Random Forest (RF) It is an ensemble machine learning 
algorithm. The central idea behind ensemble learning is 
that multiple weak-performing models can be combined 
to generate more accurate predictions. RF is the most 
popular machine learning algorithm, given its excellent 
performance across various classification and regression 
predictive modeling problems [28]. Based on a random 
selection of data samples, this algorithm creates deci-
sion trees and obtains predictions from each tree. Then, it 
votes/averages to determine the most viable option. Boot-
strapping and aggregation (collectively known as bagging) 
are the two essential steps in RF. In addition to Bagging, RF 
selects a subset of features at each decision split to make 
trees independent of each other [29]. One fundamental 
advantage of using RF is that it eliminates the over-fitting 
problem since it averages or votes all predictions, cancel-
ing the biases [30]. Moreover, RF has emerged as a highly 
efficient and robust algorithm that can handle feature 
selection problems even with many variables [31]. The 
current study has chosen RF due to its ability to deal with 
over-fitting caused by small data and multiple predictors.

Bagged CART (TBAG) A modified CART (classifica-
tion and regression tree) algorithm, the so-called bagged 
CART combines bagging methods with CART to improve 
the performance of predictive models and reduce over-
fitting [32]. Like the random forest, it is also a decision 
tree-based ensemble learning method. The one funda-
mental drawback of decision trees is that they are highly 
variable and unstable estimators. Bagging stands for boot-
strap aggregation, an efficient approach to decreasing the 
prediction variance from the individual decision tree. 
Constructing a bagged tree is similar to the random for-
est algorithm, where RF uses one extra trick to keep the 
constituent trees less correlated while bootstrapping the 
training data. Instead of just sampling the training rows, it 
tests the features subset [33]. Similar to RF, this ensemble 
model was chosen because it is suitable for imbalanced 
data and can handle over-fitting.

Stochastic gradient boosting (SGB) SGB is a modifica-
tion of the gradient boosting algorithm. Gradient boost-
ing is a greedy process that adds new decision trees to the 
model to fix the previous model’s error. The split points 
that best minimize an objective function are chosen for 
each decision tree using a greedy search approach [34]. 
As a result, trees may continually use the same attributes 
and even split points. So stochastic gradient boosting 
takes advantage of the bootstrap aggregation (bagging) 
technique and trains each constituent decision tree over a 
random sub-sample of the training dataset. This approach 
usually results in considerable improvements in model 
accuracy [35]. The model was chosen because it inte-
grated bagging and boosting approaches to improve pre-
diction performance.

Hyperparameter tuning
Parameters are configuration variables learned by the 
machine, whereas hyperparameters are specified param-
eters tuned to control a machine learning algorithm’s 
behavior with its values set before the learning process 
[36]. Following the spot-checking of algorithms, the 
hyperparameters were adjusted using repeated cross-
validation with five folds and three repetitions under 
the traincontrol function of the Caret package. We use a 
grid search, an exhaustive search that looks through all 
combinations of hyperparameters. As a result, the opti-
mal hyperparameters of the selected classification algo-
rithm were: naive Bayes (Laplace = 0, Usekernel = TRUE), 
artificial neural networks (size = 5, decay = 0.1), ran-
dom forests (mtry = 2), and stochastic gradient boost-
ing (n.trees = 50, interaction.depth = 1, shrinkage = 0.1, 
n.minobsinnode = 10). Logistic regression and bagged 
trees did not significantly benefit from the hyperparam-
eter tuning process since they have no hyperparameters.
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Probability threshold moving
Predicting a class label is a typical aspect of classification 
predictive modeling [37]. However, many machine learn-
ing algorithms, like what we have mentioned above, can 
predict a probability of class membership, which must be 
interpreted before it can be mapped to a crisp class label. 
This grouping is commonly achieved by using a thresh-
old of 0.5. Predicted values equal to or greater than the 
threshold is mapped to one class, and all other values are 
mapped to another category. This default threshold may 
perform poorly when a severe class imbalance is in a clas-
sification problem [17]. Intrinsically, a straightforward 
approach to improving the performance of a classifier 
that predicts probabilities on an imbalanced classifica-
tion problem is to tune the threshold used to map prob-
abilities to class labels [37]. Optimal thresholds cannot be 
calculated from the data on predictors and the actual dis-
ease status alone. Instead, the choice of threshold should 
reflect the harms of false positives and the benefits of 
true positives, which vary depending on the clinical con-
text [38]. Moving the threshold here aims to improve the 
predictive models’ performance as intermediate steps. 
We provided the final calibrated probabilities for clini-
cians to determine the threshold values to discriminate 
between high-risk and low-risk patients by considering 
different clinical considerations. Testing the probability 
values for each positive sample makes it simple to decide 
on the threshold for the optimal metrics. Then, using 
cross-validation, the threshold with the best metrics for 
the training set was chosen. As a result, using the ROC 
curve method, the optimal threshold for this imbalanced 
data was 0.3.

