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Abstract 

Background Biomedical ontologies are representations of biomedical knowledge that provide terms with precisely 
defined meanings. They play a vital role in facilitating biomedical research in a cross-disciplinary manner. Qual-
ity issues of biomedical ontologies will hinder their effective usage. One such quality issue is missing concepts. In 
this study, we introduce a logical definition-based approach to identify potential missing concepts in SNOMED CT. 
A unique contribution of our approach is that it is capable of obtaining both logical definitions and fully specified 
names for potential missing concepts.

Method The logical definitions of unrelated pairs of fully defined concepts in non-lattice subgraphs that indicate 
quality issues are intersected to generate the logical definitions of potential missing concepts. A text summarization 
model (called PEGASUS) is fine-tuned to predict the fully specified names of the potential missing concepts from 
their generated logical definitions. Furthermore, the identified potential missing concepts are validated using external 
resources including the Unified Medical Language System (UMLS), biomedical literature in PubMed, and a newer ver-
sion of SNOMED CT.

Results From the March 2021 US Edition of SNOMED CT, we obtained a total of 30,313 unique logical definitions for 
potential missing concepts through the intersecting process. We fine-tuned a PEGASUS summarization model with 
289,169 training instances and tested it on 36,146 instances. The model achieved 72.83 of ROUGE-1, 51.06 of ROUGE-
2, and 71.76 of ROUGE-L on the test dataset. The model correctly predicted 11,549 out of 36,146 fully specified names 
in the test dataset. Applying the fine-tuned model on the 30,313 unique logical definitions, 23,031 total potential 
missing concepts were identified. Out of these, a total of 2,312 (10.04%) were automatically validated by either of the 
three resources.

Conclusions The results showed that our logical definition-based approach for identification of potential missing 
concepts in SNOMED CT is encouraging. Nevertheless, there is still room for improving the performance of naming 
concepts based on logical definitions.
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Background
An ontology is a knowledge representation artifact, con-
taining a taxonomy as proper part. Representations of 
an ontology are intended to designate certain combina-
tions of classes with precisely defined meanings, and 
relations between them [1]. Ontology terms (also called 
classes or concepts) are typically common nouns or 
noun phrases  [2]. Ontology terms are linked together 
through relations such as “is-a (subtype)” or “part-of” that 
form the graph structure of the ontology [2]. Biomedical 
ontologies provide solutions to manage, curate, and ana-
lyze huge volumes of digital unstructured textual content 
generated in biomedical research and practice. They play 
a vital role in knowledge management; data integration, 
exchange and semantic interoperability; and decision 
support and reasoning [3].

Although ontology curators seek ways to ensure that 
the ontologies are as accurate and comprehensive as 
possible, quality issues inevitably exist. Besides, knowl-
edge in the biomedical domain is constantly growing and 
accordingly biomedical ontologies are evolving. Thus, 
quality assurance (QA) of biomedical ontologies in vari-
ous aspects needs to be performed such as maintaining 
accuracy, consistency, completeness, and soundness  [4]. 
However, this can be complicated and infeasible to per-
form manually for large ontologies with complex struc-
tures. Therefore, automated or semi-automated tools that 
uncover potential quality issues are critical to relieve the 
burden of manual review.

In this work, we focus on the quality issue of missing 
concepts (related to completeness) in SNOMED CT. We 
first develop an approach that leverages logical defini-
tions of hierarchically unrelated concept pairs in non-
lattice subgraphs to come up with logical definitions of 
potential missing concepts, where a hierarchically unre-
lated concept pair refers to two concepts without an 

IS-A relationship. Then, we fine-tune a text summariza-
tion model (called PEGASUS) to predict the fully speci-
fied names of potential missing concepts from the logical 
definitions. In addition, the potential missing concepts 
we identified are validated in three ways: the Unified 
Medical Language System (UMLS), biomedical litera-
ture in PubMed, and a newer version of SNOMED CT. 
Overall, we identified 23,031 potential missing concepts 
in the March 2021 US Edition of SNOMED CT of which 
2,312 (10.04%) were validated. The result indicated that 
our approach is encouraging to uncover potential missing 
concepts in SNOMED CT as well as being generalizable 
to many other biomedical ontologies. To the best of our 
knowledge, our work is the first that attempts to identify 
potential missing concepts that are equipped with both 
fully specified names and logical definitions.

SNOMED CT
SNOMED CT provides a common language that sup-
ports communication between different specialties and 
sites of care. It plays an important role in indexing, stor-
ing, retrieving, and aggregating clinical data [5]. Specifi-
cally, the SNOMED CT United States (US) Edition is the 
official source of SNOMED CT for use in US healthcare 
systems, combining the content of both the US Extension 
and the International releases of SNOMED CT  [6]. In 
this work, we use the March 2021 release of the US Edi-
tion of SNOMED CT [7].

The core structure of SNOMED CT is provided by its 
logical model. It outlines how the components can be 
managed in an implementation setting to meet a vari-
ety of primary and secondary uses, representing the ter-
minology’s essential content  [8]. The components of the 
logical model shown in Fig. 1 include the identifier, con-
cept descriptions, and relationships. Each SNOMED CT 
component has a unique integer identifier  [9]. Concept 

Fig. 1 SNOMED CT logical model. This figure is adopted and reproduced referencing [8]
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descriptions include the fully specified name (FSN) and 
the synonyms. The FSN is a term that names the meaning 
of a concept in a manner that is intended to be unambigu-
ous and stable across multiple contexts  [10]. A synonym 
is an acceptable way to express the meaning of a con-
cept in a certain language or dialect  [11]. A description 
is marked as the “preferred term” if it is considered the 
most clinically suitable way to express a concept in a clini-
cal record [12]. Relationships reflect associations between 
concepts and are used to logically define the meaning of a 
concept in such a way that can be processed computation-
ally. Relationships include is-a relationship and attribute 
relationship [8]. Each concept other than the root concept 
has at least one is-a relationship and can have as many 
attribute relationships as needed, which form the logical 
definition of the concept.

Non‑lattice subgraphs
Being a lattice is considered to be a desirable property 
of the hierarchical structure of an ontology  [13]. In a 
lattice, any two nodes have a unique maximal shared 
descendant and a unique minimal shared ancestor [14]. 
A pair of concepts that share more than one maximal 
common descendant or minimal common ancestor is 
called a non-lattice pair. Analyzing non-lattice pairs 
themselves may entail redundant analysis as multiple 
non-lattice pairs may have the same maximal common 

descendants. Therefore, to avoid redundancies and sim-
plify analysis, non-lattice subgraphs have been intro-
duced  [15]. Non-lattice subgraphs are often indicative 
of ontology defects such as missing concepts or miss-
ing hierarchical relations. There have been various 
methods developed to compute non-lattice pairs in an 
ontology  [13, 16–18]. A non-lattice subgraph can be 
generated by reversely computing the minimal com-
mon ancestors of the maximal common descendants of 
a non-lattice pair and aggregating all concepts and is-a 
relations between them [17]. Figure 2 shows an exam-
ple of a non-lattice subgraph in the March 2021 release 
of the SNOMED CT (US Edition) generated from the 
non-lattice pair: (“Neoplasm of vulva (disorder)”, “Dis-
order of Bartholin’s gland (disorder)”). The concepts 
in this non-lattice pair share two maximal common 
descendants “Benign neoplasm of Bartholin’s gland (dis-
order)” and “Malignant neoplasm of greater vestibular 
(Bartholin’s) gland (disorder)”. Between the non-lattice 
pair and the maximal common descendants, there 
exist two concepts “Benign neoplasm of vulva (disor-
der)” and “Malignant tumor of vulva (disorder)”. These 
concepts and the is-a relations between them form the 
non-lattice subgraph. Note that the size of a non-lattice 
subgraph is defined as the number of concepts it con-
tains  [14]. Therefore, the above mentioned non-lattice 
subgraph in Fig. 2 is of size 6.