Stacking ensemble learning
Stacking is an ensemble machine-learning approach 
to determining the ideal way to integrate the forecasts 
from various effective machine-learning models [39]. 
Unlike bagging and boosting, it uses a separate model (a 
meta-learner) to combine the results of the base mod-
els (constituent models) [40]. Stacking-based models are 
mostly heterogeneous (where bagging and boosting use 
homogenous base models) as they tend to train differ-
ent kinds (algorithmically different) of base models [40]. 
The meta-learner takes the outputs of base models as 
input and gives the prediction as to the final output. The 
stacking-based model can be visualized in levels and has 
at least two levels of the models. The first level typically 
trains two or more base learners. The second level might 
be a single meta-learner that utilizes the base model pre-
dictions as input and gives the ultimate result as output 
[41]. In this case, stochastic gradient boosting is used 
as a meta-learner. The other selected algorithms (logis-
tic regression, naive Bayes, random forest, and bagged 

tree) are used as a base learner under this model stacking 
learning process.

Calibrating probability estimates
Calibrated probabilities mean that the probability reflects 
the likelihood of actual events. Sometimes uncalibrated 
probabilities are biased, overconfident/under-confident 
[42]. Probability calibration is standard for machine 
learning models not trained using a probabilistic frame-
work and for training data with a skewed distribution, 
like imbalanced classification tasks [43]. Most of the 
algorithms either predict a probability-like score or a 
class label. These must be coerced to produce a proba-
bility-like score. Naturally, these algorithms require their 
“probabilities” to be calibrated before use [44]. Hence, the 
probability and probability-like scores predicted by the 
specified algorithms were calibrated to adjust the imbal-
anced class. After calibrating the predicted scores from 
each model, an individual-level model comparison was 
performed before stacking the models.

Experimental setups
Once the preprocessing steps, like data exploration and 
feature engineering, have been completed, the origi-
nal data set was split into training and testing data sets 
with a 70:30 ratio. Due to the imbalance in the data set, 
a 70:30 ratio was chosen over an 80:20 to have more 
positive instances in the test data for better evaluation 
of the predictive models. The proportion of the majority 
to the minority class was attained using a stratified split. 
Accordingly, a total of 278 (21 graft failures) complete 
cases were split into 195 (15 graft failures) and 83 (6 graft 
failures) instances for training and testing sets, respec-
tively. This training experiment was carried out via the 
5-folds cross-validation method. Hence, the training data 
sets were divided into five folds, with equal instances in 
each fold. A learning algorithm was then taught on the 
previous four folds and tested on the current fold for each 
fold. The 5-fold cross-validation technique was repeated 
three times, with the cases ordering shuffled each time, 
to ensure consistent and reliable findings. The train 
function of the Caret package is used for model devel-
opment with their corresponding method for the speci-
fied algorithms. The model development phase starts by 
spot-checking the selected algorithms without tuning to 
their hyperparameters. By marking the value of model 
evaluation metrics, the second step of hyperparameter 
tuning was performed using grid search; then, prob-
ability threshold moving was performed by determin-
ing the optimal threshold values using the ROC method. 
Improvements were recorded through the selected 
evaluation metrics for each phase. In the fourth phase, 
probability calibration was performed using the Platt 
scaling method (method of transforming classification 



Page 8 of 17Mulugeta et al. BMC Medical Informatics and Decision Making           (2023) 23:98 

outputs into a probability distribution over classes) on 
the individual models before applying stacking for a fair 
comparison of models. In the fifth step, model stacking 
ensemble learning was performed, and finally, calibrating 
the probability estimates resulting from model stacking 
was reported as an ultimate risk prediction result. The 
workflow of the experimentation is summarized in Fig. 2.