Fig. 2 A non-lattice subgraph of size 6 in SNOMED CT. This non-lattice subgraph is generated from the non-lattice concept pair: (“Neoplasm of vulva 
(disorder)”, “Disorder of Bartholin’s gland (disorder)”)
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Summarization models
Summarization models aim at generating accurate, con-
cise, and linguistically fluent summaries that cover the 
principal information in the input document. While 
extractive summaries contain only words in the input, 
abstractive summaries may include novel words and 
re-phrasings  [19]. This aspect of abstractive summari-
zation is important for proposing concept names from 
logical definitions (and why we have chosen to use such 
a model here) since the names of many intermediate 
concepts do not include words from the names of their 
related concepts. Recent studies such as MASS (Masked 
Sequence to Sequence pre-training) [20], BART (denoising 
sequence-to-sequence pre-training)  [21], and T5 (Text-
to-Text Transfer Transformer)  [22] leverage pre-trained 
transformer-based sequence-to-sequence models. They 
have achieved success in language generation-based tasks 
including abstractive summarization. In 2020, Zhang et al. 
proposed PEGASUS, a sequence-to-sequence abstractive 
summarization model trained with gap-sentence genera-
tion as a pre-training objective  [19]. Unlike above-men-
tioned MASS, BART, and T5 that mask words or smaller 
continuous text spans, PEGASUS masks whole sentences 
from documents and studies strategies for selecting these 
sentences. The architecture of PEGASUS is a standard 
transformer (with both a 16-layer encoder and a 16-layer 
decoder stack). Beyond this, there are two noteworthy 
aspects of PEGASUS that makes it a strong abstractive 
summarization model: it has a specialized pre-training 
algorithm to better learn summaries, and it is pre-trained 
on a very substantial amount of data. The new pre-train-
ing objective in PEGASUS is gap-sentence generation. 
During the pre-training process, important sentences 
(defined as those with the highest n-gram overlap with the 
rest of the document) are masked from the original input 
document. Then these gap-sentences are concatenated 
into a pseudo-summary  [19]. They used two large text 
corpora C4 (Colossal and Cleaned version of Common 
Crawl) [22] and HugeNews for pretraining, and validated 
their PEGASUS model on 12 downstream datasets includ-
ing XSum [23], CNN/Daily Mail [24], NEWSROOM [25], 
Multi-News [26], Gigaword [27], arXiv and PubMed [28], 
BIGPATENT  [29], WikiHow  [30], Reddit TIFU  [31], 
AESLC [32], and BillSum [33]. PEGASUS achieved state-
of-the-art performance on all 12 downstream datasets.

Related work on missing concept identification
A number of ontology quality assurance approaches have 
been investigated to identify missing concepts in bio-
medical ontologies. In general, these can be categorized 
into two types: (1) importing concepts from another 

knowledge source; and (2) exploiting the knowledge 
within the terminology [34].

For example, He et al. have proposed vertical topologi-
cal patterns to import missing concepts from external 
ontologies to SNOMED CT and National Cancer Insti-
tute thesaurus (NCIt)  [35–37]. They have investigated 
instances where different intermediate concepts exist 
between mapped concepts across two ontologies. UMLS 
has been leveraged to map concepts across ontologies. 
Such topological patterns indicated the possibility to 
import concepts from one ontology to another  [35–37]. 
Chandler et  al. proposed a similarity-based approach to 
recommend concepts from a text corpus to SNOMED 
CT [38]. The approach involved extraction of candidates 
from the text corpus that are represented with certain fea-
tures. Then important features were identified and used 
to recommend missing concepts to SNOMED CT. In [39] 
and [40], lexico-syntactic patterns have been explored to 
enrich different biomedical ontologies including NCIt 
from unstructured clinical text.

On the other hand, there have been studies leveraging 
the knowledge within the terminology to identify miss-
ing concepts. For instance, in [15], a specific lexical pat-
tern called “Union-Intersection” in non-lattice subgraphs 
was introduced to suggest potential missing concepts in 
SNOMED CT. In [34] and [41], Zheng et al. have inves-
tigated formal concept analysis (FCA)-based approaches 
leveraging the lexical features of concept names to iden-
tify potential missing concepts in NCIt and SNOMED 
CT. Then the UMLS and biomedical literature in Pub-
Med  [42] were leveraged to automatically validate the 
missing concepts identified. More recently, we explored 
a lexical-based intersection approach based on non-lat-
tice subgraphs to identify potential missing concepts in 
SNOMED CT  [43]. We conducted an order-preserving 
intersection of lexical features of unrelated concept pairs 
in non-lattice subgraphs to suggest potential missing 
concepts, which were further validated by utilizing the 
external knowledge in the UMLS and PubMed.

Regardless of identifying missing concepts based on 
external or internal knowledge, the above-mentioned 
existing works were not capable of providing logical defi-
nitions for missing concepts.

Methods
Our logical definition-based approach has five main steps. 
We first obtain the derived logical definition of each con-
cept. Second, we pre-compute all non-lattice subgraphs 
of SNOMED CT and extract candidate concept pairs. 
Next, we intersect the derived logical definitions of the 
candidate concept pairs to generate the logical definitions 
of the potential missing concepts. Then we fine-tune a 
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PEGASUS text summarization model and use it to pre-
dict the fully specified names of potential missing con-
cepts based on the generated logical definitions. Finally, 
the identified potential missing concepts are validated by 
using external resources including the UMLS, biomedical 
literature in PubMed, and the newer September 2022 US 
Edition of SNOMED CT.

Derived logical definition generation
SNOMED CT releases both stated and inferred logical 
definitions for all concepts. We use inferred logical defi-
nitions of concepts in this work.

A concept’s own logical definition consists of one or 
more attribute groups. Each attribute group consists 
of one or more attribute-value pairs. The attributes are 
grouped to avoid ambiguity as to how they apply [44]. In 
this work, we consider each is-a relation to be in a sepa-
rate attribute group in addition to the existing attrib-
ute groups of the concept. For example, Table  1 shows 
the attribute groups in the logical definition of concept 
“Malignant epithelial neoplasm of thyroid (disorder)”. 
Note that its is-a parent “Malignant tumor of thyroid 
gland (disorder)” is in a separate group in addition to the 
already existing two attribute groups.