Results
Study characteristics
We considered completed cases of 278 kidney transplant 
recipients, of which 21 patients had graft failure. The 
number of events per predictor is three, where seven top 
important predictors were considered throughout the 
experiment. 74.8% of the patients were male, and 25.2% 
were female. The median age of the patients was 37 years. 
About 52.2% of the patients performed allograft trans-
plantation outside the country, and 47.8% transplanted 
locally in the center. The results of the experiments are 
presented and discussed in the following sections.

Spot-checking algorithms
At the initial step of the experimentation, six selected 
probabilistic and tree-based ensemble algorithms were 
spot-checked without tuning their hyperparameters 
(base models). Table  2 provides model evaluation met-
rics’ results for each model. From the table, it is clear that 
those algorithms suffered from a class imbalance prob-
lem. A general overview of results in Table 2; Fig. 3 (prob-
abilities predicted from each model were far from the 
actual values, 45o line) shows those models performed 
poorly at their base level. Even if all the model perfor-
mance evaluation metrics are important for class imbal-
ance classification problems, the first (AUC-ROC) and 
the last (Brier Score) metrics are critical to evaluate the 
discrimination and calibration performance of the model, 
respectively. As a result, the random forest has this stage’s 
best discrimination performance (indicated by the largest 
AUC-ROC) and most calibrated probabilities (shown by 
the smallest brier score and reliability plot approaches to 
the ideal line in Fig. 3).

Hyperparameters tuning
After a spot-check of algorithms, we performed hyper-
parameter tuning using the grid search method. Table 3 
provides results for the hyperparameter tuning. The table 
shows that most metrics estimates improved (indicated 
by ↑) after tuning the base models’ hyperparameters. Fig-
ure 4 also supports the improvements from hyperparam-
eter tuning, in which there is a shift in the calibration plot 
towards the ideal line compared to the calibration for the 
base models. The bagged tree (TBAG) discriminates best 
in this scenario, whereas the random forest has the most 
calibrated probabilities.

Probability threshold moving
The optimal threshold was calculated using the ROC 
curve method and found to be 0.3. The result of the 
experimentation of moving a standard threshold of 0.5 to 
the data-driven optimal threshold of 0.3 mainly improved 
recall (sensitivity, true positive rate) and F measure (har-
monic mean of recall and precision). Moving the thresh-
old reduces false negative misclassification errors, which 
is more costly from a clinical perspective. Like the hyper-
parameter tuning step, Table 4 indicates that the bagged 

Table 2 Evaluation Metrics for Spot-checked Base Models
Algorithms AUC-ROC Precision Recall F Brier Score
LR 0.7251082 0.4000000 0.3333333 0.3636364 0.07386198

NB 0.7424242 0.2352941 0.6666667 0.3478261 0.17025580

ANN 0.7619048 0.5714286 0.6666667 0.6153846 0.06708493

RF 0.8116883 0.6666667 0.3333333 0.4444444 0.05335981
TBAG 0.7835498 0.2000000 0.1666667 0.1818182 0.07612530

SGB 0.7240260 0.4000000 0.3333333 0.3636364 0.05739256
Bold: stands for selected as the best across the column.

Fig. 2 Experimental Procedures of the Study
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tree has the highest discrimination performance, and the 
random forest produces the most calibrated probability 
estimates.