A concept’s derived logical definition is obtained by 
aggregating attribute groups from two sources: 

1 the attribute groups in the logical definition of the 
concept itself; and

2 the attribute groups that are more general than those 
obtained above.

Given an attribute group G1 with attribute-value 
pairs {(r(1,1), v(1,1)), (r(1,2), v(1,2)), . . . , (r(1,m), v(1,m))} and 
another attribute group G2 with attribute-value pairs 
{(r(2,1), v(2,1)), (r(2,2), v(2,2)), . . . , (r(2,n), v(2,n))} where 
G1  = G2 . If for each attribute-value pair (r(2,j), v(2,j)) in 
G2 , there exists an attribute-value pair (r(1,i), v(1,i)) in G1 
such that (r(2,j), v(2,j)) is the same as or more general than 
(r(1,i), v(1,i)) , then G2 is considered as more general than 
G1 . Here an attribute-value pair (r2, v2) is considered to 

be more general than another attribute-value pair (r1, v1) 
if one of the following conditions is met: 

1 r1 = r2 and v1 is-a v2 ; or r1 is-a r2 and v1 = v2 ; or r1 
is-a r2 and v1 is-a v2 . For instance, consider the attrib-
ute-value pairs (is-a, “Chelating agent adverse reac-
tion (disorder)”) and (is-a, “Edetate adverse reaction 
(disorder)”). They have the same attribute is-a (i.e., 
r1 = r2 ). Since “Edetate adverse reaction (disorder)” 
is a subtype of “Chelating agent adverse reaction (dis-
order)”, we consider (is-a, “Chelating agent adverse 
reaction (disorder)”) to be more general than (is-a, 
“Edetate adverse reaction (disorder)”).

2 v1 contains an attribute-value pair (rb, v2) in its logi-
cal definition such that ra ◦ rb is a subproperty of r2 
, where r1 = ra or r1 is-a ra , and ◦ denotes a property 
chain. Here, a property chain is a rule used to infer 
the existence of a property from a chain of proper-
ties  [45]. For example, consider the attribute-value 
pairs (Causative agent (attribute), “Sodium calcium 
edetate (substance)”) and (Causative agent (attrib-
ute), “Edetate (substance)”). The concept “Sodium cal-
cium edetate (substance)” has an attribute-value pair 
(Is modification of (attribute), “Edetate (substance)”). 
Since SNOMED CT has the property chain Causative 
agent ◦ Is modification of is a subproperty of Causa-
tive agent, we say that the attribute-value pair (Causa-
tive agent (attribute), “Edetate (substance)”) is more 
general than the attribute-value pair (Causative agent 
(attribute), “Sodium calcium edetate (substance)”).

Figure 3 shows an example where one attribute group 
is more general than another. Here, both the attribute 
groups (1) and (2) have the attribute-value pairs (Patho-
logical process (attribute), “Parasitic process (qualifier 
value)”) and (Causative agent (attribute), “Toxoplasma 
gondii (organism)”) in common. However, the attrib-
ute-value pair (Finding site (attribute), “Structure of eye 
proper (body structure)”) in the attribute group (2) is 
more general than the attribute-value pair (Finding site 
(attribute), “Choroidal structure (body structure)”) in the 
attribute group (1). This is because of the relation: “Cho-
roidal structure (body structure)” is-a “Structure of eye 
proper (body structure)”.

Candidate concept pair generation
As mentioned earlier, non-lattice subgraphs are often 
indicative of various quality issues of biomedical ontol-
ogies. Therefore, we focus on concept pairs in non-
lattice subgraphs to identify missing concepts in this 
work. First we extract all non-lattice subgraphs in the 
March 2021 release of the US Edition of SNOMED CT 
using an efficient non-lattice detection algorithm  [18]. 

Table 1 The three attribute groups in the logical definition of 
concept “Malignant epithelial neoplasm of thyroid (disorder)”

Group Number Logical Definition Group

0 {(Is a, “Malignant tumor of thyroid gland (disorder)”)}

1 {(Is a, “Malignant epithelial neoplasm (disorder)”)}

2 {(Associated morphology (attribute), “Malignant 
epithelial neoplasm - category (morphologic abnor-
mality)”), (Finding site (attribute), “Thyroid structure 
(body structure)”)}
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For simplicity of analysis, we focus on the non-lattice 
subgraphs with size less than 10.

A pair of concepts (A, B) is considered to be a candi-
date pair if it satisfies the following conditions:

• both A and B are within the same non-lattice sub-
graph;

• A and B do not have any direct or indirect is-a rela-
tion between them;

• both A and B are fully defined concepts (i.e., con-
cepts with one or more sufficient definitions that 
can distinguish itself and its subtypes from other 
concepts) [46]; and

• the level of concept A ≥ 10 and the level of con-
cept B ≥ 10 (the level of a concept is the number of 
hops in the longest path from the root to the con-
cept  [47]), ensuring A and B are not very general 
concepts.

For instance, in the non-lattice subgraph shown in 
Fig. 2, the concepts “Neoplasm of vulva (disorder)” and 
“Disorder of Bartholin’s gland (disorder)” satisfy all the 
above conditions and form a candidate pair. Note that 
different non-lattice subgraphs may have some overlap-
ping concepts and hence generate the same candidate 
pair. We remove such duplicated candidate pairs for 
further steps.

Missing concept identification
Given a candidate concept pair, we obtain the logical 
definition of a potential missing concept by intersecting 
their derived logical definitions. In other words, the com-
mon attribute groups in the derived logical definitions of 
the candidate pair form the logical definition of a poten-
tial missing concept.

The logical definition of the potential missing concept 
obtained is further reduced as follows. Let the logical def-
inition of the potential missing concept contain attribute 
groups { G1,G2, ...,Gk }. For an attribute group Gm in this 
logical definition, if there exists another attribute group 
Gn in the same logical definition where Gm is more gen-
eral than Gn , then Gm will be removed from the logical 
definition.

If the logical definition obtained this way already 
exists as the logical definition of an existing concept in 
SNOMED CT, this will be ignored. We also ignore dupli-
cated cases where intersecting different candidate pairs 
yield the same logical definition.

Missing concept naming
Each potential missing concept obtained above only con-
tains a logical definition. They should be aptly named 
before being considered to be included in SNOMED CT. 
In this work, we explore whether deep learning could be 
leveraged to predict the concept’s FSN from the logical 

Fig. 3 Two example attribute groups. Attribute group (2) is more general than attribute group (1)
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definition. We frame this problem as a text summariza-
tion task. The aim is to summarize the logical definitions 
of the missing concepts to come up with their FSNs. To 
achieve this, we fine-tune a PEGASUS text summariza-
tion model.

Data preparation
We use all existing concepts in SNOMED CT and their 
logical definitions for our fine-tuning experiments. The 
March 2021 release of the US Edition of SNOMED CT 
contains 361,461 concepts in total. We split these con-
cepts into three datasets as follows: training set with 
289,169 concepts (80%), validation set with 36,146 con-
cepts (10%), and testing set with 36,146 concepts (10%).

The PEGAUS model is provided with the logical defini-
tions and FSNs of the concepts. The model is fine-tuned 
to summarize logical definitions to FSNs. The logical 
definitions need to be converted to text before feeding 
them to the model. We converted each logical definition 
of a concept to a sentence where each attribute-value-
pair was separated by a comma. For instance, the concept 
“Product containing digoxin (medicinal product)” has two 
attribute-value pairs in its logical definition:

{(Is a, “Product containing glycoside (product)”)} and
{(Has active ingredient, “Digoxin (substance)”)}

These are converted to a sentence as follows: “Is a Prod-
uct containing glycoside (product), Has active ingredient 
Digoxin (substance).”

Fine‑tuning PEGASUS
We fine-tune the PEGASUS model up to 50 epochs and 
pick the checkpoint with the best validation perfor-
mance. Table 2 summarizes the parameters used for fine-
tuning. We use the AdamW optimizer [48] with an initial 
learning rate of 5e-5 which was linearly decreased during 
the fine-tuning process.

Our evaluation metric is Recall-Oriented Understudy 
for Gisting Evaluation (ROUGE), which is widely used 
for evaluating automated summarization in natural lan-
guage processing. ROUGE compares an automatically 
produced summary against a reference summary  [49]. 
ROUGE-N is an n-gram recall between a candidate sum-
mary and a set of reference summaries. ROUGE-N is 
computed as follows [49]:

(1)ROUGE − N =

∑

S∈{ReferenceSummaries}

∑

gramn∈S
Countmatch(gramn)

∑

S∈{ReferenceSummaries}

∑

gramn∈S
Count(gramn)

where ReferenceSummaries are the summaries we know 
are correct (i.e., the actual FSNs of concepts in the test-
ing set), Countmatch(gramn) is the number of matching 
n-grams that occur in both the reference and the pro-
posed summary (i.e., the FSN summarized by the model), 
and Count(gramn) is the number of n-grams in the refer-
ence summaries.

In this work, we calculate ROUGE-1 (unigram based 
scoring), ROUGE-2 (bigram based scoring), and ROUGE-
L (longest common subsequence based scoring) [50].

Missing concept name validation
We validate the predicted names of the potential missing 
concepts by leveraging three sources: (1) external termi-
nologies in the UMLS; (2) biomedical literature in Pub-
Med; and (3) a newer release of SNOMED CT.

Normalization
The FSNs of the potential missing concepts may not 
appear in the same form in the three sources mentioned 
above. Some words may be in their singular/plural forms 
or may be different but synonymous. Therefore, to handle 
such situations and ensure effective coverage when the 
FSNs are matched with other FSNs/other ontology con-
cept names/biomedical text, normalization is performed 
as follows. First we delete extra white spaces, convert the 
name to lower case, and conduct lemmatization. We use 
the open-source python library Natural Language Toolkit 
(NLTK) for this step  [51]. Then, if the name includes 
words corresponding to other concepts in SNOMED 
CT, we replace such words with the preferred synonym 
term of the corresponding SNOMED CT concept. For 
example, the word “dyspepsia” appears as a synonym 
of the SNOMED CT concept “Indigestion (finding)” of 
which “Indigestion” is the preferred term. So, we replace 

Table 2 The hyperparameters of fine-tuned PEGASUS

Parameter Value

Learning rate 5e-5

Batch size per GPU 32

Maximum epochs 50

Optimizer AdamW

Max input tokens 1024

Max target tokens 128

Metric for best model Loss
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the word “dyspepsia” with “indigestion”. Finally, the stop 
words are removed from the name.

UMLS‑based validation
The UMLS integrates many biomedical terminologies 
including SNOMED CT, Gene Ontology (GO), Medi-
cal Subject Headings (MeSH), and Human Phenotype 
Ontology (HPO) [52]. It contains over 16 million concept 
names from 218 source vocabularies, which are aggre-
gated through more than 4 million UMLS concepts [53]. 
The basic building blocks of the UMLS are called atoms, 
which are concept names from different source vocabu-
laries. Every UMLS atom is assigned an Atom Unique 
Identifier (AUI). The atoms from different vocabular-
ies having the same meaning (i.e. they are synonymous) 
are grouped together to form a UMLS concept with a 
Concept Unique Identifier (CUI)  [54]. For example, the 
UMLS concept “Kidney Diseases” (with CUI C0022658) 
has corresponding atom “Kidney Disease” (with AUI 
A0427003) from MeSH and atom “Disease of kidney” 
from SNOMED CT (with AUI A3399122). In this work, 
we leverage the concepts that are in English in the 
2022-AA-full version of the UMLS.

In the UMLS-based validation, we similarly normalize 
all the UMLS atoms and check whether a match can be 
obtained between a normalized FSN of a potential miss-
ing concept and a normalized UMLS atom without con-
sidering the semantic tag of the FSN. If this is found, then 
we consider the potential missing concept to represent a 
valid case.

PubMed‑based validation
PubMed contains about 34 million citations and abstracts 
of biomedical literature  [55]. We use the 2022 baseline 
release of PubMed and its daily update files up to July 8th, 
2022. If the FSN of a potential missing concept (not con-
sidering the semantic tag) appears as a base noun phrase 
in the title or abstract of a publication in PubMed, then 
it is considered to be a valid case. The requirement of 
base noun phrase is to make sure that the potential miss-
ing concept does not appear as a substring of another 
concept. For instance, a potential missing concept “tho-
racic artery” may exists in an abstract as a substring of 
“fetal thoracic artery”. These cases are ignored as in such 
instances the abstracts are not discussing particularly 
about the potentially missing concept we want to validate.

The title and abstract for each publication are extracted 
from the PubMed release files, and parsed with spaCy to 
identify base noun phrases  [56]. Each base noun phrase 
is then normalized similar to FSN normalization dis-
cussed earlier. As the search space is very large, a sequen-
tial search for potential missing concepts among these 
base noun phrases would be time consuming. Therefore, 

we index the normalized noun phrases using the open-
source search library Apache Lucene  [57]. Then, we 
search the index for the normalized FSNs of potential 
missing concepts (not considering the semantic tag), 
which is significantly faster than directly performing a 
sequential search on the base noun phrases.

Validation based on a newer release of SNOMED CT
We leverage the newer September 2022 US Edition of 
SNOMED CT to check whether any of our identified 
potential missing concepts exists in this newer release. 
To reiterate, the potential missing concepts are obtained 
from the March 2021 US Edition of SNOMED CT. If the 
normalized FSN of a potential missing concept matches 
with a normalized FSN of a concept in the September 
2022 release, or if the logical definition of the potential 
missing concept is the same as the logical definition of a 
concept in the September 2022 release, then the potential 
missing concept is considered to be a valid case.