Calibrating probability estimates before stacking the 
models
In this scenario, probability estimates predicted from 
individual models were calibrated to compare the dis-
crimination and calibration performance of the mod-
els. For the calibrated models, we produce a clustered 
bar chart (Fig. 5) and reliability plot (Fig. 6) to compare 
the discrimination and calibration performance of the 
respective model before blending (stacking) the models 
into a single meta-model (considering the updates from 
parameter tuning and threshold moving approaches). As 
indicated in Table  5, this calibration process improved 
all the probability estimates (as noted in the brier score). 
Unlike the threshold moving, the improvement from 

calibrating probabilities touches all columns of the evalu-
ation metrics table. In this stage, the random forest and 
the bagged tree have almost the same discriminating per-
formance, indicated by an approximately 84% AUC-ROC.

Regarding model calibration, even if the predicted 
probability from stochastic gradient boosting seems 
well approached to the actual values indicated by the 
45o straight line in Fig. 6, the random forest still has the 
smallest brier score in Table  5. As graphical presenta-
tions can be somewhat subjective, it is better to accept 
the exact Brier score figures. The lines on this plot are 
overlapping, and random forest and stochastic gradient 
boosting go together with well-calibrated lines. There-
fore, the individual-level model comparison suggests that 
random forest is the most calibrated model to predict the 
risk of graft failure. Figure 6 also insights that stochastic 
gradient boosting more benefited from probability cali-
bration. This result may suggest that stochastic gradient 

Table 3 Evaluation Metrics for the Tuned Models
Algorithms AUC-ROC Precision Recall F Brier Score
LR 0.7251082 0.4000000 0.3333333 0.3636364 0.07386198

NB 0.755411↑ 0.2500000↑ 0.1666667 0.2000000 0.0916961↑
ANN 0.7489171 0.4285714 0.5000000 0.4615385 0.0629928↑
RF 0.821428↑ 1.0000000↑ 0.3333333 0.5000000↑ 0.0528066↑
TBAG 0.837662↑ 0.3333333↑ 0.500000↑ 0.4000000↑ 0.0694168↑
SGB 0.767316↑ 0.5000000↑ 0.500000↑ 0.5000000↑ 0.0547609↑
Bold: column’s best estimates, ↑: shows improvement from previous approaches

Fig. 3 Reliability Plot for the Base Models
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boosting can be used as a meta-learner for stacking 
ensemble learning to end with calibrated risk estimates.

Models stacking ensemble learning
The above results from the heterogeneous models were 
used as input for the selected meta-learner for this learn-
ing process. This meta-learner, developed by the base 
learner results, predicts the probabilities using a testing 
data set. We experimented with different combinations of 
base learners by rotating each model as a meta-learner. 
A promising result (regarding discrimination and cali-
bration) was obtained when logistic regression, naive 
Bayes, random forest, and bagged tree were used as base 
learners. Stochastic gradient boosting was used as a 
meta-learner, which supports the above individual model 
calibration result’s suggestion. Table  6 shows a signifi-
cant improvement in AUC-ROC and a slight improve-
ment in other metrics. Since this result is used as the final 

risk prediction estimates, the stacked modal also needs 
calibration, and the result of the calibrated model is pre-
sented in Table 7.

Calibrating probability estimates resulted from stacked 
model
The final result of stacking ensemble learning has been 
calibrated, and the improvement of calibration has been 
presented in Table 7; Figs. 7 and 8. Table 7 shows that the 
estimates for all metrics except AUC get improved. The 
ROC curve and reliability plot in Figs. 7 and 8 also sup-
port this improvement. After a lot of work, we ended up 
with calibrated enough results. Therefore, the calibrated 
probabilities resulting from stacking ensemble learning 
are reported as absolute risks of renal graft failure for 
individual patients.

Table 4 Evaluation Metrics for Threshold Moving Experiment
Algorithms AUC-ROC Precision Recall F Brier Score
LR 0.7251082 0.4000000 0.6666667↑ 0.5000000↑ 0.07386198

NB 0.7554113 0.2500000 0.1666667 0.2000000 0.09169611

ANN 0.7489177 0.3636364 0.6666667↑ 0.4705882↑ 0.05938057

RF 0.8214286 0.3333333 0.3333333 0.3333333 0.05280660
TBAG 0.8376623 0.3076923 0.6666667↑ 0.4210526↑ 0.06941687

SGB 0.7673160 0.5000000 0.6666667↑ 0.5714286↑ 0.05476091
Bold: column’s best estimates,↑: shows improvement from the previous approach

Fig. 4 Reliability Plot for the Tuned Models
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Feature importance
As mentioned in the feature selection section, we selected 
seven predictors to train and test the specified models. 
Figure  9 shows the relative importance of these chosen 
predictors in predicting graft failure. As a result, chronic 
rejections, blood urea nitrogen, the number of post-
transplant admissions, phosphorus level, acute rejec-
tions, and urological complications are the top essential 
predictors of the risk of graft failure. Figure  9 is pro-
duced from the random forest mode, the top-performing 
model in terms of discrimination and calibration in the 
individual-level model comparison. Even if the bagged 
tree has equally performed with random forest and sto-
chastic gradient boosting provides promising results in 
the stacking ensemble approach, due to its robustness 
for feature selection, random forest is used to select the 
important predictors.

Discussions
This study was motivated to predict the risk of renal graft 
failures among kidney transplant recipients in the Ethio-
pian national kidney transplantation center by develop-
ing an ML-based clinical prediction model. Since the 
data set was imbalanced, different class imbalance han-
dling techniques and methods of improving results were 
performed before reporting the final risk estimates. After 
a merit-based algorithms selection, extensive experi-
ments were performed, ranging from spot-checking 
the base models without hyperparameter tuning to the 
calibrated stacking ensemble learning. Accordingly, 

hyperparameter tuning, probability threshold moving, 
calibrating individual models, stacking ensemble learn-
ing, and calibrating the stacked model demonstrate 
progressive improvements. Especially probability cali-
bration and model stacking illustrate outstanding gains 
in the calibration and discrimination performance of the 
models, respectively. Even if the results are not displayed 
here, we demonstrate the effectiveness of resampling in 
improving outcomes. The result suggests that threshold 
moving and probability calibration well substitutes the 
resampling technique with a significant plurality. There-
fore, these imbalance handling methods outperform 
resampling for prediction models where probability esti-
mates are needed. This result is supported by [13], which 
states that threshold moving and probability calibration 
are more helpful than resampling in clinical prediction. 
Thus, prediction models working with imbalances should 
spot-check techniques to determine the effective han-
dling method, rather than applying a single approach. 
It is also good practice to consider integrating different 
techniques for better prediction improvements, which is 
well established by the current study.

For clinical predictions that require risk estimates, lit-
erature [22] recommends choosing algorithms that pro-
vide probability estimates directly. But, after calibrating 
the predicted probabilities, tree-based ensembles (ran-
dom forest, bagged tree, stochastic gradient boosting, in 
this case) outperform the probabilistic (logistic regres-
sion, naive Bayes, and artificial neural networks) mod-
els, which is supported by [43]. We also realized that 

Fig. 5 Bar Chart for the Discrimination and Calibration Performance of Individual Calibrated Models
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comparing those differently configured models (proba-
bilistic and tree-based models) without calibrating the 
predicted scores is not a fair practice. This is because 
the predicted probability-like scores from non-prob-
abilistic models may not be interpreted as a probabil-
ity (may even exceed one). The result suggests that the 

Table 5 Evaluation Metrics for Calibrating Probabilities for Each Model
Algorithms AUC-ROC Precision Recall F Brier Score
LR 0.7272727 0.4000000 0.3333333 0.3636364 0.05823289↑
NB 0.7857143↑ 0.3333333↑ 0.5000000↑ 0.4000000↑ 0.05954727↑
ANN 0.7175325 0.7500000↑ 0.5000000 0.6000000↑ 0.04688012↑
RF 0.8365801↑ 0.6666667↑ 0.3333333 0.4444444↑ 0.04498363↑
TBAG 0.8376623 0.3076923 0.6666667 0.4210526 0.05800087↑
SGB 0.7889610↑ 0.5000000 0.5000000 0.5000000 0.04895868↑
Bold: column’s best estimates, ↑: shows improvement from previous approaches

Table 6 Evaluation Metrics for Models Stacking Learning
Algorithms AUC-ROC Precision Recall F Brier Score
Stack SGB 0.8787879↑ 0.4 0.6666667↑ 0.5 0.05775711

Table 7 Evaluation Metrics for Calibrated Stacked Model
Algorithms AUC-ROC Precision Recall F Brier Score
Stack SGB 0.8787879 0.5714286↑ 0.6666667↑ 0.6153846↑ 0.04953749↑

Fig. 6 Reliability Plot for Individual Calibrated Models
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Fig. 7 ROC Curve for the Final Calibrated Probabilities
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tree-based ensemble models benefit more from probabil-
ity calibration.