Results
Candidate concept pair generation
There exists a total of 361,461 concepts in the March 
2021 release of the US Edition of SNOMED CT. We 
obtained the derived logical definitions for all the con-
cepts. There also exist 236,291 non-lattice subgraphs 
in this version of SNOMED CT in total. Out of these, 
43,923 are with size ≤ 10 , which contained 92,099 
unique candidate pairs.

Missing concept identification
Intersecting the derived logical definitions of 92,099 can-
didate pairs resulted in a total of 30,313 unique potential 
missing concepts with logical definitions.

Missing concept naming
We performed our fine-tuning experiments on a Linux 
server running CentOS 7.9.2009 with 8 NVIDIA A100 
GPUs. Fine-tuning took 8 hours 2 minutes and 46 seconds 
in total. Figure 4 shows a plot of the validation loss at each 
epoch. The best model was found to be at the 27th epoch. 
The best model achieved ROUGE-1 of 72.83, ROUGE-2 
of 51.06, and ROUGE-L of 71.76 on the test dataset.

We also compared the model’s prediction of the FSNs 
of the concepts in the test set with their actual FSNs after 
normalizing both. It was seen that the model correctly 
predicted 11,549 out of 36,146 concepts from the test 
dataset. Table  3 includes 5 examples of correct predic-
tions by the model. In addition, there were 15 predicted 
FSNs of which only the semantic tag was different.

To obtain the FSNs of the 30,313 potential missing 
concepts, we used the best model found earlier with the 
logical definitions of these potential missing concepts. 
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The model predicted 27,289 unique FSNs. Note that 
there were certain cases where the model predicted 
the same FSN for multiple potential missing concepts. 
We further checked if these FSNs already exist as FSNs 
for other concepts in the same SNOMED CT release. 

It was seen that the 4,089 FSNs matched with FSNs of 
existing concepts after normalization. In addition, 169 
FSNs were observed to be matched with FSNs of con-
cepts where only the semantic tag was different after 
normalization.

Fig. 4 Validation loss throughout the fine-tuning process. The best model was found to be at epoch 27

Table 3 Five correctly predicted concept FSNs in the test set by the PEGASUS mode

Logical definition Correctly predicted FSN

{(Is a, “Acute otitis media (disorder)”)} Acute myringitis (disorder)

{(Is a, “Myringitis (disorder)”)}

{(Finding site (attribute), “Tympanic membrane structure (body structure)”),

(Associated morphology (attribute), “Acute inflammation (morphologic abnormality)”)}

{(Clinical course (attribute), “Sudden onset AND/OR short duration (qualifier value)”)}

{(Is a, “Chest pain (finding)”)} Dull chest pain (finding)

{(Is a, “Dull pain (finding)”)}

{(Finding site (attribute), “Thoracic structure (body structure)”)}

{(Is a, “Ergot alkaloid measurement (procedure)”)} Lysergic acid diethylamide measurement 
(procedure)

{(Component (attribute), “Lysergic acid diethylamide (substance)”)}

{(Method (attribute), “Measurement - action (qualifier value)”)}

{(Is a, “Medicinal product categorized by structure (product)”)} Product containing carbamazepine 
(medicinal product)

{(Has active ingredient (attribute), “Carbamazepine (substance)”)}

{(Is a, “Foreign body in bronchus (disorder)”)} Foreign body in main bronchus (disorder)

{(Finding site (attribute), “Main bronchus structure (body structure)”),

(Associated morphology (attribute), “Foreign body (morphologic abnormality)”)}
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The remaining 23,031 concepts were considered as 
not already existing in SNOMED CT (hence poten-
tially missing) and further validated by external 
resources.

Missing concept validation
The UMLS-based validation revealed 1,227 out of 23,031 
potential missing concepts existed in external terminolo-
gies in the UMLS. Table 4 demonstrates five examples of 
missing concepts validated by the UMLS. For instance, 
the missing concept with the FSN “Cutaneous infection 
(disorder)” was mapped to the UMLS atom “Cutaneous 
infections” with the AUI A24682086, which is a Human 
Phenotype Ontology (HPO) concept grouped under the 
UMLS CUI C1853193.

The PubMed-based validation resulted in 1,265 out 
of 23,031 potential missing concepts being validated by 
biomedical literature. Table  5 demonstrates five exam-
ples of missing concepts validated through PubMed. For 

example, the missing concept with the FSN “Pulmonary 
artery operation (procedure)” was found to be existing 
in the article with the PubMed ID (PMID) 20072857. 
This missing concept was found in the title of this arti-
cle: “Lung cysts following pulmonary artery operations: 
diagnostic and therapeutic implications”.

Regarding validation using a newer version of 
SNOMED CT, there were 14,329 newly added con-
cepts in the newer September 2022 US Edition com-
pared with the March 2021 US Edition. We found that 
138 missing concepts identified by our approach exist 
in the newer version. Out of these, 29 missing concepts 
had the same FSN and the same logical definitions as 
with the matched concepts in the newer SNOMED CT 
release. In 62 out of the 138 validated missing concepts, 
matching concepts with the same FSNs were found in 
the newer SNOMED CT release, however, with different 
logical definitions. On the other hand, the logical defini-
tions of 47 validated concepts were matched with the 

Table 4 Five examples of potential missing concepts validated by the UMLS

Missing concept FSN Missing concept logical definitions Mapped UMLS atom name/AUI/CUI

Primary cerebellar neoplasm 
(disorder)

{(Is a, “Neoplasm of cerebrum (disorder)”)} Primary Cerebellar Neoplasm/
A1639672(MSH)/C0750998

{(Finding site (attribute), “Structure of cerebrum (body structure)”),

(Associated morphology (attribute), “Neoplasm (morphologic abnormality)”)}

Cutaneous infection (disorder) {(Is a, “Infection of skin (disorder)”)} Cutaneous infections/
A24682086(HPO)/C1853193

{(Finding site (attribute), “Skin structure (body structure)”),

(Associated morphology (attribute),

“Morphologically abnormal structure (morphologic abnormality)”)}

{(Finding site (attribute), “Skin structure (body structure)”),

(Pathological process (attribute), “Infectious process (qualifier value)”)}

Congenital anomaly of lacrimal 
apparatus (disorder)

{(Is a, “Congenital anomaly of lacrimal system (disorder)”)} congenital anomalies of lacrimal 
apparatus/A21020760(MEDCIN)/
C3509790

{(Finding site (attribute), “Structure of lacrimal apparatus (body structure)”),

(Associated morphology (attribute),

“Morphologically abnormal structure (morphologic abnormality)”),

(Occurrence (attribute), “Congenital (qualifier value)”),

(Pathological process (attribute),

“Pathological developmental process (qualifier value)”)}

Lesion of foot (disorder) {(Is a, “Disorder of foot (disorder)”)} lesions feet/A13728295(MEDCIN)/
C0744147

{(Finding site (attribute), “Foot structure (body structure)”),

(Associated morphology (attribute), “Lesion (morphologic abnormality)”)}

Injury of jugular vein (disorder) {(Is a, “Injury to blood vessel of neck (disorder)”)} injury of jugular vein/
A27160412(MEDCIN)/C0347703

{(Is a, “Injury of systemic vein (disorder)”)}

{(Finding site (attribute), “Structure of jugular vein (body structure)”}

{(Finding site (attribute), “Structure of vein of neck (body structure)”),

(Associated morphology (attribute), “Damage (morphologic abnormality)”)}
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logical definitions of concepts in the newer SNOMED 
CT release, however, their FSNs were found to be dif-
ferent. Table  6 demonstrates five examples of missing 
concepts that were validated this way. For instance, the 
missing concept “Pain of right knee region” had the same 
FSN and the logical definitions as the concept with the 
SNOMED CT identifier 468241000124105 in the Sep-
tember 2022 US Edition of SNOMED CT. In addition, 
there are 2 separate cases where the predicted semantic 
tag is different from the semantic tag of the SNOMED 
CT concept. These were not considered to be validated 
by this method.

In total, 2,312 out of 23,031 (10.04%) potential miss-
ing concepts were validated by either of the three meth-
ods. Note that some potential missing concepts were 
validated by multiple methods. UMLS and PubMed both 
validated 310 potential missing concepts. UMLS and the 
newer SNOMED CT release both validated 5. On the 
other hand, 6 potential missing concepts were validated 
by both PubMed and the newer SNOMED CT release. 
All three methods together validated 3.

Discussion
In this paper, we explored a logical definition-based 
approach to identify potential missing concepts in 
SNOMED CT. We intersected the derived logical defi-
nitions of certain candidate concept pairs to obtain the 
logical definitions of the potential missing concepts. A 
PEGASUS text summarization model was trained to pre-
dict fully specified names of the potential missing con-
cepts. This approach has the potential to be applied to 
other biomedical ontologies with logical definitions.

Significance of the approach
According to our knowledge, none of the related work 
in identifying missing concepts in biomedical ontolo-
gies is capable of also suggesting logical definitions of the 
missing concepts. Constructing logical definitions for 
concepts is not an easy task, requiring domain expertise 
as well as deep knowledge of SNOMED CT. Therefore, 
our approach reduces a considerable manual effort when 
compared with similar work. In addition, if the sug-
gested logical definition and the corresponding concept 

Table 5 Five example of missing concepts validated by biomedical literature in PubMed

Missing concept FSN Missing concept logical definition PMID/sentence mentioning the missing concept

Pulmonary artery operation 
(procedure)

{(Is a, “Operation on the pulmonary trunk and arteries (procedure)”)} 20072857/“Lung cysts following pulmonary artery 
operations: diagnostic and therapeutic implications”

{(Method (attribute), “Surgical action (qualifier value)”),

(Procedure site (attribute),

“Pulmonary artery structure (body structure)”)}

Atrophy of choroid (disorder) {(Is a, “Choroidal atrophy (finding)”)} 1205676/“... escapes from one of the viscera to lodge 
in the sensitized area of the atrophic choroid ...”

{(Is a, “Choroidal degeneration (disorder)”)}

{(Finding site (attribute), “Choroidal structure (body structure)”),

(Associated morphology, “Atrophy (morphologic abnormality)”)}

Left ventricular septal defect 
(disorder)

{(Is a, “Left ventricular abnormality (disorder)”)} 11083711/“... repair of a left ventricular septal  defect 
after acute myocardial infarction.”

“Left cardiac ventricular structure (body structure)”),

(Associated morphology,

“Morphologically abnormal structure (morphologic abnormality)”)}

Peripheral arterial stent-graft 
(physical object)

{(Is a, “Peripheral artery stent (physical object)”)} 10674453/“Intravascular ultrasound evaluation of 
peripheral arterial stent-grafts”

{(Has device intended site (attribute),

“Structure of peripheral artery (body structure)”}

Focal cortical cataract 
(disorder)

{(Is a, “Cortical cataract (disorder)”)} 29961989/“Focal cortical cataract due to caterpillar 
hair migration”

{(Finding site (attribute),

“Structure of cortex of lens (body structure)”),

(Associated morphology,

“Abnormally opaque structure (morphologic abnormality)”)}
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are agreed upon by ontology curators, the concept can 
be automatically placed in the SNOMED CT hierarchy.

Note that even though a majority of potential miss-
ing concepts have not be validated, it does not mean 
that they are invalid. Such cases represent potential 
missing concepts without any evidence in the three 
sources used for validation. It should also be noted that 
ontology quality assurance approaches such as this are 
“discovery-oriented”, which means that they are sup-
posed to uncover previously unidentified quality issues. 
Any quality issue identified in the process is useful to 
improve the ontology. Unlike many tasks involving 

machine learning, on our task the upper bound for met-
rics (e.g., accuracy, precision, recall) is not 1.0, at least 
not in the sense that a perfect score is the goal. Rather, 
since our method proposes new knowledge concepts, by 
necessity it will generate concepts that are not present 
in any of our three evaluation datasets (UMLS, Pub-
Med, updated SNOMED CT). Instead, in future work 
we will look to better identify the appropriate methods 
for candidate concept generation that best fits with the 
needs of ontology curators. For now, it is clear that our 
method identifies a substantial number of concepts that 
can add value to SNOMED CT.

Table 6 Five examples of missing concepts validated by new release of SNOMED CT

Missing concept FSN Missing concept logical 
definitions

Matched SNOMED CT concept 
ID/FSN

Matched SNOMED CT concept 
logical definitions

Pain of right knee region (finding) {(Is a, “Pain of knee region (finding)”)} 468241000124105/Pain of right 
knee region (finding)

{(Is a, “Pain of knee region (finding)”)}

{(Is a, “Pain in right lower limb (find-
ing)”)}

{(Is a, “Pain in right lower limb (find-
ing)”)}

{(Finding site (attribute), {(Finding site (attribute),

“Structure of right knee region (body 
structure)”)}

“Structure of right knee region (body 
structure)”)}

Structure of nail unit of right 
thumb (body structure)

{(Is a, “Structure of right thumb (body 
structure)”)}

1162684003/Structure of nail unit of 
right thumb (body structure)

{(Is a, “Structure of right thumb (body 
structure)”)}

{(Is a, “Structure of nail unit of thumb 
(body structure)”)}

{(Is a, “Structure of nail unit of thumb 
(body structure)”)}

{(Laterality, “Right (qualifier value)”)} {(Laterality, “Right (qualifier value)”)}

Prolapse of small intestine 
(disorder)

{(Is a, “Prolapse of intestine (disorder)”)} 1172728007/Prolapse of small intes-
tine (disorder)

{(Is a, “Prolapse of intestine (disorder)”)}

{(Is a, “Disorder of small intestine 
(disorder)”)}

{(Is a, “Disorder of small intestine 
(disorder)”)}

{(Finding site (attribute), {(Finding site (attribute),

“Structure of small intestine (body 
structure)”),

“Structure of small intestine (body 
structure)”),

(Associated morphology, (Associated morphology,

“Prolapse (morphologic abnormal-
ity)”)}

“Prolapse (morphologic abnormality)”)}

Rupture of lumbar intervertebral 
disc (disorder)