The individual-level model calibration results suggest 
that random forest and bagged trees have top and equal 
discrimination performance, consistent with a previous 
study [45]. At the same time, the random forest has the 
best calibration performance, supported by a previous 
study [46]. The stacking ensemble, which uses stochas-
tic gradient boosting as a meta-learner, shows significant 
improvements compared to the individual model’s dis-
crimination and calibration performances, and this result 
is consistent with [47]. Therefore, the random forest has 
the top discrimination and calibration performance at the 
individual-level model comparison. In contrast, stochas-
tic gradient boosting as a meta-learner has promising 
discrimination and calibration performance in stacking-
level model comparisons. From the above successive 
results, we can conclude that bagging (bagged trees and 
random forest), boosting (stochastic gradient boosting), 
and stacking (blending the four models using stochastic 
gradient boosting as a meta-learner) are great choices for 
clinical predictions working on the imbalanced data. The 

results also showed insights that, along with discrimina-
tion, the calibration performance of the prediction model 
should be evaluated to enhance the clinical utility of the 
model. The model with the best discrimination perfor-
mance may not be calibrated enough for clinical decision 
support.

Finally, the calibrated probability estimates predicted 
from the stacking ensemble were provided as the ulti-
mate risk estimates for individual patients’ tendency 
to graft failure. These calibrated probability estimates 
enable clinical experts to determine the optimal thresh-
old in light of different clinical considerations to stratify 
patients as high-risk or low-risk of graft failure. The final 
calibrated model from this study can be used as a deci-
sion support system in the transplant center to determine 
the patient-specific risk of graft failure.

Regarding feature importance, chronic rejection, blood 
urea nitrogen, number of post-transplant admissions, 
phosphorus level, acute rejection, and urological com-
plications were the top predictors of graft failure. From 
a pooled analysis of results from probabilistic and tree-
based models, it is evident that patients with chronic 

Fig. 8 Reliability Plot for the Final Calibrated Probabilities
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rejection, those with high blood urea nitrogen levels, 
those who are frequently admitted, those with high phos-
phorus levels, those with acute rejection, and those with 
urological complications are exposed to the risk of graft 
failure. Previous studies support these findings [48–50].

This study has limitations; applying innovative mod-
els may not guarantee itself, but data matters. The major 
limitations of this study are the small data and minimum 
event per predictor. Therefore, consideration of further 
research that reproduces the current approaches with 
large data is recommended.

Conclusions
Tree-based ensembles, using the help of probability cali-
bration, outperform the probabilistic models in terms 
of discrimination and calibration performance. Model 
stacking ensemble has extraordinary performance as 
compared to individual model performance. In a general 
sense, bagging, boosting, and stacking, with probability 
calibration, are good choices for clinical risk predictions 
working on imbalanced data. It is worthwhile to con-
sider model calibration and model discrimination when 
assessing clinical risk predictions to enhance the clinical 
utility of the prediction model. Data-driven probability 
thresholds improve the prediction result compared to the 
natural threshold of 0.5. Integrating various techniques 
in a systematic framework is a smart strategy to improve 

prediction results from imbalanced data. Clinical experts 
for kidney transplantation may employ this final cali-
brated model as a decision support system with their dif-
ferent clinical considerations. It is also investigated that 
graft failure is more common in patients with chronic 
rejection, high blood urea nitrogen levels, frequent hos-
pitalizations, high phosphorus levels, acute rejection, 
and urological complications. Accordingly, those patients 
need close observation and critical healthcare.
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