{(Is a, “Lumbar disc lesion (disorder)”)} 1145243006/Rupture of lumbar 
intervertebral disc (disorder)

{(Is a, “Lumbar disc lesion (disorder)”)}

{(Is a, “Lower back injury (disorder)”)} {(Is a, “Injury of lumbar spine (disorder)”)}

{(Is a, “Intervertebral disc rupture 
(disorder)”)}

{(Is a, “Intervertebral disc rupture 
(disorder)”)}

{(Finding site (attribute), {(Finding site (attribute),

“Structure of lumbar intervertebral disc 
(body structure)”),

“Structure of lumbar intervertebral disc 
(body structure)”),

(Associated morphology, (Associated morphology,

“Rupture (morphologic abnormality)”)} “Rupture (morphologic abnormality)”)}

Entire right half of face (body 
structure)

{(Is a, “Structure of right half of face 
(body structure)”)}

362626009/Entire right half of face 
(body structure)

{(Is a, “Structure of right half of face 
(body structure)”)}

{(Laterality (attribute), “Right (qualifier 
value)”)}

{(Laterality (attribute), “Right (qualifier 
value)”)}
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Effects of normalization
As mentioned earlier, normalization was introduced 
to assist in matching FSNs to other FSNs/other ontol-
ogy concept names/biomedical text addressing different 
forms the FSNs may be in. We noticed that this indeed 
help in identifying additional cases. For instance, when 
we checked whether the predicted FSNs of the potential 
missing concepts already existed in the same SNOMED 
CT release, it was seen that 4,089 FSNs matched with 
existing concepts. Out of the 4,089, 119 were not exact 
matches between the predicted FSN and an existing 
FSN, i.e. these were captured due to normalization. In 
addition, during validation, it was seen that 91 missing 
concepts’ names existed in the newer SNOMED CT 
release (29 with the same logical definitions and 62 with 
different logical definitions). Out of these, 14 were not 
exact matches.

However, it was noticed that our normalization method 
misses certain cases. For instance, the predicted FSN 
“Closure of fistula of sclera (procedure)” and the FSN of 
an existing concept “Closure of scleral fistula (procedure)” 
were normalized to “closure fistula sclera (procedure)” 
and “closure scleral fistula (procedure)” respectively, 
which are different. However, these FSNs convey the 
same meaning.

Differences in the semantic tags
There are a total of 58 different semantic tags in the 
March 2021 US Edition of SNOMED CT. Each semantic 
tag corresponds to a SNOMED CT concept. For example, 
semantic tag “(finding)” has the corresponding concept 
“Clinical finding (finding)” and the semantic tag “(proce-
dure)” has the corresponding concept “Procedure (pro-
cedure)”. In addition, there exist relations among these 
semantic tags. For example, semantic tag “(finding)” is 
the ancestor of semantic tag “(disorder)”.

While training the PEGASUS model, we noticed that 
in certain situations, the semantic tag predicted by the 
model is different from the actual semantic tag while 
the rest of the FSN is the same. For instance, the model 
predicted the FSN “Product containing prolactin inhib-
iting factor (product)” for the concept “Product contain-
ing prolactin inhibiting factor (medicinal product)” in 
the test set.

We also observed similar cases while trying to match 
the predicted FSNs of the potential missing concepts 
with the FSNs of existing concepts in SNOMED CT. 
For instance, as mentioned earlier, we found 169 out of 
27,289 unique FSNs predicted by the model were already 
existing in SNOMED CT with a different semantic tag. 
Interestingly, in a vast majority of these cases, the seman-
tic tag identified by our model had a relationship with 

the semantic tag of the existing SNOMED CT concept. 
In 133 cases, the predicted semantic tags were descend-
ants of the semantic tags of the corresponding SNOMED 
CT concepts. For example, our model predicted the FSN 
“Product containing insulin (medicinal product)” while 
SNOMED CT contains a concept with the FSN “Prod-
uct containing insulin (product)”. Here the semantic tag 
“(medicinal product)” is a descendant of the seman-
tic tag “(product)”. In 24 out of 169 cases, the predicted 
semantic tags are the ancestors of the corresponding 
SNOMED CT concepts’ semantic tags. For instance, 
our model predicted the FSN “Lesion of pinna (finding)”, 
while SNOMED CT has a concept with the FSN “Lesion 
of pinna (disorder)”. Here, the semantic tag “(finding)” is 
an ancestor of the semantic tag “(disorder)”. In 34 out of 
169 cases, the semantic tags do not have any relation. For 
instance, our model predicted the FSN “Primary syno-
vial chondromatosis (disorder)”, while SNOMED CT has 
a concept with the FSN “Primary synovial chondromato-
sis (morphologic abnormality)”. Here, the semantic tags 
“(disorder)” and “(morphologic abnormality)” do not 
have any relation.

Differences in the logical definitions
We also noted that in certain scenarios, when a poten-
tial missing concept’s FSN is matched to the FSN of a 
SNOMED CT concept, their logical definitions may not 
be the same. For instance, in the evaluation through the 
newer SNOMED CT release, we observed that 62 cases 
out of 91 that were validated fall into this category.

For example, Table 6 shows an example for such a case 
in the concept “Rupture of lumbar intervertebral disc 
(disorder)”. The difference is that the potential missing 
concept has the attribute-value-pair {Is a, “Lower back 
injury (disorder)”}, while the matched SNOMED CT con-
cept has the attribute-value pair {Is a, “Is a Injury of lum-
bar spine (disorder)”}.

Out of the 91 missing concepts that existed in the 
newer September 2022 release of SNOMED CT, 23 
of them were actually in the March 2021 version in 
SNOMED CT as well albeit with different FSNs and logi-
cal definitions. So, it seems that both the FSNs and the 
logical definitions of these concepts have been updated 
in the newer SNOMED CT release and the updates 
reflect the logical definitions and FSNs our approach 
suggested. For example, Table  6 shows the validated 
missing concept “Entire right half of face (body struc-
ture)” that existed in the newer September 2022 release 
of SNOMED CT. It was seen that this concept existed 
with a different FSN: “Entire right side of face (body 
structure)” and different logical definitions in the March 
2021 release of SNOMED CT.
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Level distribution of concepts
As mentioned previously, in this work, we considered 
concepts with level ≥ 10 . The reason for this was to 
ensure that the candidate pairs are not very general 
concepts. Figure  5 shows the level distribution of the 
SNOMED CT concepts. It was seen that out of 361,461 
SNOMED CT concepts, 170,337 (47.12%) had level 
≥ 10.

Subhierarchy distribution of potential missing concepts
We investigated the distribution of the potential missing 
concepts in terms of 19 subhierarchies of the SNOMED 
CT. Among 23,031 potential missing concepts identi-
fied, 15,820 are for the Clinical finding subhierarchy, 
6,252 for Procedure, 866 for Body structure, 72 for Phar-
maceutical/biologic product, 9 for Specimen, 5 for Physi-
cal object, 1 for Situation with explicit context, 1 for 
Substance, 1 for Qualifier value, and there are 4 missing 
concepts that the model failed to predict a semantic tag 
for them.

Comparison with other summarization models
We also experimented with BART and T5 besides the 
PEGASUS summarization model. Table  7 demonstrates 
the comparison results of the three models in terms of 
ROUGE-1, ROUGE-2, ROUGE-L, and number of con-
cepts correctly predicted by each model out of 36,146 
concepts in the test dataset. Since PEGASUS slightly out-
performed BART and T5, we leveraged PEGASUS for 
our downstream missing concept identification task.

Comparison with related work
In previous work, we introduced a lexical approach based 
on order-preserving intersection of FSNs among candi-
date concept pairs in non-lattice subgraphs to identify 
missing concepts in SNOMED CT  [43]. This previous 
approach identified 7,702 potential missing concepts, 
while the current approach discussed in this paper iden-
tified 23,031 potential missing concepts. Both approaches 
in common identified 1,469 potential missing concepts. 
For instance, the missing concept “chronic nephritis” was 
identified by both approaches. Note that this missing 
concept was validated by both UMLS and PubMed. How-
ever, it should also be noted that our approach in this 
paper was able to identify the semantic tag of this miss-
ing concept: “(disorder)”, which the previous approach 
was not capable of. In addition, the current approach also 
generated the logical definitions of this missing concept, 
which the previous approach also was incapable of.

Bodenreider has introduced an approach that leverages 
logical definitions and concept names to address a differ-
ent quality issue in SNOMED CT: missing hierarchical 

Fig. 5 The level distribution of the SNOMED CT concepts. Out of 361,461 SNOMED CT concepts, 170,337 (47.12%) had level ≥ 10

Table 7 Performance comparison of the three models

Metric BART T5 PEGASUS

ROUGE-1 72.66 72.67 72.83

ROUGE-2 50.79 50.15 51.06

ROUGE-L 71.58 71.64 71.76

No. of correct 
prediction

11,475/36,146 11,521/36,146 11,549/36,146
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relations  [58]. Bodenreider’s work is also methodologi-
cally different from our work such that logical definitions 
are constructed from lexical features of concept names 
and then reasoning is performed to identify missing hier-
archical relations.

Liu et  al.  [59] introduced a deep learning-based 
approach using Convolutional Neural Network (CNN) to 
discover missing IS-A relations in NCIt, where concept 
representation was generated using Doc2Vec includ-
ing the concept ID, the names of its ancestors, the name 
of itself, the names of its children and the names of its 
grandchildren (if they exist). Note that logical definitions 
were not leveraged in Liu et al.’s work and missing IS-A 
relations were the focus rather than missing concepts.

Limitations and future work
Although the fine-tuned summarization model’s ROUGE 
scores on the test dataset look promising (ROUGE-1/
ROUGE-2/ROUGE-L: 72.83/51.06/71.76) in a text sum-
marization context, the model only correctly predicted 
11,549 out of 36,146 FSNs in the test dataset. The rea-
son for this difference is that the ROUGE scores repre-
sent a recall measure based on n-gram overlap. In other 
words, the summary and the reference do not have to be 
the same for the ROUGE scores to be high. This is valid 
in text summarization tasks as there are multiple ways a 
summary can be written. However, since we used a nor-
malized matching procedure to decide whether a sum-
marized FSN is the same as the real FSN of a concept, 
and since our normalization is not perfect as mentioned 
earlier, this indicates that we could have missed a number 
of correct FSN predictions by the model, and the actual 
number of correct FSN predictions of our model could 
be higher than what is reported. Therefore, in the future 
we will explore the possibility to manually review a ran-
dom sample of these cases by domain experts who are 
capable of identifying such cases.

In spite of the above-mentioned difference, further 
work is still needed to improve the summarization mod-
el’s performance for naming missing concepts based on 
logical definitions. In this study, we fine-tuned a pre-
trained PEGASUS model to predict the FSNs from logi-
cal definitions. We will investigate whether pre-training 
the PEGASUS model on task specific data will have any 
impact on the performance. Another potential direc-
tion for improving the performance is to fine-tune the 
model with additional data. One fine-tuning instance 
could potentially be used to create multiple instances by 
changing the order of the input logical definitions (train-
ing data augmentation). Additionally, synonyms could 
also be considered during the fine-tuning process. Since, 
synonyms essentially have the same logical definition but 

different synonymous names, fine-tuning instances need 
to be properly adjusted to handle such cases. We would 
like to explore such strategies in the future.

Though 30,313 unique logical definitions were identified 
through derived logical definition intersection, only 23,031 
unique FSNs were predicted since there were duplicate 
FSN predictions for different logical definitions of poten-
tial missing concepts. In such cases, we randomly removed 
one of the potential missing concepts with a duplicated 
FSN. In the future, we will investigate how to reasonably 
remove such duplicates as depending on their logical defi-
nitions, one may be of more importance than the other.

In this study, we chose to predict the concept’s FSN 
because SNOMED CT uses it to provide a unique 
description for the concept so that it is unambigu-
ous, stable across multiple contexts, and optimally 
understandable to those whose first language is not 
English  [10]. Identifying missing concepts’ FSNs in 
compliance with SNOMED CT’s concept description 
standard is beneficial when adding missing concepts to 
SNOMED CT in the future. However, since a preferred 
term is the most clinically appropriate way of expressing 
a concept in a clinical record [12], and a synonym is an 
acceptable way to express the meaning of a concept [11], 
predicting preferred terms or synonyms would also 
be beneficial to the comprehensiveness of SNOMED 
CT. For the future work, we will also investigate how 
to incorporate preferred terms and synonyms into our 
approach.

In addition, we only focused on non-lattice subgraphs 
of size < 10 in this work. In the future, we would explore 
whether applying the same approach to all non-lattice 
subgraphs would be as effective.

As mentioned earlier, the fine-tuned PEGASUS model 
predicts different semantic tags for some of the concepts. 
An interesting future direction is to see whether this 
could be leveraged to audit the semantic tags of concepts.

Another limitation of our work is that no manual eval-
uation was performed to assess the actual effectiveness 
of the approach. We plan to submit a random sample of 
the identified missing concepts to SNOMED Interna-
tional for auditors’ manual review and potential incorpo-
ration in a new version of SNOMED CT.

Conclusions
In this paper, we introduced an approach to identifying 
potential missing concepts in SNOMED CT by intersect-
ing the derived logical definitions of unrelated concepts 
in non-lattice subgraphs and fine-tuning a text summa-
rization model to predict the fully specified names of the 
potential missing concepts based on their logical defini-
tions. Applied to the March 2021 US Edition of SNOMED 
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CT, our approach identified 23,031 potential missing con-
cepts with both fully specified names and logical defini-
tions. Out of these, a total of 2,312 were validated through 
either UMLS, PubMed, or a newer release of SNOMED 
CT. The results indicated that our approach is encourag-
ing and has the potential to be applied to other biomedi-
cal ontologies, even though further work is still needed to 
improve the model for concept naming based on logical 
definitions.
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